p63 Expression Is Associated with p53 Loss in Oral-Esophageal Epithelia of p53-deficient Mice

Yasir Suliman, Oliver G. Opitz, Anjali Avadhani, Timothy C. Burns, Wafik El-Deiry, David T. Wong, and Anil K. Rustgi

ABSTRACT
The p53 gene family, comprising p53, p63, and p73, has overlapping and distinctive functional roles. These members share structural similarities allowing for dynamic interplay in the activation of genes that are important in development and key cellular functions, such as the induction of apoptosis. Whereas p53 is a classical tumor suppressor gene, p63 and p73 do not share this feature in cancer formation and progression. The compensation in the expression level of these members in a background that is deficient for one of them has not been examined previously. Given the importance of p63 in the development and differentiation of oral-esophageal stratified squamous epithelia and the absence of oral-esophageal tumors in p53-null mice, we postulated and describe herein that p63 expression is associated with the loss of p53 in a p53-deficient background. Both full-length and amino-truncated forms of p63 are expressed and increased in oral-esophageal epithelia of p53-null mice when compared with wild-type mice, and the induction of p21 may potentially be preserved through the increase of p63.

INTRODUCTION
The p53 tumor suppressor gene is frequently mutated in human cancers (1). Additionally, in many cancers, p53 function is altered through binding to viral oncoproteins or abrogation of p53 degradation by mdm-2/mdm-2 in concert with p19ARF/p14ARF (2). Generally speaking, most p53 mutations are missense, leading to stabilization of protein with gain-of-function. Some p53 mutants can inactivate WT p53 through hetero-oligomerization.

Recently, information has emerged about p53 homologues, such as p73 and p63 (3–5), with the emphasis on p63 in this study. Cloned through degenerate PCR, p63 is expressed in the squamous epithelium and the thymus (6) and other tissues as well (7). P63 has different transcripts attributable to alternative splicing (α, β, γ), and the use of different promoters results in retention of the TA domain or AN (4, 8, 9). Thus, these p63 isoforms are referred to as TAp63α, β, γ and ΔNα, β, γ. All p63 isoforms contain DNA binding and hetero-oligomerization domains. However, the ΔNp63 versions lack the NH2-terminal transactivation domain but can still bind to DNA and, thus, may function as dominant negative proteins.

The TAp63α and TAp63β transactivate promoters at levels comparable with WT p53, but TA-63α does not contain this property (reviewed in Ref. 3). In particular, TAp53 can activate in vitro p53 responsive promoters such as p21, GADD45, Bax, and mdm2 (reviewed in Refs. 8 and 10). TAp63α and TAp63β induce apoptosis in transient transfection experiments in contrast to TA-p63α (3, 4, 6, 11). TAp63γ can be induced after UV irradiation (12). By contrast, the ΔN isoforms block the functions of p53. This may be attributable to competition for DNA binding sites to prevent p53 or TAp63 from binding DNA. Alternatively, it is conceivable that p53 or TAp63 may be sequestered by ΔNp63 through the oligomerization domain or another domain (13). Precedence for interactions between p53 family members has been established with the observation that mutant p53 can down-regulate both p63 and p73 through a direct interaction with the p53 core domain (14).

There is little evidence to suggest that p63 acts as a tumor suppressor gene. Mutations of p63 in human tumors are exceedingly rare (3, 5, 8, 9, 15). Patients with germ-line mutations in the DNA binding domain of p63 result in developmental defects but not tumors (16). Additional insights into the functions of p63 have been gained through the generation and characterization of mice in which p63 has been ablated in embryonic stem cells through homologous recombination. p63-null mice are viable at birth but die several h later and are not susceptible to spontaneous tumorigenesis (17, 18). Mutant newborn mice and late stage embryos have craniofacial abnormalities, limb truncations, and a complete absence of epidermis and related appendages (17, 18). Histological analysis has revealed the absence of a stratified epithelium in the epidermis with a lack of the characteristic structure of basal, suprabasal, and cornified layers as well as hair follicles. Instead of an epidermis, p63–/– late stage embryos retain isolated patches of epithelial cells along the exposed dermis. Furthermore, the normally stratified squamous epithelium of tongue, esophagus, and stomach, with the same characteristic structure of basal, suprabasal, and differentiated cells, was replaced by an unusual array of cuboidal, goblet-like epithelium.

