High Tumor Levels of Vascular Endothelial Growth Factor Predict Poor Response to Systemic Therapy in Advanced Breast Cancer1

John A. Foekens,2 Harry A. Peters, Nicolai Grebencchtchikov, Maxime P. Look, Marion E. Meijer-van Gelder, Anneke Geurts-Moespot, Theo H. van der Kwast, C. G. J. (Fred) Sweep, and Jan G. M. Klijn

Division of Endocrine Oncology (Department of Medical Oncology), Rotterdam Cancer Institute (Daniel den Hoed Kliniek) and University Hospital Rotterdam (J. A. F., H. A. P., M. P. L., M. E. M. v. G., J. G. M. K.); Department of Pathology, University Hospital Rotterdam, Rotterdam [T. H. v. d. K.]; and Department of Chemical Endocrinology, University Hospital Nijmegen, Nijmegen [N. G., A. G.-M., C. G. J. J. S.], the Netherlands

ABSTRACT

Vascular endothelial growth factor (VEGF), a potent angiogenic factor, has been reported to be associated with a poor prognosis in primary breast cancer and in several other cancer types. In the present study, we have measured with ELISA the levels of VEGF in cytosolic extracts of 845 primary breast tumors of patients who developed a recurrence during follow-up. All of the patients received tamoxifen (n = 618) or cyclophosphamide, methotrexate, 5-fluorouracil (CMF) or 5-fluorouracil, Adriamycin, cyclophosphamide (FAC) chemotherapy (n = 227) as first-line systemic therapy after diagnosis of advanced disease. VEGF levels were not related to age or menopausal status but were negatively related to the cytosolic levels of estrogen receptor and progesterone receptor (P < 0.0001). In patients who relapsed within 1 year after primary surgery, tumor VEGF levels were higher than in patients who showed a longer disease-free interval (P = 0.0005). In patients with a first relapse in the viscera, VEGF levels were higher compared with those that relapsed to the bone or soft tissue (P = 0.004). In univariate analysis for response to first-line tamoxifen therapy, patients with high or intermediate levels showed a poor rate of response, compared with patients with low tumor-VEGF levels (P = 0.0001). Similarly, in multivariate analysis for response to tamoxifen treatment, corrected for age, site of relapse, disease-free interval, and estrogen receptor and progesterone receptor status, VEGF status was an independent predictive factor (P = 0.009). In concordance, higher levels of VEGF were associated with a short progression-free survival and postrelapse overall survival (both, P < 0.0001). On first-line chemotherapy, the rate of response decreased with higher tumor levels of VEGF, both in univariate (P = 0.003) and in multivariate analysis (P = 0.004). Furthermore, higher VEGF levels were associated with a short progression-free survival (P = 0.003) and postrelapse overall survival (P = 0.001). In conclusion, the tumor VEGF level is an important independent marker that predicts a poor efficacy of both tamoxifen and chemotherapy in advanced breast cancer. Knowledge of the tumor level of VEGF might be helpful in selecting individual patients who may benefit from treatments with antiangiogenic agents combined with conventionally used drugs.

INTRODUCTION

Angiogenesis, required for tumor growth and metastasis (1, 2), is balanced by a variety of positive and negative regulators of microvessel growth (3). An unbalance of these regulators results in a switch to an angiogenic tumor phenotype (4–6). Quantification of MVD3 in histological specimens of primary breast tumors and lymph-node metastases was shown to be related to a poor RFS and overall survival (7–10). VEGF, first described as vascular permeability factor (11), consists of several splice variants yielding proteins of 121, 145, 165, 189, and 206 amino acids (12, 13). In tissue, VEGF165 is the predominant isoform, and VEGF121 and VEGF165 are secreted into the circulation (14). Within tumors the tumor cells are the main source of VEGF; however, tumor-associated stroma has also been shown to produce VEGF (15). VEGF behaves as a growth factor ligand that binds to specific tyrosine kinase receptors VEGFR-1 (flt) and VEGFR-2 (KDR/flk-1) on endothelial cells (16, 17).

In patients with breast cancer, serum and plasma VEGF levels have been found to be elevated in patients with larger tumors and with metastatic disease (18, 19). In human primary breast tumors, the immunocytochemically assessed VEGF showed a close correlation with MVD, and high expression levels were associated with a poor relapse-free survival (20). The levels of VEGF measured by ELISA in tumor cytosols correlated with microvesSEL count as well (21). However, in this small heterogeneous study including only 89 patients, the level of cytosolic VEGF was not correlated with RFS (21). On the other hand, several groups of investigators reported that an increased expression level of VEGF mRNA (22) or protein, as measured by ELISA in tumor cytosols (23–25), was associated with a poor prognosis in primary breast cancer patients. Similarly, in patients treated with adjuvant endocrine or chemotherapy, intratumoral MVD or a high level of VEGF in primary breast tumor cytosols were shown to be related to a poor prognosis (26–30). From these studies, however, no conclusions can be drawn regarding the association of systemic treatment with the level of VEGF or the extent of MVD because there were no randomized untreated control groups available.

