Glucagon-like Peptide (GLP)-2 Reduces Chemotherapy-associated Mortality and Enhances Cell Survival in Cells Expressing a Transfected GLP-2 Receptor

Robin P. Boushey, Bernardo Yusta, and Daniel J. Drucker

Department of Medicine, University Health Network, Toronto General Hospital (D. J. D.), and Banting and Best Diabetes Centre (R. P. B., B. Y.), University of Toronto, Toronto, Ontario, M5G 2C4 Canada

ABSTRACT

Chemotherapeutic agents produce cytotoxicity via induction of apoptosis and cell cycle arrest. Rapidly proliferating cells in the bone marrow and intestinal crypts are highly susceptible to chemotherapy, and damage to these cellular compartments may preclude maximally effective chemotherapy administration. Glucagon-like peptide (GLP)-2 is an enteroendocrine-derived regulatory peptide that inhibits crypt cell apoptosis after administration of agents that damage the intestinal epithelium. We report here that a human degradation-resistant GLP-2 analogue, h[Gly2]-GLP-2, significantly improves survival, reduces bacteremia, attenuates epithelial injury, and inhibits crypt apoptosis in the murine gastrointestinal tract after administration of topoisomerase I inhibitor irinotecan hydrochloride or the antimetabolite 5-fluorouracil. h[Gly2]-GLP-2 significantly improved survival and reduced weight loss but did not impair chemotherapy effectiveness in tumor-bearing mice treated with cyclical irinotecan. Furthermore, h[Gly2]-GLP-2 reduced chemotherapy-induced apoptosis, decreased activation of caspase-8 and -3, and inhibited poly(ADP-ribose) polymerase cleavage in heterologous cells transfected with the GLP-2 receptor. These observations demonstrate that the antiapoptotic effects of GLP-2 on intestinal crypt cells may be useful for the attenuation of chemotherapy-induced intestinal mucositis.

INTRODUCTION

Chemotherapeutic agents exert their cytotoxic effects on rapidly proliferating cells via several different mechanisms, ultimately leading to cell cycle arrest and/or cellular apoptosis. The cytotoxic actions of chemotherapeutic agents are not tumor specific, and injury to normal cells in the bone marrow and intestinal crypt often complicates the treatment of patients with neoplastic disease (1, 2). Although molecules such as granulocyte-colony stimulating factor may be used to attenuate bone marrow toxicity after chemotherapy (3), no agents are currently available that selectively prevent chemotherapy-induced cell death in the intestinal crypt compartment. As a result, gastrointestinal toxicity characterized by severe mucositis and diarrhea often limits both the dose and duration of chemotherapy treatment, leading to reduced treatment effectiveness in susceptible patients.

Several intestine-derived molecules have been identified that maintain the integrity of the mucosal epithelium in part via prevention of apoptosis after intestinal injury. For example, intestinal trefoil factor promotes resistance to apoptosis after cellular injury in vitro (4), and intestinal trefoil factor-deficient mice exhibit enhanced susceptibility to intestinal injury and increased colonic epithelial cell apoptosis in vivo (5). Similarly, keratinocyte growth factor protects mice from chemotherapy and radiation-induced intestinal injury (6), and fibroblast growth factor 2, transforming growth factor β, cytokines, interleukin 11, and interleukin 15 reduce intestinal apoptosis in vivo (7–10).

GLP-2 is an intestinotrophic peptide secreted by enteroendocrine cells in response to intestinal injury (11–13). Exogenous administration of GLP-2 is trophic to the small and large intestinal epithelium in part via stimulation of crypt cell proliferation (14). Administration of GLP-2 to rodents with indomethacin-induced intestinal injury improves survival and reduces epithelial damage in part via inhibition of apoptosis in the crypt compartment (15). The antiapoptotic actions of GLP-2 prompted us to examine whether GLP-2 might ameliorate the extent of intestinal injury arising from chemotherapy administration in vivo.

