Simultaneous Inhibition of Glioma Angiogenesis, Cell Proliferation, and Invasion by a Naturally Occurring Fragment of Human Metalloproteinase-2

Lorenzo Bello, Valeria Lucini, Giorgio Carrabba, Carlo Giussani, Marcelle Machluf, Mauro Pluder, Demetrios Nikas, Jianping Zhang, Giustino Tomei, Roberto M. Villani, Rona S. Carroll, Andreas Bikfalvi, and Peter M. Black

Neurosurgery, Department of Neurological Sciences, University of Milan, Ospedale Maggiore Policlinico, Instituto di Ricerca E Cara a Carattere Scientifico, Milan, Italy [L. B., G. C., C. G., M. P., G. T., R. M. V.]; Department of Neurosurgery and Brain Tumor Laboratory, Brigham and Women’s Hospital and Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 [L. B., D. N., R. S. C., M. M., J. Z., P. M. B.]; Department of Pharmacology, University of Milan, Milan, Italy 20122 [L. B., V. L., G. C. G.]; INSERM Unit EPI 0113, Molecular Mechanisms of Angiogenesis and Growth Factors and Cell Differentiation Laboratory, University of Bordeaux I, Talence, France 33405 [A. B.]

ABSTRACT

Angiogenesis, tumor cell proliferation, and migration are the hallmarks of solid tumors, such as gliomas. This study demonstrates that a fragment derived from the autolytic digestion of matrix metalloproteinase (MMP)-2, called PEX, acts simultaneously as an inhibitor of glioma angiogenesis, cell proliferation, and migration. PEX is detected in the cultured medium of various human glioma, endothelial, breast, and prostate carcinoma cell lines. PEX is purified from the medium of glioma cell lines by chromatography, where PEX is constitutively expressed as a free and a TIMP-2-bound form. In human glioma tissue, PEX expression correlates with histological subtype and grade and with αvβ3 integrin expression to which it is bound. Systemic administration of PEX to s.c. and intracranial human glioma xenografts results in a 99% suppression of tumor growth with no signs of toxicity. Thus, PEX is a very promising candidate for the treatment of human malignant gliomas.

INTRODUCTION

The growth of solid tumors depends on the initiation of new vascularization, extensive cell proliferation, and local and distant tumor cell migration. Recent experimental evidence suggests that angiogenesis and invasion are coevol in tumor development and involve similar biological mechanisms (1). Angiogenesis can be considered as an invasive process in which activated endothelial cells proliferate, adhere to extracellular matrix components, and migrate. A similar sequence of events regulates tumor cell invasion (2–5). Integrins and metalloproteinases are involved in both the angiogenic and invasive processes. Integrins αvβ3 and αvβ5 have been shown to be necessary for tumor-induced or cytokine-dependent angiogenesis (6, 7). Integrin αvβ3 in particular, is necessary for the formation, survival, and maturation of newly formed blood vessels (8). αvβ3 integrin has been shown to be an alternative signaling pathway mediating the activities of various growth factors through separate extracellular matrix components (9–11). Metalloproteinases degrade extracellular matrix molecules and create a more permissive environment for cell migration. The activation of metalloproteinases is under the control of tightly regulated mechanisms. Tumors are characterized by an imbalance of proteolysis that favors invasion (3, 4).

This study shows that a fragment of MMP1–2 called PEX is naturally expressed in various human tumors and acts simultaneously to inhibit angiogenesis, cell proliferation, and migration. We isolated PEX from human glioblastoma cells in culture. Gliomas are characterized by a high proliferation rate, extensive angiogenesis, and marked local invasion, which makes these tumors resistant to conventional treatment based on surgery, chemotherapy, and radiotherapy (12–14). MMP-2 and MMP-9 are the two most abundant MMPs found in gliomas (15–17). MMP-2 was found to be colocalized with integrin αvβ3 on the surface of blood vessels and of glioma cells (18). In gliomas, this colocalization was particularly prominent in high-grade glioma periphery, where angiogenesis and tumor cell invasion are particularly active. The interaction between integrin αvβ3 and MMP-2 is one of the critical steps controlling endothelial cell invasion and is regulated by the hemopexin fragment PEX. PEX is derived from the proteolysis of MMP-2 and was detected in vivo in melanoma and during retinal neovascularization (19).