Given that p63 appears to be important for the development and possibly also differentiation of the stratified squamous epithelium, we postulated that p63 may have a critical role in the maintenance of the oral-esophageal squamous epithelium by compensating for the loss of p53 in p53-deficient mice.

MATERIALS AND METHODS
DNA Constructs. Total RNA was extracted from the ME-180 cell line (American Type Culture Collection) using the TRIZol method (Life Technologies, Inc.). First-strand synthesis was then performed on 5 μg of RNA using the Superscript First-Strand Synthesis system for RT-PCR (Life Technologies, Inc.). The following primers were used to amplify ΔNp63:
ΔNp63α 5′ATGGTTGACCTGGAAAACAA and 5′CACTCCCCCTCTTCCTTGA
ΔNp63γ 5′ATGGTTGACCTGGAAAACAA and 5′CATCGTTGACCTGGAAAACAA
The ΔNp63α PCR product was 1761 bp, and the one for ΔNp63γ was 1182 bp. These fragments were amplified using the Elongase enzyme mix (Life Technologies, Inc.). After denaturing at 94°C for 60 s, PCR consisted of 35 cycles of 94°C for 60 s, 55°C for 60 s, and 72°C for 60 s followed by 72°C for 5 min. PCR products were then analyzed on a 1% agarose gel. Nested PCR was

Received 3/21/00; accepted 6/21/01.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by NIH grant P01 DE12467 (to A. K. R., D. W., Y. S., and O. G. O.), the Leonard and Madlyn Abramson Family Cancer Research Institute at the University of Pennsylvania Cancer Center (to A. K. R.), and Grant ROI CN-95112-72 (to A. K. R.).

2 Y. S. and O. G. O. contributed equally to the work.

3 To whom requests for reprints should be addressed, at 600 CRB, Division of Gastroenterology, University of Pennsylvania, 415 Creme Boulevard, Philadelphia, PA 19104-6144.

4 The abbreviations used are: TA, acidic NH2 terminus; ΔN, truncated NH2 terminus; RT-PCR, reverse transcription-PCR; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; TAMRA, 6-carboxy-4(N,N,N′,N′′)-tetramethylrhodamine; ABC, avidin-biotin peroxidase complex; WT, wild type.

6467
then performed using the above \(\Delta N p63\alpha\) and \(\Delta N p63\gamma\) primers tagged with \(Xho\) and the \(\beta\)-actin Kozak consensus motif at the 5’ prime end and \(Nco\) at the 3’ end. Nested PCR products were then subcloned into a pCIBA vector and purified by the alkaline lysis method. The \(p21\) promoter-luciferase reporter gene constructs used were for WT \(p21\) (WWP-Luc) and when the \(p53\) DNA binding sites were mutated in the context of the full-length \(p21\) promoter (6-Luc).

Cell Culture and Transient Transfection. Mouse oral epithelia from WT and \(p53\)-null mice were peeled off underlying tissues after incubation with 1.5 units/ml Dispase I (Boehringer Mannheim). Subsequently, the tissues were trypsinized. The cell suspension from the latter was plated and subcultivated in serum-free medium (Life Technologies, Inc.). The mouse oral epithelial cells or keratinocytes from WT or normal (Mokn) and \(p53\)-null mice (Mopk \(p53^{-/-}\)) were transiently transfected at 80% confluence with 0.5–1 \(\mu\)g of plasmid mixtures preincubated with 12 \(\mu\)l of Plus Reagent and 16 \(\mu\)l of LipofectAMINE Reagent (Life Technologies, Inc.). Cells were transfected with either WWP-Luc or 6-Luc and \(\beta\)-Gal constructs as well as with the \(\Delta N p63\gamma\) or \(\Delta N p63\alpha\) constructs. The cells were incubated for 36 h at 37°C and then washed with PBS and harvested with Reporter lysis buffer (Promega). Luciferase and \(\beta\)-Galactosidase assays were performed. All experiments were performed in triplicate, and at least three independent experiments were done (results expressed as mean \(+/-\ SD)\).