MATERIALS AND METHODS

Materials

5-FU was obtained from Roche Laboratories. IRT (7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) used in mice was a gift from Pharmacia Upjohn (Mississauga, Canada), and recombinant h[Gly2]-GLP-2 was kindly provided by NPS Allelix Corp. (Mississauga, Canada). Cell culture experiments were performed using IRT and forskolin obtained from Sigma (St. Louis, MO).

Animals

All experimental protocols were approved by the Animal Care Committee of the University Health Network–Toronto General Hospital. Experiments with IRT alone were performed in 8–9-week-old CD1 female mice (Charles River, Toronto, Canada). Experiments with 5-FU were carried out in 11–13-week-old BDF-1 female mice (Harlan, Toronto, Canada). Experiments using IRT treatment in BALB/c mice inoculated with CT-26 murine colon carcinoma cells were performed in 10-week-old female mice (Charles River). All mice were housed in plastic-bottomed wire-lid cages and maintained on a 12-h light/12-h dark cycle in a temperature-controlled room and given water and chow ad libitum.

Experimental Protocols

For all animal experiments, mice received s.c. injection of either 0.5 ml of saline (PBS) or 10 μg of h[Gly2]-GLP-2, a human GLP-2 analogue (12) dissolved in 0.5 ml of saline, twice daily at 8 a.m. and 6 p.m. beginning 3 days before administration of either 5-FU (400 mg/kg) or IRT (280 mg/kg). For non-tumor-bearing mice, studies were carried out in adult CD1 female mice. For tumor-bearing BALB/c mice, CT-26 murine colon carcinoma cells (American Tissue Culture Collection) syngeneic to BALB/c mice were grown in monolayer cultures in DMEM (4.5 grams/liter glucose) supplemented with 5% FCS, 1% tryptophane (Life Technologies, Inc., Burlington, Canada), and penicillin G sodium (100 units/ml)/streptomycin sulfate (0.1 mg/ml; Sigma) in a humidified 5% CO2 atmosphere at 37°C as described previously (16). A single cell suspension with >90% viability was injected s.c. (5 × 106 cells) in the left flank region. Six days later, a 7-day treatment regimen was initiated [3 days of treatment with either 0.5 ml of saline (PBS) or 10 μg of h[Gly2]-

Received 6/26/00; accepted 11/13/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by grants from the Medical Research Council of Canada and the Ontario Research and Development Challenge Fund. R. P. B. is a research fellow and D. J. D. is a Senior Scientist of the Medical Research Council of Canada. GLP-2 is the subject of a licensing agreement between the University of Toronto, Toronto General Hospital, D. J. D., and NPS Pharmaceuticals Corp., and D. J. D. is a consultant to NPS Pharmaceuticals Corp.

2 To whom requests for reprints should be addressed, at University Health Network–Toronto General Hospital, 200 Elizabeth Street CCRW 3-838, Toronto, Ontario, M5G 2C4 Canada. Phone: (416) 340-4125; Fax: (416) 978-4108; E-mail: d.drucker@utoronto.ca.
GLP-2 administered s.c. twice daily at 8 a.m. and 6 p.m., followed by a 3-day regimen of IRT (100 mg/kg dose) or vehicle administered via the i.p. route once daily and a 24-h recovery period. This 7-day regimen was repeated three times (n = 25 mice/group), at which point some animals in the control groups became moribund; hence, all mice were euthanized after receiving CO₂ anesthesia 30 days after tumor implantation. The tumor IR was determined using the following equation: IR (%) = (1 – T/IC) × 100 where T and C represent tumor weights in IRT-treated (T) and untreated control (C) mice respectively. An IR of 58% was considered to represent an efficacious tumor response to IRT (17).