Recently, functional estrogen response elements in the gene coding for VEGF have recently been reported (31, 32). There is evidence that steroid hormones can regulate VEGF production in human breast cancer cells. In human breast cancer cells in vitro (33, 34) and in 7,12-dimethylbenzanthracene-induced rat mammary tumors in vivo (35), VEGF mRNA and/or protein production was found to be stimulated by estrogens and progestins. The antiestrogen ICI 182.780 inhibited the estradiol-stimulated VEGF production of the MCF-7 breast cancer cells, whereas tamoxifen did not. Tamoxifen, when used alone, even stimulated VEGF production by a mechanism thought to be independent of ER (34). Currently no published data on the relationship between the tumor level of VEGF and the efficacy of response to systemic endocrine therapy, nor to chemotherapy, in patients with advanced breast cancer are available. In the present study, we aimed to assess in a relatively large series of patients whether the tumor level of cytosolic VEGF might be predictive for the efficacy of tamoxifen and/or chemotherapy in advanced breast cancer patients.
Patients and Treatment. Our study design was approved by the medical ethical committee of the Erasmus University Rotterdam, the Netherlands. A series of 845 patients with primary operable breast cancer who underwent resection of their primary tumor between 1978 and 1995, and who developed a recurrence that was treated with first-line tamoxifen (618 patients) or chemotherapy (227 patients), were selected. At the time of surgery for their primary tumor, the median age of the tamoxifen-treated patients was 59 years (range 26–90 years), and the chemotherapy-treated patients was 47 years (range 24–79 years). The differentiation grade of the tumor was based on histological and cellular characteristics, as stated in the reports of the regional pathologists, and it is not based on a central pathological review of all of the tumor samples and, thus, reflects daily practice. The length of PFS was defined as the time from the start of treatment of advanced disease until the start of next treatment because of PD or until the time of intercurrent death. All of the patients were assessed by standard Union International Contre Cancer criteria as having CR and PR. Patients with no change for more than 6 months (SDs) have a PR-Os similar to patients with PR (36, 37). Therefore, for overall response, objective response (CR + PR) and SDs were combined.

First-Line Tamoxifen Treatment. All of the patients received tamoxifen (40 mg daily) as first-line endocrine therapy after diagnosis of advanced disease. None of the patients had received neoadjuvant therapy, and none of the patients were exposed to hormonal treatment at an earlier stage (hormon-naive). Adjuvant polychemotherapy was given to 117 patients (CMF in 76 patients, FAC in 41 patients). At start of tamoxifen treatment, 137 (22%) patients were premenopausal and 481 (78%) patients were postmenopausal. Of the patients, 523 (85%) had an ER-positive (≥10 fmol/mg of protein) tumor, whereas 16 (13%) had an ER-negative tumor and 12 (2%) an unknown receptor status. The median follow-up of the patients still alive after surgery is 93 months (range, 5–9167 months) and after start of tamoxifen treatment is 39 months (range, 4–135 months). One hundred twenty-one patients are still alive, whereas 497 (80%) died. On tamoxifen therapy given for advanced disease, tumor progression occurred in 575 patients (93%) during follow-up. Of these patients, 301 were subsequently treated with one or more additional hormonal agents (mostly high-dose progestins), and, thus far, 330 patients received systemic chemotherapy (mainly, CMF, or with Adriamycin instead of m ethotrexate, FAC).

First-Line Chemotherapy. All of the patients received polychemotherapy as first-line treatment (CMF in 111 and FAC in 116 patients) after diagnosis of advanced disease. None of these patients had received neoadjuvant therapy. Adjuvant chemotherapy was given to 44 patients (CMF in 31 patients, FAC in 13 patients) and adjuvant hormonal therapy was given to 44 patients as well, either alone (42 patients) or in combination with CMF (2 patients). At start of chemotherapy, 123 patients were premenopausal (54%) and 104 patients were postmenopausal (46%). Of these patients, 123 (54%) had an ER-negative tumor, whereas 101 (44%) had an ER-positive tumor and 3 (1%) an unknown receptor status. The median follow-up of the patients still alive after surgery is 75 months (range, 13–118 months) and after start of chemotherapy is 18 months (range, 4–79 months). Thirty-three patients are still alive, and 194 died (85%). On chemotherapy, tumor progression occurred in 215 patients (95%) during follow-up. Of these patients, 142 were eventually treated with endocrine therapy, 106 (tamoxifen in 63 patients, progesterins in 41 patients, others in 2 patients) immediately after progression on first-line CMF or FAC and 36 after 1 to 3 additional chemotherapy regimens.

