Triggering of Antitumor Activity Through Melanoma-specific Transduction of a Constitutively Active Tumor Necrosis Factor (TNF) R1 Chimeric Receptor in the Absence of TNF-α

Flavia Bazzoni and Elisabetta Regalia

Department of Pathology, Section of General Pathology, University of Verona, 37134 Verona, Italy

ABSTRACT

Tumor necrosis factor-α (TNF-α) has been intensively studied because of the specific toxicity of this cytokine toward cells that undergo malignant transformation. However, its proinflammatory and immunoregulatory properties always represented a drawback to the TNF-α administration in cancer therapy. In this study, we describe an adenovirus-based strategy in which the tumoricidal activity of TNF-α can be selectively triggered to eradicate tumors without administering TNF-α. This strategy might allow us to prevent TNF-α effects on normal tissues and, therefore, to bypass its systemic toxic effects. We inserted the constitutively active version of the M5, 55,000 TNF receptor, which was shown previously (F. Bazzoni et al., Proc. Natl. Acad. Sci. USA, 92: 5376–5380, 1995) to be capable of killing cells upon expression in the absence of its ligand, into a replication-deficient adenovirus, and under the control of a melanoma-specific promoter/enhancer element. We show that, upon infection, the recombinant gene reaches high level of expression in melanoma cell lines and triggers apoptosis by activating the caspase cascade. Expression and function of this receptor is restricted to melanoma cell lines, because morphology, viability, and proliferation of other cell types exposed to the recombinant TNF receptor adenovirus, together with the advantage of triggering a TNF-like antitumor activity in the absence of TNF-α itself, are ideal features for a vector that might be the choice for gene therapy aimed to eradicate malignant cells.

INTRODUCTION

TNF-α is a macrophage/monocyte-derived cytokine originally shown to be able to potentiate tumor progression in experimental tumor models (1, 2). The attempts to make use of the tumoricidal property of this cytokine led to the development of several strategies, which, in some cases, resulted into the use of TNF-α in clinical trials of tumor chemotherapy (3).

The following cell lines were used in this study: H5V (mouse cardiac endothelial cells); SKmel28 and Skmel25 (human melanoma); HeLa (human cervix epithelioid carcinoma); and NIH 3T3 (mouse embryo). These cell lines were obtained from American Type Culture Collection (Rockville, MD), whereas fibroblast-like primary cell lines Hel 299 (human embryonic lung) and Hep 3B, 1-7 (human hepatocellular carcinoma) were purchased from Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia (Brescia, Italy). The human melanoma cell lines 501mel (12) and A375 (human melanoma) were kindly provided by Prof. Nicholas R. Lemoine (Imperial Cancer Research Fund, London, United Kingdom). Adenoviruses were propagated on 293 (human embryonic kidney; adenovirus-5 transformed) parental cell line (pur-
chased from Microbix Biosystems, Ontario, Canada). All of the cell lines were maintained at 37°C in a 5% CO₂-humidified incubator and grown in nMEM (Bio Whittaker, Bergamo, Italy), supplemented with 100 units/ml penicillin/ streptomycin and 10% FBS (Biochrom, Berlin, Germany).