Histological Analysis

Intestinal cross-sections (4–6 μm) from each mouse were cut and stained with H&E, and intestinal micrometry was performed as described previously (15). The number of cells/hemi-crypt column and the number of surviving crypts/circumference were measured in both the small and large intestine at 12-h intervals (n = 5 mice/time point) after IRT administration as described previously (18, 19). Apoptotic cells within the small and large intestinal crypts were scored using the TUNEL assay and by their morphological appearance after staining with H&E. An apoptosis cell index was obtained on a positional basis for all intact half-crypts present in an entire jejunal and colonic cross-section per mouse, as described previously (20–22), 24 h after the first dose of IRT. Extensive crypt damage precluded an accurate positional analysis of apoptotic events beyond this time point. All slides were scored in a blinded fashion.

Microbiology

Aliquots of whole blood and tissue homogenates obtained using sterile technique were plated on blood agar plates and incubated at 37°C for 48 h. Leukocyte Count. Whole blood samples were collected in venipuncture tubes containing EDTA and analyzed using an automated whole blood sorter calibrated for mouse samples. Blood smears were performed on all samples to confirm the automated analysis. Densitometry was performed on blots exposed onto X-ray film (X-OMAT; Kodak Diagnostic Film) using a Hewlett Packard Scanjet 3p scanner and the NIH Image software.

Induction of Apoptosis in Transfected BHK Cells

BHK fibroblast cells containing the stably integrated pcDNA3.1 plasmid (BHK-pcDNA3; Invitrogen, Carlsbad, CA) or the identical plasmid containing the rat GLP-2 receptor (BHK-GLP-2R) were propagated as described previously (23). Primary antibodies used included caspase-3 (1:5000 dilution; gift of R. Sekal; Université de Montréal, Montreal, Canada), caspase-8 and caspase-9 (both at a 1:500 dilution; gift of T. Mak, University of Toronto, Toronto, Canada), p53 (1:500 dilution; Pab 246; Santa Cruz Biotechnology), PARP (1:4000 dilution; Phar-Mingen, Mississauga, Ontario, Canada), and anti-actin (1:5000 dilution, Sigma). Densitometry was performed on blots exposed onto X-ray film (X-Omat AR; Kodak Diagnostic Film) using a Hewlett Packard Scanjet 3p scanner and the NIH Image software.

Measurement of Caspase-3-, Caspase-8-, and Caspase-9-like Enzymatic Activity

Enzymatic reactions were performed at 37°C using 150 μg of protein lysate, reaction buffer [50 mM HEPES (pH 7.4), 75 mM NaCl, 0.1% 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonic acid, and 2 mM DTT], and Ac-DEVD-pNA (Calbiochem, San Diego, CA) to measure caspase-3-like protease activity, Ac-IETD-pNA (Biosource International, Camarillo, CA) to measure caspase-8-like protease activity, and Ac-LEHD-pNA (Biosource International) to measure caspase-9-like protease activity. Spectrophotometric detection of the chromophore pNA at 405 nm was used to quantify enzymatic activity.

Statistical Analysis

Survival analysis was performed using the Fisher’s exact t test. Statistical differences between treatment groups were determined by unpaired Student’s t test or by ANOVA using n-1 post hoc custom hypotheses tests, as appropriate.

RESULTS

Administration of h[Gly2]-GLP-2 for 3 days before treatment with IRT significantly enhanced survival in CD1 mice (Fig. 1A). The protective effect of h[Gly2]-GLP-2 was not restricted to a single chemotherapeutic agent or murine genotype because h[Gly2]-GLP-2 significantly enhanced survival in BDF-1 mice after administration of the antimetabolite 5-FU (Fig. 1B).

