An Adenovirus Expressing Mutant p27 Showed More Potent Antitumor Effects Than Adenovirus-p27 Wild Type

Kyung-Ho Park, Ja Young Seol, Tae-You Kim, Chul-Gyu Yoo, Young Whan Kim, Sung Koo Han, Young-Soo Shim, and Choon-Taek Lee

Department of Internal Medicine [K.-H. P., J. Y. S., T. Y. K.], Cancer Research Institute [T.-Y. K.], Seoul National University of Medicine, Lung Institute of Medical Research Center, Seoul National University [C.-G. Y., Y. W. K., S. K. H., Y.-S. S., C.-T. L.], and Gene Therapy Laboratory of Clinical Research Institute, Seoul National University Hospital [K.-H. P., J. Y. S., C.-T. L.], Seoul 110-744, Korea

ABSTRACT

The main inhibitory action of p27, a cyclin-dependent kinase inhibitor (CDKI), arises from its binding with the cyclin E/cyclin-dependent kinase 2 (Cdk2) complex that results in G1-S arrest. Degradation of p27 is mediated by phosphorylation of Thr-187 of p27, which follows ubiquitination. In this study, we generated two adenoviruses expressing wild-type p27 (ad-p27wt) and mutant p27 (ad-p27mt), with mutation of Thr-187/Pro-188 (ACGCCC) to Met-187/Ile-188 (ATGATC), which was produced with the belief that mutant p27 would bind cyclin E/Cdk2 more stably and show more potent antitumor effects. Ad-p27wt and ad-p27mt expressed p27 proteins that were indistinguishable by anti-p27 antibody. A pulse chase experiment showed that p27mt was more resistant to degradation than p27wt. In human lung cancer cell lines, ad-p27mt showed stronger growth inhibition than ad-p27wt. Both types of ad-p27 induced G1-S arrest and apoptosis; however, ad-p27mt induced stronger G1-S arrest and apoptosis. Intratumoral injection of ad-p27mt induced partial regression of established tumors and inhibited the growth of human lung xenografts more strongly than ad-p27wt. From these results, we conclude that ad-p27mt has the potential to become a novel and powerful gene therapy tool.

INTRODUCTION

Cellular dedifferentiation and uncontrolled proliferation are the main characteristics of cancer cells. Uncontrolled proliferation of cancer cells results from the disruption of the normal cell cycle control, which is controlled by interactions among cyclin, Cdk, and CDKI (1).

Two families of CDKIs are involved in cell cycle arrest. Inhibitors of the INK4 family (p16, p15, p18, and p19) bind Cdk4 and Cdk6 specifically and inhibit cyclin D binding. In contrast, inhibitors of the Cip/Kip family (p21, p27, and p57) act as broad, specific inhibitors of the cyclin D, E, and A complexes. The deregulation of these CDKIs is a common feature in tumor cells and mainly contributes to the disruption of cell cycle control (2). Since the cloning of the p27 gene (3, 4), many other functions have been associated with this cell cycle protein. p27kip1 (p27) is a CDKI that exerts its inhibitory activity on many steps of the cell cycle. The main inhibitory action of p27 arises from its binding with the cyclin E/Cdk2 complex and its induction of the dephosphorylation of pRb (5). p27 mRNA levels are constant throughout the cell cycle, and p27 protein levels are regulated both by translational control (6) and by ubiquitin-mediated proteolysis. p27 protein levels and stability are high in quiescent cells and in the majority of other cell types but fall during G1 and reach a minimum in the S-phase (7). This regulation of the p27 level is linked to the phosphorylation on Thr-187, followed by ubiquitination (8–10). In addition, the cyclin E/Cdk2 complex causes the phosphorylation of p27 on Thr-187, which results in the degradation of p27. Therefore, p27 is both an inhibitor and a substrate of cyclin E/Cdk2 (11). Interestingly, mutation on Thr-187 of p27 to alanine made p27 resistant to cyclin E/Cdk2-mediated phosphorylation and induced G1-S arrest resistant to cyclin E/Cdk2 (11).