Tumors and Assays. Tumor tissues were stored in liquid nitrogen and pulverized in the frozen state with a microdismembrator as recommended by the EORTC for processing of breast tumor tissue for cytosolic ER and PgR determinations (38). The resulting tissue powder was suspended in EORTC receptor buffer [10 mM K2HPO4, containing 1.5 mM dipotassium EDTA, 3 mM NaH2PO4, 10 mM monothioglycerol, and 10% v/v glycerol (pH 7.4)]. The suspension was centrifuged for 30 min at 100,000 x g at 4°C to obtain the supernatant fraction (cytosol). ER and PgR levels were determined by ligand-binding assay using the method of Kaplan and Meier (42) and the log-rank test for trend was used to test for differences and for interactions. Isotonic regression analysis (41) was applied to define cutpoints for VEGF after it had been established that, in a test for trend using log-transformed VEGF values, high VEGF levels were significantly associated with a poor rate of response or a shorter PFS on tamoxifen therapy (P = 0.002 and P = 0.001, respectively), and chemotherapy (P = 0.003 and P = 0.05, respectively). With isotonic regression analysis, the hazard rate for failure is estimated as a function of the VEGF value under the assumption of a monotone-decreasing failure rate (no response or progression) with increasing VEGF levels. The cutpoints chosen to classify tumors as VEGF-low, intermediate and -high, were 0.22 and 1.73 ng/mg of protein, respectively, in analysis of response and survival on tamoxifen treatment. The same cutpoints were adapted in the analysis of response and survival on chemotherapy because there were no reasons to assume that they might be different from those defined for the patients who were treated with tamoxifen. Cox univariate regression analysis was used in the analysis of PFS and PR-OS. The assumption of proportional hazards was verified graphically. RHRs were calculated and presented with their 95% CIs. Survival curves were generated using the method of Kaplan and Meier (42) and the log-rank test for trend was used to examine survival data. All of the Ps are two-sided and relate to all of the available data during the total period of follow-up.

Statistics. The strength of the associations of VEGF with ER and PgR were tested with Spearman rank correlation (rS). The associations of VEGF (used as continuous variable) with other variables (used as grouping variables) was tested with the nonparametric Wilcoxon rank-sum test or the Kruskal-Wallis test, followed by a Wilcoxon-type test for trend across ordered groups if appropriate. In uni- and multivariate analysis, the relation with response-to-therapy was examined with logistic regression analysis. Multivariate analysis was performed with variables eliminated in a step-down fashion. ORs were calculated and presented with their 95% CIs. Variables with a P < 0.1 were retained in the final multivariate models for response to tamoxifen and chemotherapy. The likelihood ratio test in regression models was used to test for differences and for interactions. Isotonic regression analysis (41) was applied to define cutpoints for VEGF after it had been established that, in a test for trend using log-transformed VEGF values, high VEGF levels were significantly associated with a poor rate of response or a shorter PFS on tamoxifen therapy (P = 0.002 and P = 0.001, respectively), and chemotherapy (P = 0.003 and P = 0.05, respectively).

RESULTS

Levels and Associations. The median level of VEGF determined in 845 cytosols was 0.22 ng/mg of protein (range, 0–542 ng/mg protein). Table 1 shows their median levels and quartiles in subgroups of tumors and their relationships with patient and tumor characteristics. The tumor levels of VEGF were not related to menopausal status or with age (Spearman correlation, rS = 0.05) at the time of primary surgery. If the primary tumor had high levels of VEGF, the first metastases more often developed in the viscer a and bone, and less frequently in soft tissues (P = 0.0004). Patients who had a DFI of less than 1 year had higher VEGF levels in the primary tumor than those with a DFI of ≥1 year (P = 0.0005). VEGF levels were higher in hormone receptor-negative tumors compared with receptor-positive tumors (rS = −0.14 for ER, and rS = −0.19 for PgR, respectively; for both P < 0.0001). Tumor VEGF levels were not significantly correlated with nodal status (P = 0.09) or with primary tumor size (P = 0.51) or grade (P = 0.20).
rate of response to tamoxifen treatment than premenopausal and younger patients. Furthermore, patients who first relapsed to the viscera showed a worse rate of response (51% response) compared with patients of whom the soft tissue or the bone was the first site of relapse (60 and 61% response, respectively). In patients with a DFI of <1 year (40% response; OR set at 1) the fraction of responding patients was smaller than in patients with a DFI of ≥1 year (63% response; OR, 2.49). The application of adjuvant chemotherapy was not related to the rate of response to tamoxifen treatment in advanced disease. Patients with ER-positive or PgR-positive tumors had a higher response rate (OR, 3.40 and 2.10, respectively) than patients with ER-negative or PgR-negative tumors (OR, 1). Compared with the 320 patients with low levels of VEGF (≤0.22 ng/mg protein) in the tumor cytosols [64% response (22% CR + PR and 42% SDs; OR, 1)], the 220 patients with intermediate VEGF levels (≥0.22 and ≤1.73 ng/mg protein) and the 78 patients with high VEGF levels (≥1.73 ng/mg protein), showed a worse rate of response [intermediate, 52% response (16% CR + PR and 36% SDs; OR, 0.61); high, 40% response (9% CR + PR and 31% SDs; OR, 0.37); P = 0.0001]. Lymph-node status, or size and grade of the primary tumor, which are strong prognostic factors in patients with primary breast cancer, were not significantly related to the rate of response to tamoxifen treatment in patients with advanced disease. These factors were, therefore, not further considered in the present study.