To assess the efficacy of h[Gly2]-GLP-2 in tumor-bearing mice, CT-26 murine colon carcinoma tumor cells were injected into BALB/c mice and propagated in vivo. h[Gly2]-GLP-2 significantly enhanced survival after cyclical IRT administration to tumor-bearing mice (Fig. 1C, P < 0.01, h[Gly2]-GLP-2/IRT-treated mice versus all other groups of mice). Mice receiving both h[Gly2]-GLP-2 and IRT (100 mg/kg) tolerated three times the amount of IRT before mortality was observed (Fig. 1C). Furthermore, tumor-bearing mice given saline and IRT demonstrate progressive weight loss and lost 16% of their body weight over the entire duration of the experiment. Interestingly, h[Gly2]-GLP-2-treated mice demonstrated less weight loss between days 2–6 and 14–20 (data not shown; P > 0.05, mice treated with saline versus h[Gly2]-GLP-2 after IRT). Although h[Gly2]-GLP-2 enhanced survival and reduced weight loss, it did not impair IRT-induced tumor regression (Fig. 1D).

Because chemotherapy administration may be associated with increased intestinal permeability and bacterial sepsisemia, we assessed bacterial infection in chemotherapy-treated mice. h[Gly2]-GLP-2-treated mice exhibited a significant reduction in bacterial culture positivity in all organs examined 96 h after IRT administration (Fig. 2A, P < 0.05 for mice treated with saline versus h[Gly2]-GLP-2 after IRT). Furthermore, the bacterial burden (expressed as bacterial colonies/gram tissue) was significantly reduced in the liver and spleen (Fig. 2B, P < 0.05, mice treated with saline versus h[Gly2]-GLP-2 after IRT) and in the blood (Fig. 2C, P < 0.05, mice treated with saline versus h[Gly2]-GLP-2 after IRT) in h[Gly2]-GLP-2-treated mice. A significant leukopenia was observed in mice after IRT treatment, and the mean WBC count was modestly but significantly higher in h[Gly2]-GLP-2-treated mice (Fig. 2D).

To assess the histological consequences of h[Gly2]-GLP-2 action in the setting of chemotherapy, we analyzed the crypt compartment of IRT-treated mice. Morphometric analysis revealed a significant reduction in both the number of crypts and the number of cells within each crypt in the small and large intestine after IRT treatment (Fig. 3, E, a–e). h[Gly2]-GLP-2 significantly reduced the rate of crypt loss in the jejunum (Fig. 3A) and restored crypt cell number 96 h after IRT treatment (Fig. 3B). Similarly, h[Gly2]-GLP-2 pretreatment prevented crypt loss and enhanced the crypt cell number in the colon (Fig. 3, C and D).

To understand the mechanisms by which h[Gly2]-GLP-2 protected the crypt compartment of the small and large intestine from IRT-induced injury, a temporal and spatial analysis of apoptosis in the crypt compartment was performed. The number of apoptotic crypt
cells was markedly increased after IRT treatment and significantly reduced in mice pretreated with h[Gly2]-GLP-2 (data not shown). Because pluripotent stem cells within the crypt compartment are thought to reside at cell positions 3–5 in the small intestine and 1–3 in the colon, whereas the clonogenic potential stem cells reside at positions 6–8 in the small intestine and 5–7 in the colon (21, 22), a positional topographical assessment of apoptosis within the crypt compartment was performed. h[Gly2]-GLP-2 pretreatment significantly reduced apoptosis in the jejunum at crypt cell positions 4–5 (Fig. 4A, *P < 0.05, saline- versus h[Gly2]-GLP-2/IRT-treated mice). Similarly, h[Gly2]-GLP-2 reduced apoptosis in the colon at crypt cell positions 3–5, 7, and 8 (Fig. 4B, *P < 0.05, saline- versus h[Gly2]-GLP-2/IRT-treated mice).