In addition to its role as a CDKI, p27 has the role of a putative tumor suppressor gene (12). p27 knockout mice develop multiorgan hyperplasia and parathyroid tumors (13), and p27 haplo-insufficient mice are more sensitive to tumor development by radiation and chemical carcinogens (14). Adenoviral gene transfer of p27 also induced the cell cycle arrest and apoptosis of breast cancer cell lines (15, 16). We have shown previously that the transduction of p27 via adenoviral vector to human lung cancer cell lines induced cell growth suppression via G1-S arrest. Furthermore, intratumoral injection of ad-p27 induced growth suppression of established lung cancer xenografts (17).

On the basis of these two findings of the role of p27 as a tumor suppressor gene and the process of p27 degradation by phosphorylation on Thr-187, we hypothesized that p27mt at Thr-187 would be resistant to degradation and bind to the cyclin E/Cdk2 complex more stably and, consequently, demonstrate a more potent antitumor effect.

To confirm this hypothesis, we constructed two adenoviruses expressing wild p27 (ad-p27wt) and mutant p27 at the Thr-187/Pro phosphorylation site (ad-p27mt) and compared their antitumor effects.

MATERIALS AND METHODS

Cell Lines and Animals. Five human lung cancer cell lines (NCI H157, NCI H358, NCI H460, NCI H1264, and A549) were purchased from American Type Culture Collection (Manassas, VA) and the Korean Cell Line Bank (Seoul, Korea). Cells were maintained in RPMI 1640 with 8% fetal bovine serum and penicillin/streptomycin. Six-week-old female nude mice (BALB/c) were purchased from SLC, Inc. (Hamamatsu, Japan). The resulting pAC CMVie promoter. Briefly, the adenovirus vector to human lung cancer cell lines induced cell growth suppression via G1-S arrest. Furthermore, intratumoral injection of ad-p27 induced growth suppression of established lung cancer xenografts (17).

Received 9/29/00; accepted 6/20/01.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by the Korea Science and Engineering Foundation through the SRC-Molecular Therapy Research Center.

2 To whom requests for reprints should be addressed, at Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-744, Korea. Phone: 82-2-760-2634; Fax: 82-2-782-9662; E-mail: ctl@smu.ac.kr.

3 The abbreviations used are: Cdk, cyclin-dependent kinase; CDKI, cyclin-dependent kinase inhibitor; CMV, cytomegalovirus; MOI, multiplicity of infection; NSCLC, non-small cell lung cancer; PI, propidium iodide; PARP, poly(ADP-ribose) polymerase; ad, adenovirus; wt, wild type; mt, mutant; Rb, retinoblastoma; pRb, Rb protein.

Downloaded from cancerres.aacrjournals.org on April 14, 2017. © 2001 American Association for Cancer Research.
ADENOVIRUS-p27 MUTANT SHOWS POTENT ANTITUMOR EFFECTS

Janet C. Yang, John D. Sheppard, and Sabine M. Seeburg

Transduction of Lung Cancer Cells with ad-p27wt and ad-p27mt.
Exponentially growing lung cancer cells were transduced with ad-p27wt or ad-p27mt and incubated for 48 h. Western blots of p27 and pRb were performed using the ECL Western blotting system according to its protocol (Amersham). Monoclonal mouse antihuman p27 and pRb antibodies (PharMingen, San Diego, CA) were used as the primary antibodies for p27 and pRb.

Pulse Chase Experiment. To demonstrate the stability of p27 produced in ad-p27mt transduced cells, a pulse chase experiment for p27 was performed. Lung cancer cells (NCI H460) were transduced with 20 MOI of ad-p27wt and ad-p27mt. After 24 h, the medium was replaced with serum-free medium without methionine/cysteine for 16 h. Cells were then incubated with complete medium containing 1 μCi of [35S]methionine/cysteine for 4 h (pulse). Proteins were extracted and immunoprecipitated for p27 from cells at 0, 15, 60, and 240 min and 24 h. The stabilities of p27wt and p27mt were compared by 10% SDS-PAGE electrophoresis.

Analysis of the Growth Inhibition on Lung Cancer Cell Lines. To compare the growth-suppressing effect of ad-p27wt and ad-p27mt, four NSCLC cell lines (NCI H460, large cell carcinoma of the lung; NCI H157, squamous cell carcinoma of the lung; NCI H126, adenocarcinoma of the lung; and NCI H358, bronchioalveolar cell carcinoma) were plated in six-well plates (5 × 10^5/well). After 24 h of incubation, transfections were performed with ad-p27wt (20 MOI); ad-lacZ, or PBS for 1 h, and the cells were maintained in complete medium. Cell numbers were counted in triplicate on a daily basis using a hemocytometer.