In Kaplan-Meier analysis of the 618 tamoxifen-treated patients, those with intermediate and high VEGF levels showed a shorter PFS (P < 0.0001; Fig. 1A) and PR-OS (P < 0.0001; Fig. 1B) compared with patients with low VEGF levels. After 3 years, more than twice as many patients were alive in cases in which the tumor had low VEGF.

Table 1 Relationships of VEGF with patient and tumor characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Frequency(^a)</th>
<th>VEGF median value (quartiles)(^b)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>845</td>
<td>0.22 (0.01, 0.82)</td>
<td></td>
</tr>
<tr>
<td>Menopausal status(^c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premenopausal</td>
<td>349</td>
<td>0.20 (0.071)</td>
<td></td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>496</td>
<td>0.24 (0.01, 0.98)</td>
<td>0.08(^d)</td>
</tr>
<tr>
<td>First site of relapse(^e)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft tissue</td>
<td>125</td>
<td>0.13 (0.59)</td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>335</td>
<td>0.18 (0.61)</td>
<td></td>
</tr>
<tr>
<td>Viscera</td>
<td>385</td>
<td>0.30 (0.04, 1.13)</td>
<td>0.0004(^e)</td>
</tr>
<tr>
<td>DFI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 yr</td>
<td>249</td>
<td>0.33 (0.04, 1.31)</td>
<td></td>
</tr>
<tr>
<td>≥1 yr</td>
<td>596</td>
<td>0.20 (0.072)</td>
<td></td>
</tr>
<tr>
<td>ER status(^f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>206</td>
<td>0.45 (0.06, 1.59)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>624</td>
<td>0.18 (0.64)</td>
<td></td>
</tr>
<tr>
<td>PgR status(^f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>283</td>
<td>0.36 (0.70, 1.40)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>538</td>
<td>0.17 (0.59)</td>
<td><0.0001(^f)</td>
</tr>
</tbody>
</table>

\(^a\) Because of missing values, numbers do not always add up to 845.
\(^b\) All of the values are in ng/mg of protein (25th and 75th percentiles).
\(^c\) At time of primary surgery.
\(^d\) P for Wilcoxon rank-sum test.
\(^e\) In case of multiple sites, the site with the worst prognosis was considered dominant.
\(^f\) P for Spearman rank correlation.

Univariate Analysis for Response to Tamoxifen Therapy

Table 2 shows that postmenopausal and older patients had a higher 5409

Table 2 Univariate and multivariate analysis for response to first-line tamoxifen therapy in patients with advanced breast cancer

<table>
<thead>
<tr>
<th>Frequency(^a)</th>
<th>Response rate (%)</th>
<th>VEGF</th>
<th>Median Value (Quartiles)</th>
<th>Univariate Analysis</th>
<th>Multivariate Analysis</th>
<th>Duration of Response (mo)</th>
<th>Survival (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>618</td>
<td>57</td>
<td>0.22 (0.01, 0.82)</td>
<td>P</td>
<td>OR</td>
<td>(95% CI)</td>
<td></td>
</tr>
<tr>
<td>Menopausal status(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premenopausal</td>
<td>137</td>
<td>47</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>481</td>
<td>60</td>
<td>0.007</td>
<td>1.69</td>
<td>(1.15–2.47)</td>
<td>16.3</td>
<td>25.9</td>
</tr>
<tr>
<td>Age (yr)(^d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤40</td>
<td>40</td>
<td>43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>16.3</td>
</tr>
<tr>
<td>41–55</td>
<td>175</td>
<td>51</td>
<td>1.43</td>
<td>(0.72–2.87)</td>
<td>1.43</td>
<td>(0.68–2.99)</td>
<td>14.2</td>
</tr>
<tr>
<td>56–70</td>
<td>237</td>
<td>58</td>
<td>1.85</td>
<td>(0.94–3.65)</td>
<td>2.11</td>
<td>(1.02–4.34)</td>
<td>15.3</td>
</tr>
<tr>
<td>>70</td>
<td>166</td>
<td>64</td>
<td>0.02</td>
<td>2.45</td>
<td>(1.22–4.96)</td>
<td>0.008</td>
<td>2.78 (1.31–5.89) 18.5</td>
</tr>
<tr>
<td>First site of relapse(^e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft tissue</td>
<td>92</td>
<td>60</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>16.3</td>
</tr>
<tr>
<td>Bone</td>
<td>287</td>
<td>61</td>
<td>1.05</td>
<td>(0.65–1.70)</td>
<td>0.80</td>
<td>(0.47–1.36)</td>
<td>17.3</td>
</tr>
<tr>
<td>Viscera</td>
<td>239</td>
<td>51</td>
<td>0.05</td>
<td>0.69</td>
<td>(0.42–1.12)</td>
<td>0.09</td>
<td>0.58 (0.34–1.00) 14.5</td>
</tr>
<tr>
<td>DFI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 yr</td>
<td>168</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>11.9</td>
</tr>
<tr>
<td>≥1 yr</td>
<td>450</td>
<td>63</td>
<td><0.0001</td>
<td>2.49</td>
<td>(1.73–3.58)</td>
<td><0.0001</td>
<td>2.30 (1.55–3.42) 16.8</td>
</tr>
<tr>
<td>Adjuvant therapy(^f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>484</td>
<td>56</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>16.3</td>
</tr>
<tr>
<td>Yes</td>
<td>134</td>
<td>59</td>
<td>0.57</td>
<td>1.12</td>
<td>(0.76–1.65)</td>
<td>14.8</td>
<td>27.0</td>
</tr>
<tr>
<td>ER status(^f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>83</td>
<td>31</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12.7</td>
</tr>
<tr>
<td>Positive</td>
<td>523</td>
<td>61</td>
<td><0.0001</td>
<td>3.40</td>
<td>(2.07–5.58)</td>
<td>0.009</td>
<td>2.14 (1.20–3.83) 16.4</td>
</tr>
<tr>
<td>PgR status(^f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>155</td>
<td>43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td>Positive</td>
<td>442</td>
<td>62</td>
<td><0.0001</td>
<td>2.10</td>
<td>(1.45–3.05)</td>
<td>0.09</td>
<td>1.47 (0.95–2.28) 17.4</td>
</tr>
<tr>
<td>VEGF levels(^g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>320</td>
<td>64</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>18.4</td>
</tr>
<tr>
<td>Intermediate</td>
<td>220</td>
<td>52</td>
<td>0.61</td>
<td>(0.43–0.87)</td>
<td>0.69</td>
<td>(0.47–1.00)</td>
<td>14.7</td>
</tr>
<tr>
<td>High</td>
<td>78</td>
<td>40</td>
<td>0.0001</td>
<td>0.37</td>
<td>(0.22–0.61)</td>
<td>0.009(^h)</td>
<td>0.45 (0.26–0.78) 12.2</td>
</tr>
</tbody>
</table>