TaqMan RT-PCR Assay. TaqMan RT-PCR assay was conducted according to the manufacturer’s instructions (PE Applied Biosystems). In brief, oligonucleotides (probes) for TaqMan RT-PCR were labeled with FAM (6-carboxyfluorescein; \(p21\), bax) or VIC (GAPDH) and 3’ prime quencher, TAMRA. The following primer and probe sequences were used:

- \(p21\) primers: 5’-CGAGAACGGTGGAACTTTGAC-3’ and 5’-TCCCAGACGGAAGTTGCCCT-3’
- \(p21\) probe: 6FAM-TCGTCACGGAGACGCCGCTG-TAMRA
- Bax primers: 5’-GGAGCAGCTTGGGAGCG-3’ and 5’-AAAAGGCCCC-TGCTTTCATGA-3’
- Bax probe: 6FAM-CGGGCCCACCAGCTCTGAACA-TAMRA.

GAPDH primers and the Vic-labeled probe were obtained from PE Applied

Table 1. Quantitative scoring of p63 immunohistochemical staining in tongue (T) or esophagus (E) in WT or p53-null (p53 \(^{-/-}\)) mice.

<table>
<thead>
<tr>
<th></th>
<th>WT mice % positive p63</th>
<th>p53-null mice % positive p63</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA p63 E</td>
<td>0.46 ± 0.15</td>
<td>0.83 ± 0.11</td>
<td><0.05</td>
</tr>
<tr>
<td>TA p63 T</td>
<td>0.49 ± 0.10</td>
<td>0.75 ± 0.11</td>
<td><0.05</td>
</tr>
<tr>
<td>(\Delta N) p63 E</td>
<td>0.67 ± 0.07</td>
<td>0.88 ± 0.08</td>
<td><0.05</td>
</tr>
<tr>
<td>(\Delta N) p63 T</td>
<td>0.67 ± 0.10</td>
<td>0.89 ± 0.06</td>
<td><0.05</td>
</tr>
</tbody>
</table>

*For comparisons of \(\Delta N p63\) immunohistochemistry, 5 WT and 5 p53 \(^{-/-}\) mice were used, and for full-length p63 immunohistochemistry, 5 WT and 5 p53 \(^{-/-}\) mice were used. Values are expressed as percentage \(\pm\) standard deviation. \(P < 0.05\) is considered statistically significant.

Fig. 1. Full-length or TA p63 immunohistochemistry (D20 antibody) immunohistochemical staining (×40) in WT mouse tongue (A), p53 \(^{-/-}\) mouse tongue (B), WT mouse esophagus (C), and p53 \(^{-/-}\) mouse esophagus (D). Note the basal cell nuclear staining in p53 \(^{-/-}\) tongue and esophagus.
Biosystems. All primers and probes were designed with the use of Primer Express Version 1.0 (PE Applied Biosystems). Total RNA was isolated from tongue and esophageal epithelia of WT and p53-null mice using the TRizol method. Total RNA (1 μg) was used for reverse transcription and amplification using TaqMan Reverse Transcription Reagents according to manufacturer’s protocol (PE Applied Biosystems). A master mix of TaqMan reagents was prepared, and 10 ng of each reverse transcription sample was used in the TaqMan PCR reaction. Each tube contained both a gene probe and primers and a GAPDH control probe and primer. Each sample was done in quadruplicate. Reactions in which reverse transcriptase was not added to the reverse transcription reaction were used to control for genomic contamination. The increase in fluorescence was proportional to the concentration of template in the PCR. The standard curve method was used to quantitate amounts of each gene relative to the GAPDH amount in each reaction according to the manufacturer’s protocol (PE Applied Biosystems). Reactions were carried out in 96-well plates using the ABI PRISM 7700 Sequence Detection System (PE Applied Biosystems).