Generation of Recombinant Adenoviruses. A basic plasmid pACPL, suitable for generation of recombinant adenoviruses, was generated by replacing the NotI fragment, which contains the CMV early promoter, the puC19 polyclinzer, and the SV40 splice and polyadenylate signal sequences from pACCMV plasmid (obtained from Robert Gerard, University of Texas southwestern Medical Center, Dallas, TX; Ref. 13), with a new polyclinzer (NotI, EcoRI, KpnI, BamHI, XbaI, Sall, HindIII). A new construct named pACTyr-EpoTNFR1 was engineered by the subsequent cloning into pACPL of: (a) 470 bp of the murine tyrosinase promoter/enhancer sequence, PCR-amplified from phsTyrs(0.2)PCAT construct, kindly provided by Dr. R. Gans (14), and cloned (EcoRI→KpnI) into pACPL vector. This promoter consists of 270 bp of the minimum mouse tyrosinase promoter (15) and 200 bp SphI-XhoI fragment located at -12.3 to -12.1 kb of the 5' flanking region of the mouse tyrosinase gene. This sequence has been described previously as the minimum element that provides melanoma-specific transcriptional enhancing activity (14); (b) the chimeric receptor Epo/TNFR1 cDNA (11), subcloned (KpnI→SalI) from pCMV5 vector into pACPL, downstream of the tyrosinase promoter/enhancer sequence; and (c) the hGH transcription termination and polyadenylate signals sequence; and (d) the 3' end of the chimeric receptor cDNA. A second recombinant plasmid for adenovirus generation, pACTyr-Bgal, was produced. The luc2Z gene product β-gal cDNA was cloned (XhoI→SalI) in place of the Epo/TNFR1 cDNA. Both the β-gal and the Epo/TNFR1 cDNA expression were under the control of the same tyrosinase promoter/enhancer elements and hGH polyadenylation signal. The new constructs were sequenced and proven to be correct.

The Ad-Tyr-EpoTNFR1 and Ad-Tyr-β-gal vectors were generated by in vivo recombination between pM17 plasmid (Microbix Biosystems), which contains the adenoviral genome with a deletion of the E1 early genes region (16), and the shuttle plasmids pACTyr-EpoTNFR1 and pACTyr-β-gal, in which the tyrosinase promoter and recombinant genes had been cloned. Primary plaques were isolated, amplified, and screened by Southern blot to verify the presence of the tyrosinase promoter/enhancer plus Epo/TNFR1 or β-gal cassette. Large-scale preparation of viruses was conducted as described previously (17). Viral titer was determined by plaque assay on 293 cells.

A third recombinant adenovirus, encoding the β-gal driven by the CMV promoter, was a kind gift of Dr. B. Beutler (Howard Hughes Medical Institute, University of Texas southwestern Medical Center, Dallas, TX) and was used to determine the optimal MOI at which each cell line would receive at least one copy of the recombinant gene. All of the three recombinant adenoviruses are schematically represented in Fig. 1.

Infection of Cell Lines and Analysis of β-gal Expression. All of the different cell lines were seeded in 96-well tissue culture plates at 10⁴ cells/well. The day after, media were aspirated from each well, and the optimum amount of viral pfu was diluted in infection media (nMEM + 2% FBS) and added to the monolayers of the cells. The cells were incubated for 30 min at room temperature. Subsequently, complete medium was added, and the cells were incubated at 37°C, 5% CO₂ for the indicated lengths of time. Ad-Tyr-β-gal- and Ad-CMV-β-gal-infected cells were either fixed for in situ β-gal staining or harvested, and extracts were prepared for quantitative β-gal assays. In situ β-gal staining and quantification of β-gal enzyme activity were performed as described previously (18, 19). In the β-gal assay, fluorescence was measured on a microtiter fluorescence plate reader (Fluorocount, Packard; λex, 350 nm and λem, 460 nm).

Northern Blot Analysis. Cytoplasmic RNA was harvested from Skmel28 cells that were left untreated or infected with either Ad-Tyr-β-gal or Ad-Tyr-EpoTNFR1 at the indicated time after infection, using an NPA4 lysis technique as described previously (20), and was subjected to electrophoresis in an agarose gel. Northern blot analysis was performed on 20 μg of RNA/lane. A Nylon blot was hybridized with the cDNA probe encoding the extracellular portion of the Epo receptor, labeled by the Ready to go kit (Pharmacia, Uppsala, Sweden), according to the manufacturer’s instruction. The membrane was stripped and reprobed with the labeled β-gal-encoding cDNA. The extent of hybridization was quantitatively analyzed in the InstantImager (Packard Instruments, Meriden, CT).