\(^a\) Because of missing values, numbers do not always add up to 618.
\(^b\) OR (95% CI).
\(^c\) The final multivariate model with all of the factors known included 597 patients.
\(^d\) Median time until progression (mo) in responding patients.
\(^e\) PR-OS (mo) after start of first-line tamoxifen treatment of all 618 patients.
\(^f\) At time of start of first-line tamoxifen treatment.
\(^g\) Cutpoints: 10 fmol/mg protein.
\(^h\) Low: ≤0.22 ng/mg protein; intermediate: ≥0.22 and <1.73 ng/mg protein; high: ≥1.73 ng/mg protein.
\(^i\) The increment in χ² is 9.52.

5409
levels (46% alive) compared with those with high VEGF levels (20% alive). The median PFS decreased from 9.9 months for those with low VEGF levels, via 7.0 months for those with intermediate VEGF levels, to 5.1 months for those with high levels of VEGF in the tumor cytosols. Similarly, the PR-OS decreased from 32.6 months, via 22.2 months, to 15.9 months with VEGF levels increasing from low, via intermediate, to high, respectively. The median duration of response in the 351 patients responding to tamoxifen (Table 2) decreased from 18.4 months for patients with low (RHR, set at 1), via 14.7 months for those with intermediate (RHR, 1.35; 95% CI, 1.06–1.71) to 12.2 months for those with high tumor levels of VEGF (RHR, 1.86; 95% CI, 1.86–2.77; \(P = 0.002\)). The median duration of response in the 120 responding patients was 7.4 months; this was not different between the patients who received FAC (7.6 months) or CMF (7.7 months).

Univariate Analysis for Response to Chemotherapy. Of the 227 patients treated with first-line chemotherapy, 120 (53%) responded (16 CR, 67 PR, 37 SDs). The proportion of response was higher for the 116 patients who received FAC (63% response; 8 CR, 45 PR, 20 SDs) than for the 111 patients who received CMF (42% response; 8 CR, 22 PR, 17 SDs; \(P = 0.002\)). The median duration of response in the 120 responding patients was 7.4 months; this was not different between the patients who received FAC (7.6 months) or CMF (7.7 months).

Table 3 shows that on first-line chemotherapy, the premenopausal patients responded more favorably (61% response) than the postmenopausal patients (43% response). In patients with a DFI of \(<1\) year, the rate of response (44% response; OR, 1) was lower compared with patients with a DFI of \(\geq 1\) year (58% response; OR, 1.69), although not significant (\(P = 0.06\)). The first site of relapse, the application of former adjuvant systemic therapy, and the ER or PgR status, were not related to the rate of response to first-line chemotherapy. Higher levels of VEGF in the tumor cytosols predicted a poor outcome on chemotherapy (\(P = 0.003\)). Of the 101 patients with low VEGF levels, 64% (43% CR + PR, 22% SDs; OR, 1) responded. This compares with 48% responders (37% CR + PR, 10% SDs; OR, 0.50) in the 86 patients with intermediate VEGF levels, and to 35% responders (20% CR + PR, 15% SDs; OR, 0.30) in the 40 patients with high VEGF levels, respectively (Table 3). Lymph-node status, or
size and grade of the primary tumor, were not significantly related to the rate of response to chemotherapy in patients with advanced disease, and were not further considered in the present study.