Our study shows that PEX is a powerful molecule that interferes with glioma development by both angiogenic dependent and independent mechanisms, which makes PEX a powerful candidate for the treatment of malignant gliomas and possibly other human malignancies.

MATERIALS AND METHODS

Antibodies and Other Supplies. Monoclonal antibody IM3LL (anti-MMP-2; Calbiochem, La Jolla, CA); rabbit polyclonal antibody anti-MMP-2 AB 809, monoclonal anti-TIMP-2 (AB-801), monoclonal antibody anti-TIMP-1 (AB-800), monoclonal antibody anti-TIMP-4 (AB-803), from Chemicon International (Temecula, CA); antihuman FGF-2 neutralizing antibody (AB-33-NA) from R&D systems were used. The monoclonal antibody TVT48 directed against avian PEX and the monoclonal antibody LM609 directed against αvβ3 integrin heterodimer have been described before (19, 20). Human recombinant FGF-2, Matrigel, and bovine collagen type I from Becton Dickinson (Bedford, MA); human vitronectin and fibronectin from Calbiochem (La Jolla, CA); human tenascin from Life Technologies, Inc. (Grand Island, NY) were also used. αvβ3 integrin was from Chemicon International.

Cell Cultures. Three types of human glioma cells (U87-MG, U373-MG, and U-118-MG; ATCC, Rockville, MD) and three types of endothelial cells [HUVECs, BCE cells, and PAE cells transfected with KDR (PAE/KDR)]. U87-MG and U373-MG cells were cultured in MEMα supplemented with 10% FBS and 2 mm glutamine. U118-MG cells were cultured in Eagle’s modified MEM with 2 mM l-glutamine and Earle’s BSS adjusted with 1.5 g/l sodium bicarbonate, 0.1 mM nonessential amino acids, 10 mM sodium pyruvate, and 10% FBS. HUVEC cells (ATCC) were cultured in RPMI 1640 supplemented with 5% heat-inactivated FCS, 20 μg/ml endothelial cell growth factor, and 50 μg/ml heparin. PAE/KDR were cultured in F-12 mixture with 10% non-heat inactivated FCS and 10 μg/ml genetin (G418 sulfate; Ref. 21). BCE cells (ATCC) were cultured in DMEM, plus l-glutamine, and 10% FBS.

As a control in αvβ3 integrin and MMP-2 experiments, we used M21 human melanoma cells cultured in RPMI 1640 supplemented with 10% FCS (22) and HT-1080 human fibrosarcoma cells cultured in Eagle’s modified MEM without supplements.

Received 8/2001; accepted 10/1901.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1This work was supported by grants from the Italian Health Minister – Research Program, the Ministry of Public Health, the Italian Ministry of Health, and Fondazione Monzino, Milan, Italy (to L. B. and R. V.) and by grants from the Italian Health Minister Ricerca Finalizzata, the Italian Health Minister Ricerca Finalizzata, and Fondazione Monzino, Milan, Italy (to L. B. and R. V.) and by grants from the Italian Health Minister Ricerca Finalizzata, the Ministero della Sanità, and the Ministero della Pubblica Sanità (to L. B. and R. V.).

2To whom requests for reprints should be addressed, at Brigham and Women’s Hospital, 221 Longwood Avenue, Room 121, Boston, MA 02115. Phone: (617) 278-0177; Fax: (617) 232-9029; E-mail: rcarroll@rics.bwh.harvard.edu.

3The abbreviations used are: MMP, matrix metalloproteinase; TIMP, tissue inhibitor of metalloproteinase; FGF, fibroblast growth factor; ATCC, American Type Culture Collection; HUVEC, human umbilical vein endothelial cell; BCE, bovine capillary endothelial; PAE, porcine aortic endothelial; CH0, Chinese hamster ovary.
treatment, the medium was changed daily. An irrelevant substance was added at the same concentration and used as a negative control. Migration was quantified in comparison to unstimulated controls.