Ligand Binding Assay. Skmel28 cells were plated at 3 × 10⁵ cells/well in a 12-well plate, left to adhere, and infected with the recombinant adenoviruses Ad-Tyr-EpoTNFR1 or Ad-Tyr-β-gal. At different times after infection, medium was replaced with 1 ml of nMEM, supplemented with 2% FBS, 25 mM HEPES, and 85 nCi of 125I-labeled Epo (Pharmacia; specific activity of 300–600 Ci/mmol), in the presence or absence of 13 nM cold Epo (Eritrogen 100; Boehringer Mannheim, Milan, Italy). Cells were incubated for 4 h at 4°C with gentle shaking, harvested, and washed twice with cold PBS. Bound 125I-labeled Epo was quantified with a gamma counter (1261 Multigamma counter; LKB Wallach).

Cytotoxicity Assays. Skmel28 cells were seeded in 96-well microtiter plate at 105 cells/100 μl/well. After an overnight incubation, cell monolayers were infected with 10⁵ MOI of the indicated recombinant adenoviruses. Cell viability was assayed 24, 48, or 72 h after infection, either by crystal violet or MTT assays, as described previously (21, 22). Cell viability was reflected by dye absorbance, determined by absorbance measurements at 595 nm for crystal violet staining and at 540 nm for MTT assay, on an automated microplate reader (Argus 300; Packard).

Relative cell viability, in both assays, was calculated as follows:

\[
\% \text{ viability} = \frac{\text{Experimental absorbance} - \text{background absorbance}}{\text{Absorbance of untreated controls} - \text{background absorbance}} \times 100
\]

Fluorometric Analysis of Caspase-3 Activity. Skmel28 cells (3 × 10⁴/well) were seeded in a 12-well plate and infected with 10³ MOI of Ad-Tyr-β-gal or Ad-Tyr-EpoTNFR1 adenoviruses. At different time points after infection, medium was removed, and cells were resuspended in 160-μl lysis buffer [10 mM Tris-HCl, 10 mM NaH₂PO₄/NaH₂PO₃ (pH 7.5), 130 mM NaCl, 1% Triton X-100, 10 mM Na ß-glycerol, 2 mM DTT]. Caspase-3 activity was proportional to the release of AMC from Ac-DEVD-AMC, measured using a spectrofluorimeter (LS 50; Perkin-Elmer) with excitation and emission wavelengths of 380 nm and 440 nm, respectively. The assay was performed in the presence or absence of the broad spectrum caspase inhibitor DEVD-CHO (100 μM; Pharmingen).

Protein concentration was determined using the Bio-Rad protein assay.

RESULTS

Cell Type Specificity of the Tyrosinase Promoter/Enhancer-containing Recombinant Adenoviruses. To test the transcriptional efficiency and lineage specificity of the tyrosinase promoter/enhancer elements, β-gal expression was evaluated in a panel of different human and murine cell lines infected with the Ad Tyr-β-gal virus, and data were compared with parallel infections with the Ad-CMV-β-gal virus. Both viruses were used at a 10³ MOI, which represented the
MOI at which a minimum of 50% of all of the cell lines in culture were infected. β-gal expression was evaluated 48 h after infection by both in situ β-gal staining (Fig. 2) and quantitative β-gal enzymatic assay (Table 1). Either the murine tyrosinase promoter/enhancer cassette or the CMV promoter, which is known to be a strong and widely used promoter in eukaryotic cells, drove high levels of β-gal expression in human melanoma Skmel28 and mouse melanoma B16F10 cell lines (Fig. 2), which are both known to express the tyrosinase gene. Nearly 100% of Skmel28 cells stained positive 48 h after infection with either adenovirus. The lower efficiency of infection observed in the B16F10 cells, compared with Skmel28, reflects the tropism of adenovirus, which is for human cells. Nevertheless, the percentage of B16F10 cells that express the β-gal after infection with Ad-CMV-β-gal or Ad Tyr-β-gal virus is comparable. Infection of these two melanoma cell lines (Skmel28 and B16F10) with the Ad-Tyr-β-gal resulted in high levels of β-gal enzymatic activity, which are 42 and 33%, respectively, of the activity of the CMV promoter (Table 1). On the contrary, in all of the other cell lines tested (HeLa, HT-29, and Hep 3B in Fig. 2; and H5V, NIH 3T3, CFPAC1, and Hel 299 in Table 1) and infected with the Ad-Tyr-β-gal, few blue-stained cells were visible in the in situ staining, whereas the β-gal activity evaluated in the enzymatic assay was negligible compared with that of cells infected with Ad-CMV-β-gal. In particular, β-gal activity induced by the tyrosinase promoter corresponded to 1.4% of β-gal activity induced by the CMV promoter in Skmel25, a human melanoma cell line in which no detectable levels of tyrosinase mRNA were found (23), whereas infection of other nonmelanoma cell lines, HeLa, H5V, and Hep 3B (Fig. 2; Table 1), and HT-29, NIH-3T3, CF PAC1, and Hel 299 (Table 1) with Ad-Tyr-β-gal resulted in very low absolute and percentage levels of β-gal expression, which ranged from 0.7 to 6% of that measured in Ad-CMV-β-gal infected cells. Adenoviral infection of these cell lines is not inefficient, because infection with the Ad-CMV-β-gal virus led to a high level of expression of the β-gal gene. Taken together, these data demonstrate the very high efficiency and specificity of the tyrosinase promoter/enhancer elements for mela-notic melanoma.