Histology and Immunohistochemistry. Age-matched (4–5 months), WT, and p53-deficient mice littermates from the same BL/6 background strain were sacrificed. Oral-esophageal tissues were fixed in 4% paraformaldehyde, embedded in paraffin, and tissue sections were stained with H&E in a manner similar to our previous studies (19). Immunohistochemical staining was performed in mouse tongue and esophageal tissue sections by the ABC method.

Fig. 2. ΔNp63 immunohistochemistry (N16 antibody) immunohistochemical staining (×40) in WT mouse tongue (A), p53−/− mouse tongue (B), WT mouse esophagus (C), and p53−/− mouse esophagus (D). Note the basal and suprabasal cell nuclear staining in p53−/− tongue and esophagus.

Fig. 3. Western blot analysis of WT and p53−/− mice tongues and esophagi for full-length TAp63 (A) and ΔNp63 (B). Note the increased level of full-length p63 and ΔNp63 in epithelial protein lysates derived from p53−/− mice. Equal loading and transfer of proteins were confirmed with Ponceau S staining of membranes and reprobing with an actin antibody (data not shown).
using the Vectastain Elite ABC kit (Vector Laboratories) as described previously (20). Sections (3–5 μm) were mounted on adhesive-coated slides, deparaffinized, and rehydrated through xylene and alcohol. After rinsing in tap water and PBS, slides were placed in plastic Coplin jars containing 10 mM citrate buffer. Jars were covered with loose-filling caps and heated in the microwave oven for 20 min to unmask antigen. Endogenous peroxidase was blocked with 3% H₂O₂ in methanol for 5 min. Sections were blocked with either 5% rabbit serum or protein blocking agent (Immunotech) for 15 min after being cooled. Slides were then incubated with primary antibody (4A4 for full-length p63 and Ab-1 for ΔNp63 from PharMingen and Oncogene Science, respectively) overnight at 4 °C, washed in PBS, and incubated with the corresponding biotinylated secondary antibody for 60 min at room temperature. After PBS washes, sections were incubated with ABC Elite reagent for 5 min at room temperature, and reaction products were developed using diaminobenzidine tetrahydrochloride (Sigma Chemical Co.) as chromogen and counterstained with hematoxylin.

Three ×40 power fields were counted on each slide. The positively stained nuclei were counted and divided by the total number of nuclei per high power field, and a mean was calculated. Of note, cytoplasmic staining was rare. Two independent scorers were blinded to the slide source when doing the evaluation. Student’s t test was used for statistical analysis, and P < 0.05 was considered statistically significant. Additionally, staining intensity was designated from 1–3, where 1 is weak, 2 is moderate, and 3 is strong based upon similar qualitative approaches described previously (20).

Western Blot Analysis. The tongue or esophageal mucosa was immediately dissected away from the muscularis propria after incubation in 1.5 units/ml Dispase I (Boehringer Mannheim) overnight at 4 °C. The epithelium was peeled off with forceps, minced, and lysed in ELB buffer [50 mM HEPES (pH 7.4), 0.1% NP-40, and 250 mM NaCl] with protease inhibitors (5 μg/ml aprotinin, 100 μg/ml phenylmethane sulfonil fluoride, and 5 μg/ml leupeptin) and phosphatase inhibitors (5 μg/ml sodium vanadate and 10 mM sodium fluoride) for 45 min on ice. The lysates were centrifuged at 13,000 rpm at 4 °C for 15 min, and supernatants were collected. Total protein (10 μg) of each sample was separated on a 10% SDS-polyacrylamide gel. After electrophoresis, proteins were transferred to Immobilon membranes (Millipore) at 100 V for 1 h at 4 °C. Blocking was performed in 5% milk, 10 mM Tris pH 7.4, 150 mM NaCl, and 0.2% Tween 20 overnight at 4 °C. Primary antibody against p63 (D20 for TAp63 and N16 for ΔNp63; Santa Cruz Biotechnology, Santa Cruz, CA) was used at a 1:2,000 dilution. Secondary antibody was peroxidase conjugated sheep anti-goat immunoglobulin (1:2,000 dilution; Sigma Chemical Co.). The detection system was enhanced chemiluminescence (Amersham). Equal loading of proteins was confirmed by Ponceau S staining of the membranes and reprobing the membranes with an actin antibody.