Fig. 2. A, prevalence of positive bacterial aerobic cultures from mesenteric, splenic, and liver homogenates and whole blood. Groups of mice (n = 20 mice/treatment group) were pretreated for 3 days with either saline or h[Gly2]-GLP-2 as shown in Fig. 1A and euthanized 96 h after commencing IRT treatment (two injections of 280 mg/kg/dose). *P < 0.05 for saline- versus h[Gly2]-GLP-2/IRT-treated mice after IRT. No bacterial colonies were detected in homogenates from control mice (n = 5 mice/treatment group) treated with either saline or h[Gly2]-GLP-2 in the absence of IRT. Quantitative bacterial colony counts were obtained from mesenteric, splenic, and liver homogenates (B) and whole blood samples (C). *P < 0.05, IRT-treated mice pretreated with saline versus h[Gly2]-GLP-2/IRT-treated mice. D, the leukocyte count in saline and h[Gly2]-GLP-2/IRT-treated control and IRT-treated mice. + and *, P < 0.05 for saline and h[Gly2]-GLP-2/IRT-treated groups versus IRT-treated mice. #, P < 0.05, IRT-treated mice pretreated with saline versus h[Gly2]-GLP-2/IRT-treated mice.
Fig. 3. Mean crypt survival (A and C) and mean cell number/hemi-crypt (B and D) from the midjejunum (A and B) and colon (C and D) of control and IRT-treated CD1 mice given saline (Vehicle) or h[Gly2]-GLP-2 as a 3-day pretreatment regimen. □, vehicle/IRT; ■, h[Gly2]-GLP-2/IRT. Dashed lines represent the line of best fit for data shown between 60 and 96 h. Five mice/treatment group were euthanized for analysis immediately before the first of two injections of IRT (280 mg/kg/dose) and at 12-h intervals up to 96 h. Crypt survival was measured along the entire bowel circumference, and the mean cell number/hemi-crypt was determined in 50 consecutive intact crypts/animal. *, P < 0.05; **, P < 0.001, saline- versus h[Gly2]-GLP-2 treated mice. E, photomicrographs of H&E-stained transverse intestinal sections from midjejunum. Saline (vehicle)-treated (a–e) and h[Gly2]-GLP-2-treated (f–j) CD1 mice before (t = 0 h) and 24, 48, 72, and 96 h after the first of two doses of IRT (280 mg/kg/dose). Magnification, ×400.
GLP-2 reduces chemotherapy-associated mortality

GLP-2-treated mice). Furthermore, a significant reduction in pro-
caspase-8 cleavage was observed in the colon of h[Gly2]-GLP-2-
treated mice at both 72 and 96 h after IRT treatment (Fig. 4c), 4. A significant improvement in cell viability was observed in BHK-GLP-2R cells but not control BHK cells after pretreatment with h[Gly2]-GLP-2 for 36 h before IRT administration (Fig. 5B). Analysis of caspase-8- and capase-9-like protease activity after IRT treatment was quantified by assessing cleavage of the substrates Ac-IETD-pNA and Ac-LEHD-
pNA, respectively. h[Gly2]-GLP-2 treatment significantly reduced caspase-8-like enzymatic activity (Fig. 5C; P < 0.05). In contrast, h[Gly2]-GLP-2 had no effect on the levels of caspase-9-like en-
zymatic activity in IRT-treated cells (Fig. 5C). h[Gly2]-GLP-2 also reduced the IRT-induced cleavage of caspase-3 substrate Ac-
DEVD-pNA and decreased procaspase-3 cleavage into the active p17 subunit (Fig. 5D). Furthermore, h[Gly2]-GLP-2 also decreased the IRT-induced cleavage of PARP, a downstream substrate of activated caspase-3 (Fig. 5E).

DISCUSSION

IRT hydrochloride, a potent DNA topoisomerase I inhibitor, is active against a broad variety of hematological and gastrointestinal neoplasms and induces apoptosis in both normal and neoplastic cell types (24, 25). Furthermore, IRT produces extensive intestinal toxicity that is manifested histologically as mucositis and clinically as both early- and late-onset diarrhea in both human (2, 26) and rodent studies (27, 28). Our results demonstrate that administration of h[Gly2]-GLP-2 significantly improves survival, reduces bacterial infection, and decreases intestinal damage in IRT-treated mice. The protective ef-
fects of h[Gly2]-GLP-2 are not restricted to a single class of chemotherapeutic agent because h[Gly2]-GLP-2 significantly increased sur-
vival in 5-FU-treated animals. Furthermore, h[Gly2]-GLP-2 also improves survival and reduces weight loss in IRT-treated tumor-
bearing mice, demonstrating that the protective effects of GLP-2 are not diminished in the setting of active neoplasia.