Fig. 2. Transcriptional efficiency of Tyr promoter versus CMV promoter. In situ staining for β-gal activity 24 h after infection of human Skmel28 and mouse B16F10 melanoma cell line, and HeLa, H5V, and Hep 3B nonmelanoma cell lines with Ad-CMV-β-gal (left panels) or Ad-Tyr-β-gal (right panels), performed as described in “Materials and Methods.” Photomicrographs were taken at ×100.
To determine whether Ad-Tyr-Epo/TNFR1 was able to transduce the Epo/TNFRI chimeric receptor gene, Skmel28 were infected with Ad-Tyr-Epo/TFNR1 at MOI of 10^3 pfu/cell. For comparison, cells were also infected with the adenovirus expressing β-gal under the control of the same melanoma-selective promoter. Expression of the two recombinant cDNAs was detected at different time points by Northern blot analysis (Fig. 3). Comparable levels of expression of Epo/TNFRI receptor and β-gal were detected in transduced Skmel28 cells. β-gal mRNA was detectable 15 h after infection and continued to accumulate up to 64 h. Similarly, the tyrosinase promoter/enhancer elements were able to induce comparable levels of Epo/TNFRI mRNA, which reached a plateau at 40 h and then decreased by 64 h, indicating that the exogenous Epo/TNFRI cDNA was successfully transduced and efficiently transcribed into these cells.

Effect of Epo/TNFRI Adenovirus-mediated Overexpression on Cell Growth and Viability. Adenovirus-mediated transduction of the Epo/TNFRI molecule in Skmel28 and B16F10 cell lines resulted in an evident and massive cell death (Fig. 4A). Skmel28 and B16F10 cells infected with 10^5 MOI of the Ad-Tyr-β-gal showed a normal morphology and maintained a normal growth rate 72 h after infection, whereas cells infected with the same MOI of the Ad-Tyr-Epo/TFNR1 rapidly developed morphological characteristics typical of adherent cells undergoing apoptosis, which included membrane blebbing, rounded and shrunken shape, and detachment from the culture dish. Similar results were obtained when the same experiment was performed on other different melanoma cell lines. As shown in Fig. 4A, overexpression of the β-gal protein in morphologically normal melanoma cell lines did not significantly alter their morphology and growth properties, whereas all of the cells expressing the Epo/TNFRI gene did rapidly undergo cell death. This effect was restricted to melanoma cell lines that were tyrosinase positive, because A375 amelanotic melanoma cell line was not affected by either virus infection (Fig. 4B, first column of panels). Similarly, cell lines of different lineage, such as H5V (endothelial), Hep 3B (hepatocellular carcinoma), and NIH 3T3 (mouse fibroblasts), in which the tyrosinase promoter was proven to be inactive in the β-gal assay (Table 1), were not sensitive to the Ad-Tyr-Epo/TFNR1 infection (Fig. 4B).