Proliferation, Cytotoxicity, and Apoptosis Assays. U87-MG, U373-MG, and U118-MG glioma cells and HUVEC, BCE, PAE/KDR, and MCF-7 cells were plated on 96-well plates (20,000 cells for each well) and cultured in the presence of increasing concentrations of PEX (50 and 100 ng/ml and 1, 3, 5, 10, 25, 50, and 100 μg/ml) for 24, 48, and 72 h. The relative number of cells was calculated using the [4-(5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide conversion assay (Promega Corp., Madison, WI). An irrelevant substance was used as a negative control. Each experiment was run six times to triplicate. The number of apoptotic cells was measured using Apoptag peroxidase conjugate antibody (1:1500 dilution) for 1 h at room temperature and detected with a chemiluminescence detection system (Amersham). Quantitation of Western Blot was performed with a laser scanning densitometry (Molecular Dynamics, Sunnyvale, CA). Western blot of glioma samples was also performed out after reductive alkylation, in which each sample was exposed to 1 mM DTT for 30 min, followed by 1 mM iodoacetamide for 30 min at 37°C.

Purification of PEX from Human Glioma Cells

cell media, concentrated, and dialyzed against collagenase buffer (50 mM Tris, 200 mM NaCl, and 10 mM CaCl₂, pH 7.5). The resulting medium was diluted 1:1 in chromatography buffer (25 mM Tris, 25 mM NaCl, 5 mM CaCl₂, and 0.02% Brij 35 solution, pH 7.4) and applied onto a Gelatin Sepharose (Pharmacia Biotech, Uppsala, Sweden) column at 4°C overnight. The column was washed with binding buffer and eluted with 10% DMSO in binding buffer. Fractions containing all forms of MMP-2 were collected, pooled, and dialyzed in dialysis buffer (25 mM Tris, 25 mM NaCl, and 5 mM CaCl₂, pH 7.4) overnight. Fractions were then concentrated and applied on a Concanavalin A-Sepharose column equilibrated in TCB buffer (25 mM Tr, 1 mM NaCl, pH 8.0) at 4°C overnight. Concanavalin A affinity chromatography binds TIMP-1 linked forms. Fractions containing TIMP-1 free forms were collected, pooled, dialyzed, concentrated, and applied on a Sephacryl HR-200 column in TCB buffer containing 1 mM NaCl. Fractions from this step containing M, 72,000 gelatinase were pooled, dialyzed against TCB, concentrated, and applied to a heparin-Sepharose affinity column to separate TIMP-2 free form of MMP-2 and PEX. Fractions containing PEX are collected, dialyzed, and concentrated. Purity of PEX was assessed by SDS-PAGE with silver stain (purity >95%) and Western Blot with specific anti-PEX, coomassie blue staining, and Western Blot with anti-TIMP-1, anti-TIMP-2, and anti-PEX antibodies (25, 26). The biological activity of PEX was tested using angiogenic assays performed on PAE/KDR cells.

In Vitro Angiogenic Assays. The assay was performed as described with slight modifications (30). Briefly, FGF-2, vitronectin, or anti-VEGF integrin (10 μg/ml) were suspended in 100 mM sodium bicarbonate (pH 9.6) and incubated in a 96-well plate at 4°C for 16 h. The solution was removed, and the wells were washed three times with cold PBS and blocked with BSA. Cells (30,000/well) were suspended in serum-free medium or medium containing 1% FBS and plated. This serum concentration is required for optimal adhesion of cells to FGF-2-coated plates (30). After 2 h at 37°C, the wells were washed three times with PBS containing 2 mM EDTA and serum-free medium. In a second set of experiments, cells were preincubated with different concentrations of PEX or LM609, antihuman FGF-2 neutralizing antibody, vitronectin, tenascin, or fibronectin and shaken for 2 h at 37°C. Cells were centrifuged and resuspended in MEM containing 1% FBS and plated. All of the experiments were performed in quadruplicate.