In Kaplan-Meier analysis of the 227 patients who were treated with chemotherapy, compared with tumors with low VEGF levels, those with intermediate and high levels showed a shorter PFS (chemotherapy, compared with tumors with low VEGF levels, those with intermediate, to 6.6 months for those with high tumor levels had ORs and 95% CI of 0.71 (0.48–1.04) and 0.49 (0.28–0.87), respectively. There were no statistically significant interactions between VEGF and ER or PgR in the analysis of response to tamoxifen treatment, neither when analyzed as continuous variables, nor when analyzed as categorical variables.

In the multivariate analysis for response to chemotherapy, in addition to VEGF added as a categorical variable, young age, a short DFI, and ER-negativity independently predicted a poor rate of response to tamoxifen treatment as well. The contributions of the first site of relapse and PgR to the multivariate model were not statistically significant (both, P = 0.09; Table 2). The marginal contribution of PgR was attributable to the inclusion of ER in the model. In a separate multivariate analysis in which VEGF was added to the model as a log-transformed continuous variable instead of a categorical variable, the contribution of VEGF was statistically significant as well (P < 0.05). Furthermore, when ER and PgR were both included as log-transformed continuous variables in the model (ER, P = 0.004; PgR, P = 0.01), the contribution of VEGF as a categorical variable was statistically significant (P = 0.03). In this latter model, compared with tumors with low VEGF levels (OR, 1), those with intermediate and high levels had ORs and 95% CIs of 0.71 (0.48–1.04) and 0.49 (0.28–0.87), respectively. There were no statistically significant interactions between VEGF and ER or PgR in the analysis of response to tamoxifen treatment, neither when analyzed as continuous variables, nor when analyzed as categorical variables.

In addition to VEGF added as a categorical variable, young age, a short DFI, and ER-negativity independently predicted a poor rate of response to tamoxifen treatment as well. The contributions of the first site of relapse and PgR to the multivariate model were not statistically significant (both, P = 0.09; Table 2). The marginal contribution of PgR was attributable to the inclusion of ER in the model. In a separate multivariate analysis in which VEGF was added to the model as a log-transformed continuous variable instead of a categorical variable, the contribution of VEGF was statistically significant as well (P < 0.05). Furthermore, when ER and PgR were both included as log-transformed continuous variables in the model (ER, P = 0.004; PgR, P = 0.01), the contribution of VEGF as a categorical variable was statistically significant (P = 0.03). In this latter model, compared with tumors with low VEGF levels (OR, 1), those with intermediate and high levels had ORs and 95% CIs of 0.71 (0.48–1.04) and 0.49 (0.28–0.87), respectively. There were no statistically significant interactions between VEGF and ER or PgR in the analysis of response to tamoxifen treatment, neither when analyzed as continuous variables, nor when analyzed as categorical variables.

In the multivariate analysis for response to chemotherapy, in addition to VEGF added as a categorical variable (P = 0.004), only menopausal status was a significant predictor of a poor rate of response (P = 0.01), whereas the contribution of a short DFI was only of borderline significance (P = 0.08; Table 3). In a separate multivariate analysis in which VEGF was included as a log-transformed continuous variable, its contribution was statistically significant as well (OR, 0.86; 95% CI, 0.77–0.95; P = 0.004). When the type of chemotherapy (FAC or CMF) was additionally included as a covariate in the model, the estimates of VEGF were not affected (OR, 0.86; 95% CI, 0.77–0.96; P = 0.006). This suggests that the relationship of
VEGF and response to chemotherapy did not depend on the presence of the anthracyclin in the polychemotherapy regimen given. There were no statistically significant interactions between categorically added ER (or PgR) and VEGF with respect to response to chemotherapy. However, when analyzed as log-transformed continuous variables in the multivariate analysis for response to chemotherapy, there appeared to be a significant first-order interaction between VEGF and ER \((P = 0.01)\), but not between VEGF and PgR \((P = 0.14)\).

Response to Treatment in ER Subgroups. Because we observed a statistically significant interaction of VEGF and ER with response to chemotherapy, we performed exploratory analyses for the rate of response in subgroups of ER-positive and ER-negative patients as a function of VEGF status. The predictive value of VEGF for a poor response to chemotherapy was confined to the subgroup of 123 ER-negative patients, i.e., intermediate and high levels of VEGF were associated with a lower fraction of responding patients \((P = 0.026)\). Compared with the 44 tumors with low VEGF levels \((64\% \text{ response}; \text{OR}, 1)\), the ORs and 95% CIs for the 51 tumors with intermediate levels \((45\% \text{ response})\) was 0.46 \((0.21–1.07)\), and for the 28 tumors with high levels \((32\% \text{ response})\) was 0.27 \((0.10–0.74)\), respectively. In the 101 ER-positive patients, the decrease in the fraction of responders as a function of the level of VEGF \((64, 53, \text{ and } 45\% \text{ response for those with low, intermediate, and high VEGF levels, respectively})\) was not statistically significant \((P = 0.37)\). In the analysis of the rate of response to tamoxifen treatment as a function of the level of VEGF, the association of VEGF with the fraction of responders was confined to the subgroup of 523 ER-positive patients. Of 285 patients with ER-positive and VEGF-low tumors, 192 \((67\%)\) responded favorably \((\text{OR}, 1)\). This compares with 101 \((56\% \text{ response})\) of 180 tumors with intermediate VEGF levels \((\text{OR}, 0.62; 95\% \text{ CI}, 0.42–0.91)\) and to 25 \((43\% \text{ response})\) of 58 tumors with high VEGF levels \((\text{OR}, 0.37; 95\% \text{ CI}, 0.21–0.65; P < 0.001)\). In 83 ER-negative patients, the response rates were 31\% for those with low, 34\% with intermediate, and 26\% with high VEGF levels, respectively \((P = 0.83)\).

