Evidence That APC Regulates Survivin Expression: A Possible Mechanism Contributing to the Stem Cell Origin of Colon Cancer

Tao Zhang, Tomas Otevrel, Zhenqiang Gao, Zhipping Gao, Saundra M. Ehrlich, Jeremy Z. Fields, and Bruce M. Boman

Abstract

Because colorectal cancers (CRCs) frequently display APC mutation, inhibition of apoptosis, and increased expression of the antiapoptotic protein survivin, we hypothesized that APC mutation inhibits apoptosis by allowing constitutive survivin expression. Using HT-29 CRC cell lines having inducible wild-type APC (wt-APC) or transfected dominant-negative TCF-4, we show that wt-APC down-regulates survivin expression via APC/β-catenin/TCF-4 signaling. Using normal colonc epithelium, we found survivin by immunostaining/reverse transcription-PCR to be preferentially expressed in the lower crypt (which inversely correlates with wt-APC’s expression pattern). Thus, wt-APC, by progressively decreasing survivin and increasing apoptosis from crypt bottom to top, may limit the population size of stem cells and other proliferative cells in the lower crypt; mutant APC may allow expansion of these populations, thereby initiating tumorigenesis.

Introduction

APC mutations are thought to initiate both sporadic and hereditary forms of CRC. In the latter, a germ-line APC mutation in familial adenomatous polyposis patients is associated with a proliferative shift in normal-appearing colonic crypts, the earliest tissue change that has been identified. However, the mechanisms linking APC mutation to changes at the cell and tissue level are only poorly understood. APC mutation leads to TCF-4 activation which modulates the transcription of several genes including c-MYC (1), Cox-2 (2), cyclin D1 (3), CD44 (4) and PPARδ (5). Nonetheless, how changes in the expression of these or other genes leads to tissue changes in colon tumorigenesis remains unclear. We hypothesized that loss of apoptosis is involved. Specifically, we postulated that wt-APC protein suppresses the expression of the antiapoptotic protein survivin. This hypothesis was based on several lines of evidence. First, APC is mutant in the majority of CRCs (6). Second, the gradual transformation of colorectal epithelium to carcinomas is associated with the progressive inhibition of apoptosis (7). Third, expression of wt-APC by recombinant means in CRC cell lines that have only inactive APC, induces apoptosis (8, 9). Fourth, survivin is highly expressed in the majority of CRCs (10–13). In this view, if suppression of survivin were lost because APC became mutant, it could lead to constitutive survivin expression, inhibition of apoptosis, and possibly development of CRC. In the present study, we tested the hypothesis that APC suppresses survivin expression and that this occurs through APC/β-catenin/TCF-4 signaling. Because an important prediction of this hypothesis is that wt-APC should, in normal colonic epithelial cells, suppress survivin expression, we also ascertained survivin expression in normal human colonic epithelium.

Materials and Methods

Cell Culture and Induction of APC. The colon carcinoma cell line HT-29 containing a zinc-inducible APC gene (HT-29-APC) and a control cell line containing an analogous inducible lacZ gene (HT-29-Gal; Ref. 8; kindly supplied by Drs. B. Vogelstein and K. Kinzler of the Howard Hughes Medical Institute and Johns Hopkins Oncology Center, Baltimore, MD) were cultivated in McCoy’s 5A (Cellgro, Herndon, Virginia), supplemented with 10% fetal bovine serum, 100 unit/ml penicillin, 100 mg/ml streptomycin, and 0.6 mg/ml hygromycin. wt-APC expression was induced with 120 μM ZnCl2 for the times indicated.

Construction of the Expression Plasmid. The fragment of TCF-4 cDNA containing the β-catenin binding site, but lacking the portion responsible for the binding of the protein to DNA, was obtained using the RT-PCR method from total RNA isolated from the SW480 colon cancer cell line. The oligonucleotide AAATCCCGCAGCTGACG, derived from the gene translation initiation region, and the reverse primer CTTTTTTGGAGTCTGTG, hybridizing to the region located in front of the DNA binding region, were used in a single-tube RT-PCR reaction using a Titan RT-PCR kit (Roche Molecular Biochemicals). The PCR products were cloned into a pcDNA3.1 mammalian expression vector (Invitrogen, Carlsbad, California) according to the manufacturer’s instructions. The plasmids from a few randomly picked colonies were isolated and sequenced, and the clones with correct sequences were used in subsequent experimental procedures.