The strong and specific cytolytic effect induced by the Epo/TNFRI expression is evidenced further by crystal violet staining (Fig. 5). Skmel28 cells were infected with Ad-CMV-β-gal, Ad-Tyr-β-gal, or Ad-Tyr-Epo/TFNR1 at a MOI of 10^5 pfu/cell. The heterologous gene expression was then evaluated by in situ β-gal staining only for the two viruses bearing the β-gal cDNA, whereas the cytotoxic potential of each recombinant adenovirus was investigated by crystal violet staining (Fig. 5A). As indicated by the blue staining (Fig. 5A), 100% of the cells transduced with Ad-CMV-β-gal and Ad-Tyr-β-gal express high levels of β-gal 72 h after infection. However, intracellular accumulation of the β-gal protein did not affect the number of viable cells, and all of the cells were also stained positive for crystal violet. In contrast, Skmel28 cultures transduced with an identical MOI of the Ad-Tyr-Epo/TFNR1 were entirely destroyed; as a result, no crystal violet staining was observed. Quantitative evaluation of the Epo/TNFRI-induced cell death by MTT conversion and crystal violet-staining assay is shown (Fig. 5, B and C). The absorbance levels (at 540 nm for MTT and 595 nm for crystal violet) did not significantly differ between mock-infected and Ad-Tyr-β-gal-infected cells 48, 72, and up to 120 h (data not shown) after infection, which indicated that the events of adenovirus infection or β-gal overexpression did not impair cell viability. Epo/TNFRI transduction of Skmel28 cultures resulted in greatly reduced absorbance levels both at 595 nm, which indicated a reduced number of intact cells in culture, and at 540 nm, which indicated the lack of chromatogenic processing of MTT by the cells. Cell mortality was slightly but significantly appreciable (~33%) at 48 h, reaching 90% by 72 h. The cytolytic effect was comparable with that observed upon 24-h treatment with TNF-α plus cycloheximide (data not shown).

Table 1. Cell type specificity and transcriptional activity of the tyrosinase and CMV promoters

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Ad-Tyr-β-gal</th>
<th>Ad-CMV-β-gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skmel28</td>
<td>16647 ± 5305</td>
<td>39219 ± 7890</td>
</tr>
<tr>
<td>B16</td>
<td>13279 ± 2229</td>
<td>40288 ± 1463</td>
</tr>
<tr>
<td>Skmel25</td>
<td>325 ± 382</td>
<td>22343 ± 11881</td>
</tr>
<tr>
<td>Nonmelanoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hela</td>
<td>657 ± 181</td>
<td>44880 ± 6108</td>
</tr>
<tr>
<td>HT-29</td>
<td>1011 ± 303</td>
<td>21274 ± 2034</td>
</tr>
<tr>
<td>HSV</td>
<td>263 ± 14</td>
<td>32730 ± 1788</td>
</tr>
<tr>
<td>NIH-3T3</td>
<td>2364 ± 1331</td>
<td>38075 ± 547</td>
</tr>
<tr>
<td>CF PAC1</td>
<td>549 ± 33</td>
<td>25532 ± 1670</td>
</tr>
<tr>
<td>Hep 3B</td>
<td>276 ± 232</td>
<td>25890 ± 2450</td>
</tr>
<tr>
<td>Hel 299</td>
<td>317 ± 97</td>
<td>42184 ± 1523</td>
</tr>
</tbody>
</table>

Fig. 3. Northern blot analysis. Time course expression of the Epo/TNFRI and β-gal cDNAs transduced by the recombinant adenoviruses. Skmel28 cells have been mock infected (Lanes 1 and 2) and infected with Ad-Tyr-β-gal (Lanes 3–5) or with Ad-Tyr-Epo/TFNR1 (Lanes 6–8), both at 10^5 MOI. Cells were lysed, and cytoplasmic RNA was extracted at the times indicated after infection and analyzed by Northern blot with the β-gal and the extracellular portion of the Epo receptor cDNA probes, as indicated.
Subsequently, measurement of caspase 3 activation revealed a marked increase in the levels of activated caspase in lysates of SKmel28 infected with the Ad-Tyr-Epo/TNFR1, whereas no significant activation of this caspase was observed either in cells transduced with the \(\beta \)-gal-encoding adenovirus or in the control mock-infected cells (Fig. 7). Caspase 3 activation was evident within 24 h after infection and continued to increase up to 48 h. By 72 h, caspase 3 activity of Ad-Tyr-Epo/TNFR1-infected Skmel28 was lower than that measured in mock-infected cells, which probably reflected the cell loss observed at this time point (data not shown). Treatment of SKmel28 cells with TNF-\(\alpha \) plus cycloheximide resulted in a more rapid and transient activation of caspase 3, which reached the maximum levels within 24 h (data not shown). The caspase 3 activity was totally inhibited by the broad-spectrum caspase inhibitor DEVD-