DISCUSSION

Angiogenesis is a necessity for tumors to grow at the primary and metastatic sites. Therefore, many new therapies aimed at the inhibition of angiogenesis, e.g., the use of natural inhibitors or drugs that block VEGF action and VEGF-associated tyrosine kinase activation, are currently under investigation (reviewed in Refs. 3 and 43). Combinations of antiangiogenic drugs with conventional hormonal or chemotherapeutic agents are attractive treatment options to explore \(44)\). For the selection of patients who may benefit from these combined treatment modalities, knowledge of the tumor phenotype with respect to the expression of potential target proteins, or pathways, is essential. In preclinical breast cancer models, angiogenesis and/or VEGF production may be regulated by hormones \((26, 33–35, 45, 46)\) or chemotherapeutic agents \((47, 48)\). Furthermore, in human breast tumors, a reduction in MVD was observed after treatment of patients with neoadjuvant chemoendocrine therapy \(49)\). Moreover, antiestrogens, including tamoxifen, have been shown to inhibit VEGF-stimulated endothelial cell proliferation by a process not mediated by the ER \((50)\). Because VEGF is considered essential for tumor growth, and because the VEGF-induced VEGFR tyrosine kinase activity could be targeted in various ways, we have investigated in the present study whether tumor VEGF levels are related to the efficacy of response to tamoxifen and chemotherapy in advanced-breast-cancer patients.

The present finding that patients with a short DFI had significantly higher tumor levels of VEGF as compared with those with a longer DFI, is consistent with the results of earlier reports in which high tumor levels of VEGF were found to be related to a poor prognosis in primary breast cancer \((20, 22–25)\). We observed in our study with 845 recurrences that the tumors that had metastasized to viscera as first site of relapse had higher levels of VEGF as compared with those that had metastasized to soft tissues or bone. These results are in accordance with those recently reported by Linderholm et al. \(30)\) in a study involving 362 node-positive patients of whom 130 showed a recurrence during follow-up. However, although not comparable to the results of VEGF measurements as performed by us and Linderholm et al. \(30)\), in an earlier study of Gasparini et al., including 254 node-negative patients of whom 46 relapsed \((51)\), no relationship between MVD and first site of relapse was observed. There is no consensus in the literature with respect to the association of VEGF with ER and/or PgR. In the present study, we found significant but weak negative correlations between the levels of VEGF and ER or PgR, in analogy to some studies \((28, 30)\) but in contrast to others \((22, 23, 25)\). A positive relationship between VEGF and ER expression has been reported as well \((19)\). It should be emphasized that, in this latter study, VEGF and ER were assessed by immunohistochemistry, whereas in the previous studies, tumor extracts were analyzed \((22, 23, 25, 28, 30)\). The reasons for the discrepant findings may be the different methodologies used to assess VEGF and hormone receptor levels and the different patient populations included in the various studies \((node-negative, node-positive, unselected breast cancer patients, and primary and advanced breast cancer patients)\). These weak negative correlations \((or absence of correlations)\) between VEGF and ER and PgR in the primary breast tumors is surprising in view of the evidence that VEGF production in breast cancer cells is stimulated by estrogens and progestins \(in vitro and in vivo\) \((33–35)\). One plausible explanation for this apparent discrepancy is that, in the extracts of homogenized breast tumor tissues, additional VEGF is present that is produced by noncancer cells such as fibroblasts \((15, 52, 53)\) and macrophages \((54)\). In this respect, up-regulation of VEGF in mammary fibroblasts in response to hypoxia, a major inducer of VEGF in tumors \((55)\), has been reported \((56)\). A further explanation for the observed lack of a positive relation between VEGF and ER and PgR could be a constitutive expression of high levels of VEGF by ER-negative breast cancer cells \((57)\), whereas its expression is under the control of estrogen in the better differentiated ER-positive breast cancer cells. Moreover, VEGF gene expression is regulated by many cytokines or growth factors \((58)\), with expression levels that vary widely between ER-positive and ER-negative breast cancer cells \((59)\).