Transfection of Plasmid Constructs into HT-29 Cells. The dominant-negative plasmid construct was transfected transiently into the HT-29 cell line using a lipofection technique. Briefly, for each transfection, 2 μg of DNA were incubated with 12 μl of Lipofectin (Life Technologies, Inc., Grand Island, New York) in McCoy’s growth medium without serum to form complexes that hybridize to the region located in front of the DNA binding region, were used in a single-tube RT-PCR reaction using a Titan RT-PCR kit (Roche Molecular Biochemicals). The PCR products were cloned into a pcDNA3.1 mammalian expression vector (Invitrogen, Carlsbad, California) according to the manufacturer’s instructions. The plasmids from a few randomly picked colonies were isolated and sequenced, and the clones with correct sequences were used in subsequent experimental procedures.

RT-PCR Amplification. The expression of survivin was evaluated with RT-PCR. cDNA was made by reverse transcription with random primers. Survivin was amplified by PCR. The primers used to detect fragments of the
survivin gene were designed from published human sequences and span exons 1–4. The sequences were: 5′-AGCCTTTCCTCAAGGGACAC-3′ and 5′-GCAGCTTTCTCGAGGTTAC-3′, giving an amplified product of 363 bp. The PCR reaction contained 2 units of Taq polymerase (Roche Molecular Biochemicals); 10× PCR buffer; 0.5 μg of each oligonucleotide primer; 200 μM each dATP, dCTP, dGTP, dTTP; 1 μl of nascent cDNA; and sterile distilled water to bring the volume to 25 μl. The amplification cycle included a denaturation step of 94°C for 2 min, followed by 25 or 28 cycles of 94°C for 1 min, 60°C for 1 min, 72°C for 1 min, and concluded with a final primer extension step of 72°C for 5 min. Positive controls included the human colon cancer cell line HT-116 cDNA. Negative controls included replacing RNA or cDNA with distilled water. Controls were consistently found to be negative for survivin. PCR products were resolved in a 1.5% agarose gel in Tris-acetate EDTA buffer and visualized by ethidium bromide staining under UV illumination. To confirm the integrity of cDNA, fragments of the housekeeping gene β-actin were amplified concurrently. The sequence of the cDNA was compared with that in GenBank, and they were found to be identical.

Results

Regulation of Survivin Expression by APC. The colon carcinoma cell line HT-29 containing a zinc-inducible APC gene (HT-29-APC) and a control cell line containing an analogous inducible lacZ gene (HT-29-Gal) was used to test our hypothesis. Induction of wt-APC expression in HT-29-APC cells containing mutant APC is known to cause apoptosis (8). Using RT-PCR and Western blotting, we assessed the expression of survivin in HT-29-APC cells before and after wt-APC expression was induced with zinc treatment. Both RT-PCR and Western blot experiments showed that (a) HT-29 cells contain high endogenous levels of survivin, and (b) induction of wt-APC expression causes a decrease in survivin mRNA and protein expression (Fig. 1). Survivin expression was repressed within 8 h after APC induction (Fig. 1), whereas no change was detected in control (HT-29-Gal) cells even 8 h after zinc treatment.

To investigate whether the APC/β-catenin/TCF-4 signal transduction pathway regulates survivin expression, a dominant-negative TCF-4 gene construct was used to block TCF-4-mediated activation of gene transcription. In experiments designed to determine the dose effect of a transiently transfected dominant-negative TCF-4 construct on survivin expression, we observed, using RT-PCR, that survivin expression decreased within 24 h, and the suppression of survivin expression correlated with the amount of the TCF-4 construct transfected (Fig. 2A). When the dominant-negative TCF-4 was stably transfected into CRC cell lines, survivin RNA and protein expression remained significantly reduced (Fig. 2, B and C).

To further evaluate whether APC might regulate survivin expression via APC/β-catenin/TCF-4 signaling, we analyzed the human survivin promoter sequence (14) for the presence of one of the known TCF-4 binding elements. We found that a TCF-4 binding element CTTTGAAT was located 263 bp upstream of the transcription start site and perfectly matched the consensus for the TCF-4 binding sequence CTTTTG(A/T)(A/T) (1, 15).