Fig. 4. Effects of Epo/TNFR1 and \(\beta \)-gal adenovirus-mediated overexpression. Photomicrographs were taken 72 h after infection of Skmel28, B16F10, 501mel, and Me 2658 (A); and of A375, H5V, Hep 3B, and NIH-3T3 (B) with \(10^3 \) MOI of Ad-Tyr-\(\beta \)-gal or Ad-Tyr-Epo/TNFR1. A, all of the four melanoma cell lines, Skmel28, B16F10, 501mel, and Me 2658, infected with Ad-Tyr-Epo/TNFR1, appear altered in their morphology, shrunken, detached from the cell culture surface, and reduced in size. B, neither of the nonmelanoma cell lines, H5V, Hep3B, and NIH 3T3, nor the amelanotic melanoma cell line A375 show any morphological change after either recombinant adenovirus infection. Infection with the Ad-Tyr-\(\beta \)-gal did not impair the morphology of any cell type.
CHO, indicating a causal role for caspase activation in the cell death process.

DISCUSSION

The antitumor activity of TNF-α is the earliest described feature of this cytokine, which has attracted scientific interest worldwide. However, soon after it became evident that studies on the antitumor activity of TNF-α in vivo were hampered by the need of systemically administering toxic doses of this cytokine to obtain a curative response. Unfortunately, the dark side of the TNF-α tumoricidal activity is represented by a wide variety of biological responses triggered by TNF-α through the activation of either the Mr 55,000 (TNFR1) or the Mr 75,000 (TNFR2) TNF receptor, expressed on all of the nucleated cells. All of the biological activities triggered by TNF-α in different physiological and pathological conditions point out the major role of this cytokine as a potent proinflammatory mediator and an important modulator of the immune system development and function, which is responsible for severe acute inflammatory reactions, of the establishment of cachexia in neoplastic patients, and of several autoimmune pathologies. Nevertheless, the attempts to exploit TNF-α-specific tumoricidal properties have not been dropped and have been directed either toward confining the TNF-α activity to the site of tumor by regional application of TNF-α through isolated limb perfusion (24–25) or toward constructing novel molecules that retain the full TNF-α antitumor activity while exhibiting reduced proinflammatory effects (26–28).

In this work, we developed a strategy aimed at triggering the cytolytic activity that TNF-α physiologically exhibits toward malignant cells while avoiding the administration of this cytokine. We made use of the Epo/TNFR1 chimeric receptor, which we have described previously as being able to trigger apoptosis upon overexpression in

Fig. 5. Analysis of the Epo/TNFR1-induced cytotoxicity. A, 10⁶ Skmel28 were mock infected (first well) or infected with 10⁵ MOI of the indicated recombinant adenovirus (second well). The degree of heterologous gene expression was evaluated by in situ staining 72 h after infection for β-gal activity (top wells), and the degree of cell survival was evidenced by crystal violet staining (bottom wells). Quantification of cell death was performed by MTT assay (B) and crystal violet staining (C), as described in “Materials and Methods.” Relative cell viability was calculated according to the formula described in “Materials and Methods.” B and C, the mean values of four independent experiments ± SD.

Fig. 6. Epo binding assay. Skmel28 cells were infected with Ad-Tyr-Epo/TNFR1 or Ad-Tyr-β-gal and subsequently incubated with 85 nCi ¹²⁵I-labeled Epo, in the presence (+) or absence (−) of 13 nM cold Epo, as described in “Materials and Methods.” The amount of labeled Epo bound to the chimeric receptor was quantified in a gamma counter. One experiment representative of three is shown.