In univariate analysis of the efficacy of response on first-line tamoxifen treatment in patients with advanced breast cancer, a high level of tumor VEGF was significantly related to a poor outcome. In multivariate analysis for response, this relationship remained significant, even when corrected for classical predictive factors for response, including hormone receptor status. Similarly, the duration of response and the length of PFS and PR-OS were significantly reduced in patients with high tumor levels of VEGF. In our exploratory analysis, the predictive value of VEGF for the outcome on tamoxifen treatment appeared to be confined to patients with ER-positive tumors. The mechanisms by which high VEGF levels, or high angiogenesis, in ER-positive tumors are associated with a poor outcome on tamoxifen treatment can only be speculated on. Possible mechanisms that have been put forward by Gasparini et al. \((27)\), involve the production of growth factors by stroma and vessels that stimulate the tumor cells directly, such that the inhibitory effect of tamoxifen on tumor growth is bypassed by paracrine tumor growth stimulatory pathways. Furthermore, it was argued that stromal cells, such as macrophages, produce growth factors that stimulate both the tumor and the vessels, resulting in high angiogenesis with hormone resistance \((27)\). A further
possibility is that, under tamoxifen pressure, the tumor cells as well produce growth factors that potentially stimulate, directly or indirectly, angiogenesis. In this respect, tamoxifen has been shown to increase tumor growth factor β1 expression by breast tumor cells in vitro (60) as well as stromal fibroblasts in vivo (61). Tumor growth factor β1 in its turn is capable of increasing VEGF production by breast cancer cells (57) and breast tumor-associated macrophages (62). Moreover, VEGF production increases to support the survival of endothelial cells under unfavorable conditions (63), such as hypoxia (64) and high cell density (65). Therefore, it is tempting to speculate that failure to respond to tamoxifen treatment results in part from a stress (tamoxifen?)-induced endothelial cell survival. Our present results on the relationship between VEGF and tamoxifen resistance in clinically advanced breast cancer cannot directly be compared with those of others because published data are lacking. There are two studies available showing an adverse relationship between the primary tumor level of VEGF and the length of RFS and OS after adjuvant tamoxifen therapy in ER-positive node-positive primary breast cancer patients (28, 30). Furthermore, for this same patient group there are two published studies showing an inverse association between MVD and prognosis after adjuvant tamoxifen treatment (26, 27). In all of these studies, the discriminatory power of VEGF or MVD were of similar size as has been reported for untreated node-negative breast cancer patients (8, 23–25). Therefore, from these studies, no conclusion on the efficacy of adjuvant tamoxifen treatment in relation to angiogenesis or VEGF expression can be made because of the lack of direct comparison with untreated control groups.

Similar to its association with a poor outcome on tamoxifen therapy, we found high tumor-VEGF levels to be associated with a poor rate of response and a short PFS and PR-OS, on chemotherapy given for advanced breast cancer. In our exploratory analysis, this relationship seemed to be confined to ER-negative tumors. Our results cannot be compared with those in the literature because this is the first study on tumor-VEGF levels and the efficacy of chemotherapy in advanced breast cancer patients. There is, however, one study on the (lack of a) relationship between MVD and the efficacy of doxorubicin monotherapy in patients with locally advanced breast cancer (66), and there are a few studies (partly conflicting with respect to PFS and PR-OS) available overall suggesting an adverse relation between MVD (28, 29, 67) or VEGF (30) and the efficacy of adjuvant polychemotherapy in primary breast cancer. Similar to the studies exploring the relationship between MVD or VEGF with the efficacy of adjuvant tamoxifen treatment, these adjuvant chemotherapy studies are not conclusive as well because no untreated control groups could be included. The question remains why high tumor levels of VEGF are associated with a poor response to chemotherapy in patients with advanced breast cancer. One explanation could be that VEGF by inducing endothelial cell proliferation indirectly contributes to the drug-resistant phenotype of a tumor via the expression of drug-resistance-associated proteins such as glutathione S-transferase-π (68).

In conclusion, our exploratory analysis suggests that for patients with a high tumor-VEGF level, treatment with tamoxifen or chemotherapy alone may not prove to be beneficial to the patient with advanced breast cancer. It seems reasonable to postulate that tumors of this type may be responsive to angiogenesis inhibitors given alone or in combination with conventional anticancer treatments. In particular, patients with ER-positive tumors, combined with high levels of VEGF, might benefit from a combination of tamoxifen with an antiangiogenic treatment.

ACKNOWLEDGMENTS

We thank the community hospitals in the region, especially the surgeons and internists of the St. Clara Hospital, Ikaia Hospital, and St. Francisca Gasthuis at Rotterdam, and the Ruwaard van Putten Hospital at Spijkenisse, for their assistance in collecting the patients’ clinical follow-up data.

REFERENCES

VEGF AND RESPONSE TO THERAPY

High Tumor Levels of Vascular Endothelial Growth Factor Predict Poor Response to Systemic Therapy in Advanced Breast Cancer

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/14/5407

Cited articles This article cites 62 articles, 27 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/14/5407.full.html#ref-list-1

Citing articles This article has been cited by 44 HighWire-hosted articles. Access the articles at:
/content/61/14/5407.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.