Cell Cycle Analysis after Transduction with ad-p27wt and ad-p27mt. Lung cancer cells (NCI H460) were transduced with 20 MOI of ad-p27wt or ad-p27mt. After 24 h incubation, cell cycle alterations were measured using the CellCycleTest plus kit protocol (Becton Dickinson, San Jose, CA).

Cdk2 Kinase Activity Assay. Twenty-four h after transduction with ad-p27wt and ad-p27mt, total cell extracts were precipitated with anti-Cdk2. Cdk2 kinase activities of the immunoprecipitates were determined in terms of their ability to phosphorylate histone H1. Reactions were performed for 30 min in 50 μl of H1 kinase buffer with 10 μg of histone H1 and 10 μCi of [γ-32P]ATP. Reaction products were resolved by 10% SDS-PAGE gel electrophoresis.

Annexin V Assays for Apoptosis. To confirm the presence of another p27wt or ad-p27mt growth-suppressing mechanism, we observed the induction of apoptosis by Annexin V apoptosis kit (PharMingen). Briefly, lung cancer cells (NCI H460) were transduced with ad-p27wt or ad-p27mt at 20 MOI. Forty-eight and 96 h after transduction, cells were detached with a brief trypsin treatment. Cells were then stained with Annexin V and PI, according to the manufacturer’s instructions, and sorted using a FACScaliber flow cytometer (Becton Dickinson). Proportions showing early apoptosis (positive for Annexin V and negative for PI) were then measured.

Hoechst Staining. DNA fragmentation of apoptotic cells were measured by Hoechst 33258 staining. Lung cancer cells (NCI H460) were transduced with ad-p27wt and ad-p27mt. At 96 h, cells were stained with 1 μl of Hoechst 33258 for 10 min. At least 300 cells were counted under a fluorescence microscope with a 4’,6-diamidino-2-phenylindole filter. Cells were defined to be apoptotic if their nuclei showed chromatin condensation, nuclear beading, or fragmentation.

PARP Cleavage Assay. To confirm apoptotic induction by ad-p27wt and ad-p27mt transduction, we measured the cleavage of PARP. Briefly, a lung cancer cell line (NCI H460) was transduced with ad-p27wt (20 MOI) or ad-p27mt (20 MOI) and incubated for 72 h. The expression and cleavage of PARP were assessed by Western blot assay using an anti-PARP monoclonal antibody (PharMingen).

RESULTS

Transduction with ad-p27wt and ad-p27mt Produced p27 Protein and Induced the Dephosphorylation of pRb. Western blot assay for p27 in proteins extracted from ad-p27wt and ad-p27mt transduced lung cancer cells showed overexpression of p27 protein. p27wt and p27mt were indistinguishable by Western blot assay, but the amount of p27mt was slightly higher than that of p27wt. However, both p27wt and p27mt induced the dephosphorylation of pRb (Fig. 1).

Pulse Chase Experiment Showed that Mutant p27 Was More Resistant to Degradation Than p27wt. The amount of p27wt extracted from ad-p27wt transduced cells began to decrease after 15 min and markedly at 4 h. Almost no p27wt was found at 24 h. In contrast to p27wt, the amounts of p27mt remained stable up to 4 h and then decreased at 24 h (Fig. 2). This finding demonstrated the stability of p27mt, which would support the hypothesis of this experiment.

Ad-p27mt Showed Stronger Growth Arrest on Human NSCLC Cell Lines Than ad-p27wt. In the four NSCLC cell lines tested, ad-p27mt induced stronger growth suppression than ad-p27wt, which suggests that p27mt is more potent at inducing growth arrest in lung cancer cell lines (Fig. 3).

Ad-p27mt Induced Stronger G1-S Arrest Than ad-p27wt on Flow Cytometric Analysis. Both ad-p27wt and ad-p27mt induced cell cycle progression inhibition in the lung cancer cell line (NCI H460) at the G1-S checkpoint. When comparing ad-p27wt and ad-p27mt, ad-p27mt transduction showed stronger G1-S arrest (G0/G1:S: 25.18%/40.72% in control, 27.47%/41.53% in ad-null, 50.13%/48.47% in ad-p27mt).