The significant reduction in chemotherapy-associated mortality in h[Gly2]-GLP-2-treated mice may be explained in part by the reduction in circulating bacteremia. Recent experiments have demonstrated that GLP-2 reduces mucosal permeability in rats after major small bowel resection (29). Furthermore, GLP-2 markedly reduced circu-
lating bacteremia and decreased bacterial infection in the liver and spleen in mice after indomethacin-induced intestinal injury (15). Al-
though the precise mechanism(s) activated by h[Gly2]-GLP-2 leading to reduction in bacterial infection remains unknown, the demonstra-
tion that h[Gly2]-GLP-2 reduced macromolecule flux, decreased in-
testinal permeability, and markedly enhanced intestinal barrier function in GLP-2-treated mice (30) provides a clear link between GLP-2 action and reduced bacterial translocation in the setting of intestinal injury. Hence, it seems likely that GLP-2-mediated enhancement of intestinal barrier function contributes to the reduction in bacterial sepsis observed after IRT administration in h[Gly2]-GLP-2-treated mice.

The initial observation that GLP-2 exerts trophic actions in the intestinal mucosa was largely attributed to stimulation of crypt cell proliferation (11, 14). Although the number of identifiable cells un-
dergoing spontaneous apoptosis in the normal intestinal crypt com-
artment is low, intestinal injury after exposure to ionizing radiation or chemical agents results in marked induction of apoptosis in the crypt compartment (6–8, 20–22, 31, 32). Our finding that GLP-2 reduces the percentage of apoptotic cells in the crypt compartment after chemotherapy is consistent with recent evidence demonstrating a marked reduction in crypt apoptosis after GLP-2 treatment of mice

![Fig. 4. Positional detection of apoptotic cells in the crypt compartment using the TUNEL assay. Apoptotic scores were determined from mid-jejunal (A) and colonic (B) intestinal crypt compartments of IRT-treated mice by determining the total number of TUNEL-positive cells in 50 continuous crypts (n = 5 animals/treatment group). * P < 0.05; ** P < 0.01, saline versus h[Gly2]-GLP-2 treatment. Analysis was performed by calculating the percentage of TUNEL-positive cells in each crypt cell position for all intact crypts present in a single transverse intestinal cross-section, as described previously (20–22). Five mice/treatment group were analyzed at each time point. * P < 0.05; ** P < 0.01, saline versus h[Gly2]-GLP-2 treatment. The stem cell region (SCP) and the clonogenic potential stem cell region (CPSC) are represented as indicated (20–22). C. Analysis of procaspase-8 (proc 8) cleavage to the active p18 subunit (C 8) by Western blotting in the colon of mice after IRT treatment. * P < 0.05; ** P < 0.01, vehicle versus h[Gly2]-GLP-2 treatment.]

GLP-2 receptors have not yet been identified, we used BHK cells
with indomethacin-induced enteritis (15). Hence, the available evidence suggests that GLP-2 maintains the integrity of the intestinal epithelium by both stimulating cell proliferation and inhibiting apoptotic cell death in the crypt compartment.

What are the mechanisms activated by GLP-2 signaling that confer resistance to apoptosis-mediated injury in the intestinal epithelium after IRT treatment? Consistent with studies demonstrating the importance of the CPP32 subfamily of caspases in the pathogenesis of IRT-induced apoptosis (24), we observed reduced IRT-mediated caspase-3 and PARP activation in BHK-GLP-2R cells after GLP-2 treatment in vitro. Furthermore, a significant reduction of procaspase-8 cleavage, as evidenced by inhibition of p18 subunit generation, was observed in GLP-2-treated intestine after IRT administration in vivo. In contrast, we did not observe any changes in the levels of caspase-9 after GLP-2 treatment of mice in vivo or of cells in vitro. These findings, summarized in Fig. 6, demonstrate for the first time that GLP-2 receptor signaling may be linked directly to specific cell survival pathways in heterologous cell types.