To test the cell-free interaction of PEX to αβ₃ integrin, aliquots of carbonate buffer containing free αβ₃ integrin and BSA (each at 20 μg/ml) were added to 24-well plates (30). After 16 h of incubation, the solutions were removed, washed three times with cold PBS, and incubated for 30 min at 37°C with 1 mg/ml of BSA. Increasing concentrations of LM609 were added to each dish and incubated for 2 h at 37°C. Aliquots of PEX (6 μg/ml/well) were added to each dish and incubated for 2 h at 37°C on an orbital shaker. The solution was removed, and the dishes were washed three times with PBS containing 2 mM EDTA. Non-reducing SDS sample buffer was added and incubated for 1 h at 50°C. Dishes were scraped, and samples were recovered and analyzed by Western blot for PEX.

In Vivo Inhibition of Glioma Growth. Two groups of 10 Swiss male nude mice, 6 weeks of age, received 2 × 10⁶ cells s.c. in the right flank. Two groups of 10 Swiss male nude mice, 6 weeks of age, were implanted intracranially with 50,000 U87-MG and U373-MG cells. The animals were allowed to grow for 5 days. Half of the animals of each group were treated with PEX at a dose of 1 or 5 mg/kg/day administered i.p. The remaining half of the animals were treated with a control substance (PBS). All animals were sacrificed 30 days after treatment, and tumor volumes were measured. Tumors were embedded in OCT and stored at −70°C. Tumor sections from treated and control animals were stained with hematoxylin and CD-31 antigen to determine angiogenic
that PEX appeared as a TIMP-2 complexed form (the first high peak fractions collected from heparin-Sepharose chromatography showed conditioned medium (Fig. 1). Western Blot analysis performed on the chromatographic procedure. The total amount of 0.5 mg of free antibody with a cleavage product of MMP-2.

RESULTS

Detection and Purification of PEX in Glioma Cell Culture Medium. PEX was detected in the culture medium of U87-MG, U373-MG, U118-MG, HUVEC, PAE/KDR, BCE, MCF-7, and CRL-1435 cells. After immunoprecipitation with M1/TV98, two bands of Mr 72,000 and Mr 46,000 were detected by Western blot under reducing conditions. The Mr 72,000 band had the expected size of PEX. The second band may result from the cross-reactivity of the anti-PEX antibody with a cleavage product of MMP-2.

PEX was purified from glioma cell culture medium by a complex chromatographic procedure. The total amount of 0.5 mg of free protein was purified from 5 liters of U87-MG or U373-MG cell conditioned medium (Fig. 1). Western Blot analysis performed on the fractions collected from heparin-Sepharose chromatography showed that PEX appeared as a TIMP-2 complexed form (the first high peak represents 75% of the total protein) and a free form (the second low peak represents 25% of the total protein; data not shown). Purity of these forms was assessed by silver stain analysis. When similar studies were performed with anti-TIMP-4 antibodies, no bands were detected.

PEX Regulates Tumor-induced Angiogenesis. A tube formation assay was used to determine the capability of purified human PEX to regulate angiogenesis in tumors. When increasing concentrations of human purified PEX were added to HUVEC, BCE, and PAE/KDR cells cultured in the presence of glioma cell culture medium, a dose-dependent inhibition of tube formation was documented (Fig. 2a). Inhibition was observed at a concentration of 1 μg/ml, and no tube formation was documented at a concentration of 10 μg/ml. The inhibiting effect of PEX was reversible because 4 days after the withdrawal of PEX, capillaries reappeared spontaneously. PEX also inhibited the limited basal tube formation seen when PAE/KDR cells were cultured only in F-12 medium.

PEX Regulates Glioma and Endothelial Cell Migration in Vitro. We used a Boyden chamber model and a monolayer migration assay to determine the effect of human purified PEX on glioma and endothelial cell migration. We investigated the inhibition of glioma and endothelial cell migration *in vitro* by human purified PEX, performing two sets of experiments. Glioma and endothelial cells were plated in Boyden chambers and exposed to an increasing concentration of PEX. We observed a dose-dependent decrease in the number of migrating cells with increasing concentrations of PEX (the maximum inhibition was reached at 25 μg/ml of PEX; Fig. 2, b and c). In a second set of experiments, glioma and endothelial cells were plated in the center of a single Matrigel-coated dish and exposed to increasing concentrations of PEX (Fig. 2d). The effect of PEX was dose dependent and was first observed at a concentration of 100 ng/ml. At a concentration of 1 μg/ml, a 52% inhibition was observed, which reached 82% of inhibition at 10 μg/ml. The effect of PEX on cell migration was αvβ3 integrin independent as demonstrated by its inhibitory effect on migration of CHO cells in Boyden chambers (Fig. 2c).