Survivin Expression in Normal Colonic Mucosa. Investigation of the expression of survivin in microdissected isolated subsections of the normal colonic crypt, using RT-PCR, showed that specimens from all 28 donors (100%) were strongly positive for survivin in the bottom section, seven (25%) were weakly positive in the middle section, and none were negative in the samples from the upper section.
Discussion

In this study, we investigated the hypothesis that APC suppresses survivin expression, a mechanism that might regulate apoptosis in normal human colonic epithelial cells. Our results support the hypothesis that APC suppresses survivin expression and does so via TCF-4/β-catenin signaling. This conclusion was based on the convergence of several independent lines of evidence: (a) zinc induction of wt-APC expression in cells that otherwise lack wt-APC leads to decreased expression of survivin; (b) a dominant-negative TCF-4 gene construct that blocks TCF-4-mediated activation of transcription led to decreased survivin expression; and (c) a TCF-4 binding site was identified within the survivin promoter sequence.

Because, as noted above, an important prediction of our hypothesis is that wt-APC should, in normal colonic epithelial cells, suppress survivin expression, we also ascertained survivin expression in normal human colonic epithelium. Despite this prediction, we found that survivin is expressed in normal colonic epithelium. In comparison, results from previous studies have been controversial as to whether survivin is expressed in colonic mucosa. In two studies (10, 11), survivin expression was found to be absent in normal adult colonic epithelium. In another study (12), survivin expression was found in 29% of biopsies of normal colonic epithelium taken from mucosa adjacent to colorectal tumors, although this finding was considered to represent an “intermediate biological change identifying histologically normal mucosa at risk of neoplastic transformation.” A recent study by Gianini et al. (13) reported survivin expression (seen by immunostaining) to be present in all normal, adult colonic mucosa specimens examined. In this study, survivin expression localized to the crypt base, which was similar to our current findings. The apparent discrepancy between both Gianini’s and our present study on the one hand, and earlier studies on the other hand, could conceivably result from differences in the sensitivity of the methods. In one of the two studies with negative findings, Ambrosini et al. (11) used a different method, in situ hybridization of survivin mRNA. The other negative study from the research of Kawasaki et al. (10) involved immunohistochemistry as did ours and Gianini’s (13). Although the study by Sarela et al. (12) used RT-PCR to analyze biopsies of normal colonic mucosa, these specimens are likely to have a significant component of nonepithelial tissue that could hinder the detection of survivin. In our study, we used RT-PCR and isolated, microdissected normal colonic crypts because we consider the combination of these two techniques to provide the most sensitive method.

Nonetheless, our finding that survivin is expressed in normal crypts needs to be reconciled with our prediction that wt-APC would sup-

![Fig. 2. Changes in survivin expression in HT-29 cells that were transfected with a dominant-negative TCF-4 gene construct. A, HT-29 cells transiently transfected with varying amounts of plasmid DNA (0, 1.0, and 2.0 µg) encoding a dominant-negative TCF-4 gene construct. These data show that transiently blocking TCF-4 mediated activation of gene transcription decreases survivin expression. Survivin mRNA levels were evaluated by RT-PCR for two different protocols (25 or 28 cycles). β-actin levels are shown as an internal control. B, HT-29 cells stably transfected with plasmid DNA encoding a dominant-negative TCF-4 gene construct (–) or the empty plasmid (+). These data show that stably blocking TCF-4-mediated activation of gene transcription decreases survivin expression. Survivin mRNA levels were evaluated by RT-PCR for two different protocols (25 or 28 cycles). C, survivin protein levels in HT-29 cells stably transfected with the dominant-negative TCF-4 gene construct were evaluated by Western blots. Tubulin levels are shown as an internal control.]

![Fig. 3. Survivin expression in normal human colonic mucosa. A, survivin mRNA expression in different sections of microdissected normal crypts isolated from 10 patients. Using RT-PCR, we showed that survivin is preferentially expressed in the bottom (B) and top (T) sections of normal human crypts. β-actin levels are shown as an internal control. B and C, survivin immunoreactivity in normal human colonic mucosa. Staining is most prominent at the base of the crypt, which was similar to our current findings. The apparent discrepancy between both Gianini’s and our present study on the one hand, and earlier studies on the other hand, could conceivably result from differences in the sensitivity of the methods. In one of the two studies with negative findings, Ambrosini et al. (11) used a different method, in situ hybridization of survivin mRNA. The other negative study from the research of Kawasaki et al. (10) involved immunohistochemistry as did ours and Gianini’s (13). Although the study by Sarela et al. (12) used RT-PCR to analyze biopsies of normal colonic mucosa, these specimens are likely to have a significant component of nonepithelial tissue that could hinder the detection of survivin. In our study, we used RT-PCR and isolated, microdissected normal colonic crypts because we consider the combination of these two techniques to provide the most sensitive method. Nonetheless, our finding that survivin is expressed in normal crypts needs to be reconciled with our prediction that wt-APC would sup-
press survivin expression in normal colonic crypts. This conflict may be resolved by considering crypt patterns of APC and survivin expression. Our finding is that survivin is preferentially expressed in the lower crypt. In contrast, APC staining in epithelial cells of colonic crypts displays a marked increase from the base of the crypt to the luminal surface (16, 17). Survivin’s pattern thus correlates inversely with wt-APC’s expression pattern. Hence, wt-APC would be expected to progressively decrease survivin expression and increase apoptosis from crypt bottom to top. This expectation correlates with the patterns of both: (a) survivin expression that we observed in crypts and (b) apoptosis in crypt colonocytes that increases as these cells migrate along the crypt axis toward the top (7), where they expire and are extruded or undergo phagocytosis. Therefore, our findings on survivin expression do, after all, support our hypothesis that APC regulates survivin expression.