Fig. 7. Fluorometric analysis of caspase 3 activity. Caspase 3-dependent AMC formation was fluorometrically quantified at 24 and 48 h in mock-infected, Ad-Tyr-β-gal-infected, or Ad-Tyr-Epo/TNFR1-infected Skmel28 lysates, in the absence (−) or presence (+) of 100 nM of the caspase inhibitor DEVD-CHO. One experiment representative of three is shown.
the absence of the extracellular ligand, by virtue of the presence of the cytoplasmic domain of the TNFR1 and of the substitution of the endogenous TNFR extracellular domain with that of erythropoietin (11). We insured the efficiency of our system by the use of a recombinant replication-deficient adenovirus, which is known to be an efficient gene transduction system capable of infecting 100% of cells of epithelial origin in culture. Furthermore, direct injection of adenoviruses into certain tumors in vivo has been shown to lead to exceptionally high transduction efficiency near the site of injection (29). Therefore, the chimeric receptor, which is made of the extracellular domain of the erythropoietin receptor and of the stem, transmembrane, and cytoplasmic domains of the M, 55,000 TNF receptor, was introduced into the E1 region of a replication-deficient adenovirus type 5.

Together with an efficient cell killing, the targeted expression to specific tissues or cells is a necessary feature for a gene vector therapy aimed at eradicating unwanted cells. We met these requirements by targeting the expression of the suicide gene to melanoma cells through cloning the recombinant Epo/TNFR1 cDNA under the control of the melanoma-specific tyrosinase promoter/enhancer sequence. Tyrosinase catalyzes the rate-limiting step in the synthesis of melanin, and it is expressed in pigmented cells of different developmental origin, including melanocytes, which are derived from the neural crest, and pigmented retinal epithelium, which is derived from the neural ectoderm (30–32). Indeed, other studies have shown the possibility of using the melanin synthetic pathway for in vitro and in vivo targeting of gene expression to melanoma cells (33–35).

In this study, we show that the melanoma-targeted expression of the chimeric Epo/TNFR1 receptor delivered by recombinant adenovirus is suitable for selective killing of melanoma cell lines by means of activation of a TNF-like apoptotic process. We initially demonstrated that the transcriptional activity of the tyrosinase promoter/enhancer elements, although lower than that of CMV promoter (42% in Skmel28 and 33% in B16F10), was still high enough to allow high levels of expression of the heterologous gene. By comparison with the CMV-promoted virus, the Tyr promoter was shown to be transcriptionally active in pigmented human (Skmel28) and mouse (B16F10) melanoma cell lines but highly regulated when tested in a panel of cells belonging to different lineage (HeLa, HT-29, NIH-3T3, CF PAC1, Hep 3B, and Hel 299) or to a tyrosinase-negative melanoma lineage (Skmel25). These data proved that the regulatory sequences derived from the mouse tyrosinase promoter were sufficient for high level, tissue-specific transcription in pigmented cells and indicated that this promoter would allow expression of the chimeric Epo/TNFR1 receptor in a regulated manner. Indeed, the expected cytolytic potential of the Epo/TNFR1 molecule (11) was observed upon infection of Skmel28 and B16F10 cells, in which the tyrosinase promoter/enhancer was proven to be active. Infection of these cell lines with the Ad-Tyr-Epo/TNFR1 virus triggered a series of events that ultimately led to the death of the transfected cells. Skmel28 and B16 undergo radical morphological changes, representative of the apoptotic process, 72 h after infection. Extension of this analysis to other pigmented melanoma cell lines (501mel and Me 2658) demonstrated that the cytolytic effect is not a consequence of a specific characteristic of Skmel28 and B16, but it is a general effect of Epo/TNFR1 expression in melanoma cell lines. Furthermore, the Epo/TNFR1 expression and consequent effects are confined to cells in which the tyrosinase promoter/enhancer elements have been proven to be active. In fact, cells of different lineage (H5V, Hep 3B, and NIH-3T3) that did not express the β-gal gene (Table 1) were not able to express the Epo/TNFR1 gene either and, therefore, were not affected at all by the Ad-Tyr-Epo/TNFR1 infection (Fig. 4B). In the same manner, nonpigmented melanoma cell lines such as A375 (Fig. 4B) and Skmel25 (data not shown) were left unchanged by Ad-Tyr-Epo/TNFR1 infection, indicating that the expression of the proapoptotic molecule is not only confined to cells of the melanoma lineage but, among them, is restricted to cells in which the melanin metabolic pathway is active. Of critical importance are the low levels of expression observed in the endothelial cell lines (H5V), embryonic lung-derived primary cell lines (Hel 299), and hepatocellular carcinoma cell line (Hep 3B). Lack of expression at these sites will eliminate one source of potential toxicity, because endothelial cells together with pulmonary and hepatic tissues are preferential sites of viral infection after any route of viral administration. Overexpression of the recombinant receptor brings cells to death by triggering a series of events that departs from the plasma membrane and leads to the caspase cascade activation. Indeed, in Skmel28, the Epo/TNFR1 mRNA expression was detected as early as 15 h (Fig. 3), membrane localization of the receptor and functionality in binding the ligand were observed by 24 h (Fig. 6), and caspase 3 activation peaked at 48 h. All together, these events preceded the morphological changes, which were observed in the transduced cells between 48 and 72 h. By 72 h after infection, none the Skmel28 in culture survived. Parallel to the decrease in cell survival, Epo/TNFR1 mRNA, Epo binding, and caspase 3 activation declined by 72 h, indicating the progressive cell loss.