Although signaling through G protein-coupled receptors of the glucagon/GLP-1/GLP-2 receptor superfamily has not previously been reported to modify apoptotic pathways, recent experiments suggest an emerging link between G protein-coupled receptor signaling and cell death. Activation of the somatostatin receptor modulates pH-dependent cell death in heterologous cell types (33, 34), and signaling through the parathyroid hormone/parathyroid hormone-related protein receptor diminishes activation of apoptotic pathways in cells of the chondrocyte and osteoblast lineages (35). Although the cellular localization of intestinal GLP-2 receptor expression has not yet been identified, our data clearly suggest that intestinal cells expressing the GLP-2R are likely to be protected from cell death associated with exposure to genotoxic stress in vivo. Given the emerging importance of GLP-2 receptor signaling for preservation of intestinal mucosa in the face of external injury (15, 29, 36, 37), our findings provide a scientific rationale for exploring the therapeutic use of GLP-2 in settings characterized by induction of intestinal injury via activation of apoptosis in the mucosal epithelium in vivo.

Fig. 5. IRT induced apoptosis in a BHK fibroblast cell line containing the stably integrated pcDNA3.1 plasmid (BHK-pcDNA3) or the identical plasmid directing expression of the rat GLP-2 receptor (BHK-GLP-2R). A, fluorescent microscopic visualization of chromatin condensation and nuclear fragmentation in BHK-GLP-2R cells 24 h after IRT administration, as demonstrated by 4’,6-diamidino-2-phenylindole nuclear staining. B, analysis of cell viability in BHK-pcDNA3 and BHK-GLP-2R cells, respectively, after IRT treatment. Values are derived from experiments performed in quadruplicate. *, \(P < 0.05 \), IRT alone versus IRT/h[Gly2]-GLP-2R. C, analysis of caspase-like activity in BHK-GLP-2R cells after treatment with IRT. Ac-IETD-pNA (caspase-8-like activity) and Ac-LEHD-pNA (caspase-9-like activity) are represented as fold induction compared with cells that were not treated with IRT. *, \(P < 0.05 \), h[Gly2]-GLP-2R versus IRT. D, cleavage of Ac-DEVD-pNA (caspase-3-like enzyme activity) and procaspase-3 in IRT-treated cells treated with or without h[Gly2]-GLP-2 or forskolin (Fk). *, \(P < 0.01 \), vehicle-treated cells versus forskolin- or h[Gly2]-GLP-2-treated cells. E, Western blot analysis of PARP cleavage in IRT-treated BHK-GLP-2R cells. *, \(P < 0.05 \) for IRT alone versus IRT/h[Gly2]-GLP-2R. For data in C–E, values are expressed as fold induction relative to untreated cells. The relative densitometric values for caspase-3 (D) or PARP (E) were normalized to the values obtained for actin in the same experiments and represent the means of three to four separate experiments.

Fig. 6. Schematic representation of how GLP-2R-dependent signaling regulates IRT-induced apoptosis in the intestine in vivo and in cells expressing the transfected GLP-2 receptor (BHK-GLP-2R) in vitro.
REFERENCES

Glucagon-like Peptide (GLP)-2 Reduces Chemotherapy-associated Mortality and Enhances Cell Survival in Cells Expressing a Transfected GLP-2 Receptor

Robin P. Boushey, Bernardo Yusta and Daniel J. Drucker

Cancer Res 2001;61:687-693.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/2/687

Cited articles
This article cites 37 articles, 21 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/2/687.full.html#ref-list-1

Citing articles
This article has been cited by 20 HighWire-hosted articles. Access the articles at:
/content/61/2/687.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.