PEX Inhibits Proliferation and Induces Apoptosis of Glioma and Endothelial Cells in Vitro. We studied the effect of PEX on glioma and endothelial cell proliferation by exposing the cells to increasing concentrations of PEX for 24, 48, and 72 h, both in normal serum (10%) and in low serum (1%) conditions (Fig. 3, a and d). We documented a dose-dependent inhibition of glioma cell proliferation.

![Fig. 1.](image1.png) **Fig. 1.** a, silver stain of fractions collected from a gelatin Sepharose column on which medium from HUVEC and U87-MG cells was applied and recirculated overnight. Medium from these cells contains both MMP-2 in all its activated forms and PEX (arrows). Most of MMP-2 is present as a Mr 72,000 form. b, silver stain of fractions containing free PEX and free MMP-2 collected from a heparin-Sepharose column. MMP-2 appears as a single band of Mr 72,000, PEX as a single band of Mr 29,000.

![Fig. 2.](image2.png) **Fig. 2.** Purified human PEX regulates glioma-associated angiogenesis and glioma and endothelial cell migration. a, purified human PEX inhibits glioma-induced angiogenesis *in vitro*. HUVECs cultured in the presence of glioma cell medium form tubes after 4 days of treatment (positive control). Increasing concentrations of PEX are able to inhibit tube formation activity of HUVECs grown in the same conditions. Negative controls indicate the same cells grown in the presence of endothelial cell medium do not form tubes. Purified human PEX inhibits glioma (b) and endothelial cell (c) migration in a Boyden chamber model. Increasing concentrations of PEX are added to glioma or endothelial cells plated in the upper chamber. After 24 h, a dose-dependent decrease in the number of migrating cells is observed. The effect is also seen on MCF-7 cells as well as on αvβ3-deficient cells (CHO). Data are presented as a percentage of controls. d, purified PEX inhibits glioma cell migration in a monolayer migration assay. Cells are plated in the center of a single Matrigel-coated dish and exposed to increasing concentrations of PEX. PEX reduces cell migration in a dose-dependent manner. Bars, SE.
in both conditions. The activity of PEX was not restricted to glioma cells, as documented by its inhibitory effect on endothelial cells and on MCF-7 and CRL-1435 cell proliferation (Fig. 3c). PEX was not able to inhibit proliferation of CHO cells, suggesting that expression of αvβ3 integrin is one of the factors required for exerting its anti-proliferative effect (Fig. 3c). Under the same conditions, PEX induced a dose-dependent increase of apoptosis (Fig. 3e).

PEX Inhibits Adhesion of Glioma and Endothelial Cells to FGF-2 and Vitronectin and Binds to αvβ3 Integrin. We used adhesion assays to determine the effect of PEX on the αvβ3 integrin-dependent adhesion of glioma and endothelial cells onto FGF-2 and vitronectin-coated plates. PEX reduced glioma and endothelial cell adhesion on FGF-2-coated plates in a dose-dependent manner (Fig. 3f). Total and 50% inhibition were reached at 50 and 3 µg/ml, respectively. Adhesion was prevented by treating the cells with LM609 or the plates with an antihuman FGF-2 or anti-vitronectin antibody. Similarly, PEX reduced the adhesion of glioma cells to vitronectin-coated plates (data not shown). Its effect was dose dependent and started at concentrations over 5 µg/ml. Total and 50% inhibition were reached at 80 and 10 µg/ml, respectively.

A cell-free interaction assay was used to determine the capability of PEX to bind to a surface-bound αvβ3 integrin. Increasing concentrations of LM609 inhibited the binding of PEX to αvβ3 integrin (data not shown).