In several different gene therapy strategies, TNF-α represented the apoptosis-triggering molecule of choice. These strategies were based on the adenoviral-mediated transduction of tumor cells with TNF-α itself (36, 37), TNFR2-specific mutant of TNF-α (28), uncleavable membrane-bound mutant of TNF-α (38), or TNFR1 receptor gene alone (39) or in conjunction with TNFR1-specific TNF-α muetin administration (27). The direct intratumoral production of either a secreted or a nonsecreted form of TNF-α or of TNFR2-specific TNF-α mutant allowed high concentration of this cytokine to be reached locally and resulted in a relatively large reduction in systemic toxicity with little or no reduction in antitumor activity. However, it cannot be excluded that TNF-α that is produced as soluble product may exert effects (including toxic effects) at distant sites. This is, in fact, the main concern of the clinical application of TNF-α in cancer, which has been overcome through administration via isolated limb perfusion (3). This approach is based on the same rationale of physically confining TNF-α action to the tumor site. On the other hand, the strategy based on transduction of the TNFRs (26, 38) carries the same concerns of the previous one, because it requires the subsequent administration of TNF-α. Obviously, the safest way to avoid toxicity consists in not administering the toxic drug. Our results show, for the first time, that this goal can be achieved by the use of Constitutively active receptors, such as those we have engineered, that allow us to overcome the TNF-α “bystander” effect of the systemic toxicity. We demonstrate that, in our system, safety is insured by the capability of avoiding TNF-α administration, which still mimics the TNF-α apoptotic action, and high selectivity is offered by the utilization of a melanoma-specific promoter.

The outcome of this study indicates that this strategy, which combines the cytolytic effect of the recombinant Epo/TNFR1, the lack of the need of administering TNF-α, together with the targeting to specific tissues, may represent a possible tool for the treatment of an aggressive cancer such as melanoma, the incidence of which is rapidly growing among the population.

REFERENCES
2. Havell, E. A., Fiers, W., and North, R. J. The antitumor function of tumor necrosis factor (TNF), I. Therapeutic action of TNF against an established murine sarcoma is

Downloaded from cancerres.aacrjournals.org on August 30, 2017. © 2001 American Association for Cancer Research.

Triggering of Antitumor Activity Through Melanoma-specific Transduction of a Constitutively Active Tumor Necrosis Factor (TNF) R1 Chimeric Receptor in the Absence of TNF-α

Flavia Bazzoni and Elisabetta Regalia

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/3/1050

Cited articles

This article cites 39 articles, 17 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/3/1050.full#ref-list-1

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.