Ad-p27mt Induced Stronger Apoptotic Induction Than ad-p27wt. Annexin V assays showed that ad-p27mt transduction produced a stronger induction of apoptosis than ad-p27wt (Fig. 2).

Ad-p27mt Induced Stronger DNA Fragmentation Than ad-p27wt. Hoechst 33258 staining showed that ad-p27mt transduction produced a stronger induction of DNA fragmentation than ad-p27wt (Fig. 3).

Fig. 1. Western blot assay for p27, pRb, and α-tubulin from a transduced lung cancer cell line (NCI H358). Lung cancer cells transduced with ad-p27wt and ad-p27mt produced large amounts of p27 proteins that were indistinguishable by the p27 antibody. The amount of p27 from ad-p27mt transduced cells was slightly higher than that from ad-p27wt transduced cells. ad-p27wt and ad-p27mt transduction induced the dephosphorylation of pRb protein.

Fig. 2. Pulse chase experiment using [35S]methionine/cysteine to determine the stability of p27wt and p27mt. Lung cancer cells (NCI H460) were transduced with ad-p27wt and ad-p27mt. After 16 h starvation in serum-free medium without methionine/cysteine, 4 h incubation with medium containing 1 μCi of [35S]methionine/cysteine effectively labeled p27 protein. The level of p27wt declined quickly, however, p27mt was relatively constant up to 4 h and then declined, suggesting the resistance of p27mt to degradation.
21.85% in ad-p27wt, and 81.26%/9.3% in ad-p27mt; Fig. 4). Similar findings were found in other lung cancer cell lines (data not shown). These findings suggest that p27mt protein is a more effective and powerful CDKI, although both p27wt and p27mt are effective.

Both ad-p27wt and ad-p27mt Inhibited Cdk2 Activity. Overexpression of both p27wt and p27mt almost completely inhibited the phosphorylation of histone H1 by immunoprecipitates with Cdk2 antibody (Fig. 5). Differences between p27wt and p27mt were not

Fig. 3. Ad-p27mt induced stronger suppression in human lung cancer cell lines. Transductions with ad-p27wt (20 MOI) and ad-p27mt (20 MOI) suppressed the growth of the four cell lines tested. In all cell lines, ad-p27mt-induced suppressions were more prominent (NCI H460, large cell carcinoma of the lung; NCI H1357, squamous cell carcinoma of the lung; NCI H1264, adenosquamous carcinoma of the lung; NCI H358, bronchioloalveolar cell carcinoma). Bars, SD.

Fig. 4. Ad-p27mt induced stronger G₁-S arrest than ad-p27wt in NCI H460. Cell cycle analysis by flow cytometry was performed 24 h after transduction with the indicated viruses. As was expected from the known role of CDKI, both ad-p27wt and ad-p27mt induced G₁-S arrest; however, this was more prominent in ad-p27mt transduced cells. (Sub-G₁ cells were excluded.)
observed in terms of their inhibition of Cdk2 activity. This finding suggests that both p27wt and p27mt are potent CDKIs.

Ad-p27mt Was a More Potent Inducer of Apoptosis than ad-p27wt. Both ad-p27mt and ad-p27wt induced apoptosis, as confirmed by Annexin V assay; however, ad-p27mt proved to be the more effective inducer of apoptosis. Apoptosis was not evident at 48 h. The proportions of early apoptotic cells (Annexin V, positive; PI, negative) were 4.46% of ad-lacZ transduced cells and 5.70% in ad-p27wt and 8.74% in ad-p27mt transduced cells. Induction of apoptosis became evident at 96 h. The proportion of early apoptotic cells was 11.14% in ad-lacZ, 36.20% in ad-p27wt, and 49.58% in ad-p27mt transduced cells. Although both ad-p27wt and ad-p27mt induced apoptosis, ad-p27mt was the more potent apoptosis inducer (Fig. 6).