PEX Expression in Human Glioma Tissue Correlates with αvβ3 Integrin Expression. We studied the expression of PEX in 40 surgical specimens of human glioma. Histopathological analysis revealed 13 glioblastomas, 10 anaplastic gliomas (4 anaplastic astrocytomas, 3 mixed anaplastic gliomas, and 3 anaplastic oligodendrogliomas), and 17 low-grade gliomas (4 mixed low-grade gliomas, 5 fibrillary astrocytomas, and 8 oligodendrogliomas). PEX protein was detected by immunoprecipitation analysis in all tumor samples, regardless of tumor grade, but not in the normal tissue. After immunoprecipitation with MTV88, two bands of Mr 29,000 and Mr 46,000 were detected, by Western Blot under reducing conditions (Fig. 4a). The first has the expected size of the peptide, whereas the second may still result from a cross-reactivity of the anti-PEX antibodies with a cleavage product of MMP-2. The same experiments were repeated with anti-TIMP-2 and anti-TIMP-4 antibodies, but no signal was detected.

In human glioma tissues, PEX expression correlated with tumor grade and type. PEX was strongly expressed by astrocytic tumors and only weakly detected in oligodendrogial tumors (Fig. 4b). The expression of αvβ3 integrin was examined by immunoprecipi-
tation in the same samples analyzed previously for PEX. αvβ3 integrin, under nonreducing conditions, appeared as three bands of Mr 140,000, Mr 130,000, and Mr 85,000. αvβ3 integrin was expressed more prominently in astrocytic than in oligodendrogial tumors, and its expression correlated with the histological grade of tumors (Fig. 4c). A strong correlation was demonstrated between αvβ3 integrin and PEX expression ($r = 0.942; P < 0.001$; Fig. 4c). Moreover, we showed the ability of αvβ3 integrin to bind PEX in samples of human gliomas, detecting PEX in samples of gliomas that were previously immunoprecipitated with an anti-αvβ3 integrin antibody (data not shown). PEX expression correlated weakly with MMP-2 expression in the same samples ($r = 0.633; P < 0.05$).

PEX Reduces Glioma Growth in Vivo. The effect of PEX on glioma growth in vivo was tested on s.c. and intracranial glioma models. i.p. administration of PEX decreased glioma growth in both models. s.c. U87 and U373 glioma xenografts treated with PEX reached a size of 3.1 ± 1.5 (U87) and 4.1 ± 1.4 (U373) mm³ by 30 days after treatment, and the tumors were difficult to separate from overlying skin. During the same period, control s.c. U87 and U373 glioma xenografts reached a size of 1050 ± 245 (U87) and 990 ± 155 (U373) mm³, and the skin overlying the tumor began to ulcerate (Fig. 5a).

Thirty days after implantation, control intracranial glioma xenografts reached a size of 19.245 ± 6.395 (U87) and 16.334 ± 5.44 (U373) mm³. At the same time, in the group of animals treated with 1 mg/kg/day of PEX, tumor xenografts reached a size of 0.23 ± 0.32 (U87) and 0.18 ± 0.32 (U373) mm³, corresponding to a 99% of growth suppression. In the groups of animals treated with 5 mg/kg/day of PEX, tumor xenografts reached a size of 0.088 ± 0.32 (U87) and 0.093 ± 0.45 (U373) mm³, leading to a higher suppression of tumor growth (Fig. 5b). Most of the tumors were composed of microscopic tumor foci (Fig. 5b).

In both intracranial and s.c. groups, no signs of toxicity such as weight loss, inactivity, opportunistic infections, or reduced appetite were observed. At sacrifice, major organs were examined for the occurrence of any gross pathological changes. Sections from lungs, heart, kidney, and bowel, together with the skin at the injection site of randomly chosen intracranially and s.c. implanted animals, were also examined. We did not document any signs of disease.

s.c. or intracranial tumors from PBS-treated mice were characterized by high microvessel density and count, presence of glomeruloid structures, particularly evident in U87 tumors, and polymorphic capillaries of varying calibers. s.c. or intracranial tumors treated with PEX were characterized by a decreased vascularity, mainly composed of uniform, few branches capillaries, an increased apoptosis, and a decreased proliferative index (Fig. 5, c and e). Apoptotic cells as well as those stained with Ki-67 antigen were dispersed inside the tumor parenchyma (Fig. 5, d and e). Histological analysis of serial sections of brain from PEX-treated and PBS-treated animals showed that in the PEX-treated mice, a reduced number of islands of tumor cells surrounded the main tumor mass, and in two animals, there was only a limited vascular subpial dissemination.