The findings in this study raise an interesting question: Is APC regulation of survivin expression normally involved in maintenance of crypt cell renewal? The above-discussed patterns of APC and survivin expression suggest a model that provides a possible answer. Our observation that survivin is preferentially expressed in the lower portion of the normal human colonic crypt, in which proliferating cells, including stem cells, reside, suggests that survivin may be integral to preventing apoptosis in these cells populations in the crypt base. Indeed, survivin may confer prolonged survival to basal crypt colonocytes, especially stem cells. In contrast, in the middle portion of the crypt, survivin expression is diminished, and this correlates with the region in which colonocytes stop proliferating and start to undergo differentiation and maturation. In the upper portion of the crypt, APC levels are high and survivin levels are minimal or nonexistent. This correlates with the region in which colonocytes undergo terminal differentiation and apoptosis, and are extruded. Together, these findings suggest that survivin may maintain conditions allowing survival of stem cell populations, and it is these populations that drive the renewal process.

This model is consistent with previous studies. A study of recombinant mice lacking Tcf-4 (which mimics wt-APC signaling) showed that this leads to depletion of epithelial stem cell compartments in the small intestine (18). Two other adult cell renewal type tissues including normal human skin and endometrium have also been found to express survivin (19, 20). Like colon, these tissues are characterized by a constant turnover of cells that are regenerated from stem cells.

Finally, our findings suggest a novel cellular/tissue mechanism for initiation of colon tumorigenesis, a mechanism that suggests how APC mutation, the initiating molecular event in CRC, leads to abnormalities at cellular and tissue levels. In normal crypts, in this mechanism, APC-induced suppression of survivin expression in the crypt’s middle region causes stem cell progeny to begin to lose, via the initiation of apoptosis, their natural phenotype (e.g., immortality, proliferation) as they migrate up the crypt. In contrast, in crypts containing mutant APC, survivin expression may become constitutive, thereby inhibiting apoptosis. In this case, mutant stem cell progeny would tend to maintain their natural, stem-cell-like phenotype as they migrate up the crypt. Such cells would be more likely to proliferate, which is exactly what is found: familial adenomatous polyposis patients show a proliferative shift wherein the proliferative zone extends more and more toward the crypt top. Thus, constitutive expression of survivin prevents apoptosis, contributes to cellular immortality, and may be a key contributing mechanism in early colonic tumorigenesis.

Acknowledgments

We thank Drs. B. Vogelstein and K. Kinzler for providing the recombinant HT29 cell lines, Dr. D. Altieri for providing the antisurvivin antibody, Dr. J. Palazzo and Dr. R. Fry for colonic tissue procurement, Drs. T. Sato and H-D. Yan for preparing tissue sections of paraffin blocks, Dr. A. Kairo for input, S. Burkholler for technical assistance, and Dr. R. Whitehead for instructions on crypt microdissection techniques.

Note Added in Proof

References

3 The model that the crypt APC gradient governs crypt stem cell number was presented in preliminary form by Dr. B.M. Boman at the Third Joint Meeting of the Leeds Castle Polyposis Group and the International Collaborative Group for Hereditary Nonpolyposis Colorectal Cancer, Venice, Italy, April 27, 2001.
Evidence That APC Regulates Survivin Expression: A Possible Mechanism Contributing to the Stem Cell Origin of Colon Cancer

Tao Zhang, Tomas Otevrel, Zhenqiang Gao, et al.

Cancer Res 2001;61:8664-8667.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/61/24/8664

Cited articles This article cites 18 articles, 7 of which you can access for free at: http://cancerres.aacrjournals.org/content/61/24/8664.full#ref-list-1

Citing articles This article has been cited by 42 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/61/24/8664.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.