Hoechst Staining Demonstrated That ad-p27mt Induced More Apoptosis by DNA Fragmentation Than ad-p27wt. Transduction with ad-p27wt and ad-p27mt effectively induced apoptosis, as manifested by nuclear fragmentation (Fig. 7). Forty-six % of ad-p27mt transduced cells and 31% of ad-p27wt transduced cells showed apoptotic changes (4% in ad-lacZ transduced cells).

PARP Cleavage by ad-p27wt and ad-p27mt. Compared with the control and ad-lacZ transduced cells, transduction with ad-p27wt and ad-p27mt demonstrated cleavage of PARP by reduction of the M116,000 band and the appearance of a M85,000 band (Fig. 8), which could also provide evidence of apoptosis induction by p27wt and p27mt.

Transduction with ad-p27mt Induced Stronger Suppression of the in Vitro Tumorigenicity of Lung Cancer Cell Lines. Consistent with a stronger antitumor effect on G1-S arrest and apoptosis induction, the in vitro tumorigenicity of the lung cancer cell line (NCI-H460) transduced with ad-p27mt was strongly suppressed (Fig. 9).

Intratumoral Injection of ad-p27mt Resulted in the Partial Regression of Established Lung Cancer Xenografts. We began intratumoral injections into relatively large (350 mm3 on average) tumors 14 days after tumor cell inoculation. Injection of ad-p27wt induced partial tumor growth suppression; however, ad-p27mt injection induced an initial partial regression that was followed by delayed growth. Furthermore, 40% of mice showed complete tumor regression (Fig. 10).

DISCUSSION

Cancer gene therapies can be broadly classified into two groups: (a) those that modify the host responses to a tumor; or (b) those that induce direct antitumor action by introducing genetic material that directly affects the cancer cell and halts its growth (21). Replacement therapies involving tumor suppressor genes are the prototypes of gene therapies with direct antitumor action. p27 is a member of the multifunctional universal CDKI family (22). In addition to its role as a CDKI, p27 is known as a putative tumor suppressor gene (14), as a regulator of drug resistance in solid tumors (23), as a promoter of apoptosis (24, 25), and as a safeguard against inflammatory injury (26). During tumor development, the level of p27 protein decreases, which is mainly caused by posttranslational regulation by ubiquitin-proteosome-mediated degradation (27). Low levels of p27 have been strongly and independently associated with poor prognosis in many cancers including lung (28), breast (29, 30), and colorectal (31).
cancer. Overexpression of p27 via adenoviral gene transfer could suppress cancer cell growth regardless of p27 mutation (15). These findings suggest the tumor-suppressive nature of p27.

In this study, we attempted to develop a more potent p27 gene therapy by manipulating the p27 metabolic pathway. As we described, p27 metabolism depends on phosphorylation of Thr-187 and a subsequent ubiquitination. Montagnoli et al. (10) showed that the ubiquitination of p27 did not occur in p27mt with Thr-187 to Ala [p27(T187A)]. Sheaff et al. (11) showed that the transfection of p27(T187A) plasmid causes a G1 block that is both resistant to and not modulated by cyclin E/Cdk2.

On the basis of these observations of p27 metabolism and the nature of the p27 tumor suppressor gene, we tried to use p27mt at Thr-187 for cancer gene therapy, expecting a super-repressor effect on cell cycle arrest. Adenovirus expressing p27mt (Thr-187/Pro-188 to Met-187/Ile-188) was constructed to block cyclin E/CDK2 more stably.

Western blot assay for p27 showed that the transduction of both adenoviruses induced p27 protein overexpression and the dephosphorylation of pRb. The p27 monoclonal antibody was specific for the NH2 portion of p27 that was unchanged in p27mt. The [35S]methionine/cysteine-pulse chase experiment demonstrated that p27mt was resistant to degradation and more stable than p27wt. Contradictory results have been reported of the stability of p27mt. Vlach et al. (8) reported that mutation of Thr-187 to Val of p27-deficient in interaction with Cdks could increase the stability; however, the same mutation in p27wt failed to increase the stability. However, Nguyen et al. (32) reported that mutation of Thr-187 to Ala stabilized p27 in S-phase extracts. Recently, the degradation-resistant novel p27 isoform (p27Kip1R) was cloned. This p27 isoform has no conserved COOH-terminal, Cdk-phosphorylation site (TPKK) and is part of a putative bipartite nuclear-localization signal (residues 159–169). This p27Kip1R was resistant by in vitro degradation assay and was more effective at inducing apoptosis than p27wt. However, they reported that p27T187A was degraded in a manner similar to p27wt in an in vitro degradation assay (33). In the present study, we demonstrated that p27mt with double mutation of Thr-187/Pro to Met-187/Ile was resistant to degradation in a pulse chase experiment, in which
showed that ad-p27 induced apoptosis in Rb-positive cells after day 3, several adenoviral vectors expressing CDKIs including p27 and also fragmentation and PARP cleavage. Schreiber reported the induction of apoptosis by ad-p27 by demonstrating DNA cell lines (24, 35–37). Katayose revealed apoptotic induction by p27 overexpression in several cancer susceptibility. Several reports on adenoviral gene transfer of p27 have activity.