DISCUSSION

The hallmarks of malignant tumors are angiogenesis, tumor cell proliferation, and migration. Inhibition of angiogenesis has been shown to block tumor growth in a number of animal models (33–35). Angiogenesis has been shown to be permissive for invasion. The acquisition of the angiogenic phenotype occurs at the same time the cells are able to migrate away from the main tumor mass (7). Gliomas are the most frequent tumors in the central nervous system. They are characterized by marked angiogenesis, tumor cell proliferation, and local invasion (1). These processes are particularly active in the same region at the tumor periphery, which has limited the therapeutic effect of present available therapies. Therefore, gliomas are an excellent model to study the interaction among these biological processes in tumors.

The present study demonstrates the isolation and characterization of a fragment of MMP-2 called PEX that is naturally expressed in various tumors in vivo and simultaneously regulates angiogenesis, cell proliferation, and migration. PEX was detected in the medium of glioma, endothelial, breast, and prostate cell cultures. PEX was purified from the glioma culture medium by a complex chromatographic procedure, combining both affinity and size exclusion chromatography. In glioma cell medium, PEX was isolated as a free and a TIMP-2-bound form, the latter being more prevalent. Western blot analysis of gliomas of different histological grade and subtype showed that in human gliomas, PEX expression correlated with tumor grade and histological subtype, being highly expressed in more aggressive, vascularized, and proliferative astrocytic tumors, such as glioblastomas. Furthermore, in the same tumors, PEX expression correlated with αvβ3 integrin expression, to which it was bound.

We performed tube formation assays to determine the biological effect of PEX on glioma-associated angiogenesis in vitro. PEX potently inhibited glioma angiogenesis starting from a concentration of...
Fig. 5. Purified human PEX reduces glioma growth in vivo. a, PEX reduced the growth of s.c. U87 glioma xenografts. PBS-treated animals developed large tumors; those treated with PEX had small, hardly visible tumors (left panel). At surgery, s.c. tumors from PEX-treated animals were small and difficult to isolate from the skin (central panel). Comparison of tumor volumes between PBS and PEX-treated animals (right panel) showed that treatment with 5 mg/kg/day of PEX produced a 99% growth suppression. b, PEX reduced the growth of intracranial U87 glioma xenografts. PBS-treated animals developed large tumors (left panel; hematoxylin, ×10); those treated with PEX had small tumors, visible at the site of injection (central panel; hematoxylin, ×10). Comparison of tumor volumes (right panel) among PBS-treated and PEX-treated animals. Treatment with PEX resulted in 99% suppression of tumor growth. Bars, SE. c, intracranial tumors treated with PBS (control) were characterized by a high microvessel count (vessels are stained with CD-31; ×200); those treated with PEX had few capillaries (×200). d, intracranial tumors treated with PBS (control) were characterized by a low apoptotic index (×100); in those treated with PEX, the apoptotic index increased (×100). e, tumor volume, microvessel count, apoptotic, and proliferative index in intracranial glioma xenografts. Treated animals received 5 mg/kg/day of PEX.

1 μg/ml, and its antiangiogenic activity was displayed against various endothelial cell lines.

Boyden chambers and a monolayer migration assay were used to determine the effect of PEX on cell migration in vitro. In both models, PEX decreased cell migration in a dose-dependent manner, and its activity was displayed against several glioma and endothelial cell lines. The antiadhesive activity in vitro was evident at higher concentrations than those required to inhibit angiogenesis, but at concentrations of 10 μg/ml and above, the migration of various cell lines was significantly suppressed. PEX reduced the migration of αvβ3-negative cells, such as CHO, indicating that its effect on cell migration is αvβ3 integrin independent.

We cultured glioma and endothelial cells in the presence of increasing concentrations of PEX to determine its effect on cell proliferation. Both in low and normal serum conditions, PEX inhibited glioma and endothelial cell proliferation in a dose-dependent manner, starting from concentrations similar to those required to inhibit cell migration. The antiproliferative activity against tumor cells was not specific for glioma cells but was also observed on human mammary carcinoma and prostate cells. The inhibitory activity was accompanied by increased apoptosis. The lack of activity in αvβ3-deficient cells suggests that the expression of αvβ3 integrin is one of the factors required for its antiproliferative activity.