RESULTS

Age-matched WT and p53-null mice were assessed for histopathological changes in the oral-esophageal squamous epithelium and not
found to have any evidence of hyperplasia, dysplasia, carcinoma, or impaired squamous epithelial differentiation. These mice were then assessed for p63 expression using immunohistochemical approaches to detect both the full-length (TA) and amino-truncated (ΔN) versions of p63, respectively. The antibodies do not cross-react with each other but do recognize the α,β and γ isoforms for their respective TAp63 or ΔNp63 proteins. This analysis led to the determination that both TAp63 and ΔNp63 are expressed in oral-esophageal epithelia of WT and p53-null mice (Table 1; Figs. 1 and 2). Additionally, there is increased expression of both TAp63 and ΔNp63 in the oral-esophageal epithelia of p53-null mice when compared with their age-matched WT littermates, in a statistically significant fashion (Table 1). There also appears to be predominance of TAp63 in basal cells compared with ΔNp63 in this compartment (Figs. 1 and 2). Furthermore, the intensity of p63 staining, a qualitative parameter, appears to be enhanced in p53-null mice compared with their WT counterparts (Figs. 1 and 2). ΔNp63 staining intensity was moderate to high in tongues and esophagi of p53-null mice compared with weak in WT mice. TAp63 showed a moderate to high staining intensity in the same tissues of p53-null mice compared with a weak to moderate staining intensity in WT mice.

As further and independent corroboration of p63 expression, tongue and esophageal epithelial cells from both WT and p53-null mice were isolated from which protein lysates were used for Western blot analysis. This revealed that TAp63 protein is expressed at a higher level in oral (8.5×) and esophageal (1.3×) epithelial cells from p53-null mice compared with WT mice (Fig. 3). It is possible that the molecular mass corresponding to p63 represents posttranslational modifica-

Fig. 6. Cotransfection of WT p21 promoter-luciferase reporter gene and WT p53, dominant negative p53, ΔNp63γ, or ΔNp63α into either WT or normal oral keratinocytes (A) versus p53-null oral keratinocytes (B). Luciferase activity was standardized to β-galactosidase activity and expressed as fold-induction. Transfections were carried out in triplicate and done in at least three independent experiments (mean ±/− SD).
part of which is consistent with a critical role in squamous epithelial cells, we used a comparison of p53-null and WT mice. Both p63 and p53 may be complementary in oral-esophageal squamous epithelia. We thank the NIH/NIDDK Center for Molecular Studies in Digestive and Liver Diseases (P30 DK50306) and its Morphology, Molecular Biology, and Transgenic/Chimeric Mouse Core Facilities. We also thank Dr. Ralph Kent with assistance of the statistical analysis (P01 DE12467), the Deutsche Krebsforschungszentrum (Grant D/K516/17197 to G. O.), and the American Digestive Health Foundation Student fellowship (to A.A.). Finally, we thank Hiroshi Nakagawa and Hideki Harada for discussions.

REFERENCES

p63 Expression Is Associated with p53 Loss in Oral-Esophageal Epithelia of p53-deficient Mice

Yasir Suliman, Oliver G. Opitz, Anjali Avadhani, et al.

Cancer Res 2001;61:6467-6473.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/17/6467

Cited articles
This article cites 21 articles, 7 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/17/6467.full.html#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/61/17/6467.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.