This growth inhibition in this study could be explained by two mechanisms, cell cycle arrest and induction of apoptosis. Because of the known role of CDKI, we had already expected G1-S arrest by p27mt and p27wt. In four cell lines tested, ad-p27mt induced a more profound G1-S arrest than ad-p27wt. The role of the CDKI of p27 wt and p27mt was confirmed again by its suppression of Cdk2 kinase activity.

Conflicting results have been reported of the effect of p27 upon cell susceptibility. Several reports on adenoviral gene transfer of p27 have revealed apoptotic induction by p27 overexpression in several cancer cell lines (24, 35–37). Katayose et al. (24) reported that the overexpression of p27 triggers apoptosis in several cancer cell lines. They demonstrated the induction of apoptosis by terminal deoxynucleotidyltransferase-mediated nick end labeling assay and found that the overexpression of p27 was followed by cleavage of PARP and the degradation of cyclin B. Naruse et al. (35) also showed that ad-p27 induced apoptosis by terminal deoxynucleotidyltransferase-mediated nick end labeling assay and PI flow cytometry. Wang et al. (36) also reported the induction of apoptosis by ad-p27 by demonstrating DNA fragmentation and PARP cleavage. Schreiber et al. (37) compared several adenoviral vectors expressing CDKIs including p27 and also showed that ad-p27 induced apoptosis in Rb-positive cells after day 3, suggesting an indirect role for p27Kip1. However, some studies have shown that apoptotic stimuli, such as those induced by cytotoxic drugs, induced caspase-mediated p27 cleavage (38). St. Croix et al. (23) demonstrated that p27 is a regulator of chemoresistance and that tumor-targeted p27 antagonists act as chemosensitizers.

In this report, we clearly confirmed again that ad-p27wt/mt induced apoptosis in lung cancer cell lines by Annexin V assay, Hoechst staining, and PARP cleavage. More interestingly, ad-p27mt is a more potent apoptosis-inducer than ad-p27wt, as confirmed by Annexin V staining, and PARP cleavage. More interestingly, ad-p27mt is a more potent apoptosis-inducer than ad-p27wt, as confirmed by Annexin V staining, and PARP cleavage. More interestingly, ad-p27mt is a more potent apoptosis-inducer than ad-p27wt, as confirmed by Annexin V staining, and PARP cleavage. More interestingly, ad-p27mt is a more potent apoptosis-inducer than ad-p27wt, as confirmed by Annexin V staining, and PARP cleavage. More interestingly, ad-p27mt is a more potent apoptosis-inducer than ad-p27wt, as confirmed by Annexin V staining, and PARP cleavage.

The low transduction efficiency. If the injection method could be improved for better transduction, results might be improved. The possibility of using mutant p27 for cancer gene therapy has been reported previously. Müller et al. (39) reported upon the transduction of p27T187V via the retroviral vector-inhibited growth of the RAT1-MycER cell line, which was resistant to p27wt.

From the observations described above, we are confident that ad-p27mt at Thr-187 can potentiate p27 gene therapy and that it presents us with a novel, potent, tumor-suppressing gene therapy tool.

REFERENCES


An Adenovirus Expressing Mutant p27 Showed More Potent Antitumor Effects Than Adenovirus-p27 Wild Type

Kyung-Ho Park, Ja Young Seol, Tae-You Kim, et al.

Cancer Res 2001;61:6163-6169.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/16/6163

Cited articles
This article cites 36 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/16/6163.full.html#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
/content/61/16/6163.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.