The ability of human purified PEX to bind to αvβ3 integrin was determined by performing separate experiments. In adhesion assays, PEX was able to reduce the αvβ3 integrin-dependent adhesion of glioma and endothelial cells to FGF-2 and vitronectin. In a binding assay, PEX was shown to be bound to a surface-bound αvβ3 integrin. PEX was also bound to αvβ3 integrin in human glioma specimens.

Our data indicated that PEX was able to simultaneously regulate angiogenesis, tumor cell proliferation, and migration. Regulation of angiogenesis may combine inhibition of endothelial cell migration, proliferation, and increased cell apoptosis. These characteristics make PEX a powerful molecule that is able to control tumor growth very efficiently. This significantly differentiates PEX from other tumor natural inhibitors, such as angiostatin and endostatin, that mainly act on endothelial cells (33, 34).

The powerful properties of PEX were confirmed by in vivo experiments. When administered i.p. at 1 and at 5 mg/kg concentrations, PEX potently inhibited glioma growth in s.c. and intracranial glioma models. At these concentrations, PEX produced a 99% suppression of tumor growth. With the same concentration, angiostatin achieved a 35% suppression, whereas endostatin produced a 65% inhibition (33, 34). Tumor growth suppression by PEX was accompanied by a decrease of vascularity, an increased apoptosis, and a decreased proliferative index. Apoptotic cells were homogeneously dispersed in the tumor parenchyma and not surrounding tumor vessels as documented in angiostatin or endostatin-treated tumors (33–35). The decrease of the proliferative rate was a unique feature of PEX-treated tumors and confirmed its ability to reduce tumor cell proliferation. The systemic administration of PEX was not associated with any detectable signs of local or systemic toxicity (33–35). Previous observations with recombinant avian PEX demonstrated that this form inhibited tumor growth in a chorioallantoic membrane assay and s.c. melanoma model (19, 36).

The antitumor activity of PEX is not in contradiction with the finding that its level of expression increases with tumor grade in human gliomas. This finding is not unprecedented. The generation of
endogenous inhibitors in vivo from large precursor proteins with distinct functions is a recurrent theme in the inhibition of angiogenesis (37). Elevated levels of endostatin or antiendostatin antibodies have been found in serum of patients with various malignant tumors, including glioblastoma (38, 39). In addition, proapoptotic ligands such as Fas ligand are highly expressed in tumors (40). Tumor angiogenesis is controlled by a balance of angiogenesis inhibitors and proangiogenic molecules. Although PEX is expressed in high-grade gliomas, they are highly invasive and angiogenic because proangiogenic factors override PEX and other inhibitor molecules (3, 4).

In conclusion, our results indicate that purified human PEX potentially inhibits malignant tumor growth in vitro and in vivo by both angiogenesis-dependent and -independent mechanisms. This makes PEX a powerful candidate for the treatment of malignant tumors.

ACKNOWLEDGMENTS

We thank Rita Paglino for helping tumor specimens, Antonio Ladislao for technical assistance with figures, Pierre Costet and Daniela Santoni for technical assistance with the animals, Giuseppe Giussani for providing the dental cement, and Michele Marone for valuable assistance.

REFERENCES

21. Bjerkvig, R., Lund-Johansen, M., and Edvarsen, K. Tumor cell invasion and angiogenic molecules. Although PEX is expressed in high-grade gliomas, they are highly invasive and angiogenic because proangiogenic factors override PEX and other inhibitor molecules (3, 4).
Simultaneous Inhibition of Glioma Angiogenesis, Cell Proliferation, and Invasion by a Naturally Occurring Fragment of Human Metalloproteinase-2

Lorenzo Bello, Valeria Lucini, Giorgio Carrabba, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/24/8730

Cited articles
This article cites 35 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/24/8730.full.html#ref-list-1

Citing articles
This article has been cited by 22 HighWire-hosted articles. Access the articles at:
/content/61/24/8730.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.