Apoptosis Induction by the Photosensitizer Verteporfin: Identification of Mitochondrial Adenine Nucleotide Translocator as a Critical Target

Anne-Sophie Belzaqcq, Etienne Jacotot, Helena L. A. Vieira, Dominique Mistro, David J. Granville, Zhihua Xie, John C. Reed, Guido Kroemer, and Catherine Brenner

Abstract

We report that the photosensitizer verteporfin kills lymphoma cells by an apoptotic process involving a dissipation of the mitochondrial inner transmembrane potential (ΔVm). Light-activated verteporfin-induced apoptosis was abolished by transfection with Bcl-2, a procedure reported to inhibit the mitochondrial permeability transition pore complex (PTPC). Verteporfin triggered the ΔVm loss in isolated mitochondria, coupled to the opening of the PTPC. Verteporfin plus red light also permeabilized proteoliposomes containing the semipurified PTPC or the purified PTPC component adenine nucleotide translocator (ANT), yet had no effect on protein-free control liposomes. Verteporfin phototoxicity on ANT proteoliposomes was mediated by reactive oxygen species and was prevented by recombinant Bcl-2 or the adenine nucleotides ATP and ADP. In conclusion, verteporfin belongs to a class of clinically used chemotherapeutic agents acting on PTPC and ANT.

Introduction

Recently, the mitochondrion has been proposed as a novel prospective target for chemotherapy-induced apoptosis (1–7). Indeed, four different anticancer agents, including the retinoic acid-derivative CD437, lomustine, betulinic acid, and arsenite, have been shown to induce cancer cells apoptosis by a direct action on mitochondria. The interaction of these anticancer agents with mitochondria results in an increase of the permeability of the inner mitochondrial membrane attributable, at least in part, to the opening of the PTPC.4 PTPC opening leads to swelling of the mitochondria matrix, the dissipation of the inner ΔVm, enhanced generation of ROS, and the release of apoptogenic proteins from the intermembrane space to the cytoplasm. Such mitochondrial apoptogenic effectors include the caspase activator cytochrome c, AIF, and pro-caspases (2–6). All of the signs of apoptosis induced by CD437, lomustine, betulinic acid, and arsenite are prevented by two agents acting on specific PTPC proteins, namely CsA (a cyclophilin D ligand) and BA (a ligand of the ANT). It thus appears that PTPC opening is a critical event of apoptosis triggered by these agents.

The PTPC is a dynamic protein complex located at the contact site between the two mitochondrial membranes, its opening allowing the free diffusion of solutes $M_t <$1500 on the inner membrane. Formation of PTPC involves the association of proteins from different compartments, hexokinase (cytosol), porin, also called VDAC (outer membrane), PBR (outer membrane), ANT (inner membrane), and cyclophilin D (matrix). PTPC has been implicated in many examples of apoptosis because of its capacity to integrate multiple proapoptotic signal transduction pathways and because of its control by proteins from Bcl-2/Bax family (8, 9). The Bcl-2 family comprises death-inhibitory (Bcl-2-like) and death-inducing (Bax-like) members (10, 11), which, respectively, prevent or facilitate PTPC opening. Bax and Bcl-2 reportedly interact with VDAC (12) and ANT within PTPC (9, 13). In physiological conditions, ANT is a specific antiporter for ADP and ATP. However, ANT can also form a lethal pore on interaction with different proapoptotic agents including Ca$^{2+}$, Atr, the HIV-1 protein Vpr, and pro-oxidants (9, 13–15). Mitochondrial membrane permeabilization may also be regulated by the nonspecific VDAC pore modulated by Bcl-2/Bax-like proteins in the outer membrane (12, 16), and/or by changes in the metabolic ATP/ADP gradient between the mitochondrial matrix and the cytoplasm (17).

PDT is based on the combined use of light-absorbing compounds and light irradiation (18). PDT has been previously evaluated for treatment of tumors of bronchus, bladder, skin, head, neck, and cervix, and more recently for esophageal carcinoma or nonmalignant disorders such as age-related macular degeneration. As a consequence of their selective retention in cancer cells as compared with normal tissues, photosensitizers may kill cells by the local production of ROS on light irradiation. PDT has also been used as an ex vivo purging procedure for leukemia cells (19). Constant interest in producing new photosensitizers allowed production of a second generation of compounds including benzoporphyrin derivatives, which exhibit superior pharmacological and photochemical properties with minimal dark toxicity. Verteporfin or benzoporphyrin derivative monoacid ring A, is a photosensitizer that induces apoptosis in cancer cells and tumor cell lines (reviewed in Ref. 20). Cancer cells treated with verteporfin plus red light exhibit a rapid cytochrome c release into the cytoplasm, followed by caspase activation (21). Conflicting results have been reported on Bcl-2, which, depending on the concentration and the cell line studied, would inhibit all, some, or none of the signs of verteporfin-induced cell death (Ref. 25; for review, see Ref. 20). Although the efficacy of verteporfin to elicit proapoptotic mitochondrial photodamage has been clearly demonstrated in various cell lines, its primary molecular target in mitochondria has been elusive. These observations prompted us to examine the functional interac-
tion between verteporfin, PTPC components, and the oncoprotein Bcl-2. Using a variety of different experimental set-ups, studies of intact cells, purified mitochondria, proteoliposomes containing PTPC, or defined PTPC components, we show here that ANT is a critical target of verteporfin-dependent photochemotherapy. We also provide evidence that Bcl-2 regulates verteporfin-mediated membrane permeabilization via an effect on ANT.

Materials and Methods

Chemicals and Recombinant Protein. When not specified, chemicals were purchased from SIGMA. Recombinant Bcl-2 was prepared as described previously (26).

Photoactivation of Verteporfin. Verteporfin was added to cells, mitochondria, or liposomes at the indicated dose. After 1-h, 5-min, or 10-min incubations, respectively, in the dark, photoactivation was performed with a tungsten-halogen lamp (100W) with a 650-nm-long pass filter in front of it at a dose of 2J/cm² as published previously (23).

Cell Lines, Immuno blot, and Cytofluorometric Analysis of Apoptosis. Jurkat cells (J-NEO) or Jurkat cells overexpressing Bcl-2 (J-Bcl-2) were kindly provided by N. Israel (Ref. 27; Pasteur Institute, Paris, France) and were cultured in DMEM supplemented with 10% heat-inactivated FCS and antibiotics at 37°C under 5% CO₂. Bcl-2 and ANT expression levels in J-NEO and J-Bcl-2 were analyzed by immunoblot (12.5% SDS-PAGE; 500-μg cell lysates proteins/lane) using a polyclonal rabbit antiserum recognizing ANT and a monoclonal antibody recognizing Bcl-2 (4C11; Santa-Cruz, CA). One volume of liposomes was treated with various doses of verteporfin for 1 h at 37°C. Cells were illuminated (or not) and then labeled with 40 nM DiOC(6)3 (Molecular Probes, Eugene, OR) and 2 μM MitoTracker Green (75 nM; Molecular Probes; green fluorescence). To determine the percentage of mitochondria having a low ΔΨm-sensitive fluorescence, MitoTracker Green fluorescence was determined in dot-plot FSC/FL-2 (red fluorescence) windows.

PTPC Purification and Reconstitution in Liposomes. PTPC was purified and reconstituted in liposomes after previous protocols (8). Briefly, four Wistar rat brains (3-month-old males) were homogenized in 40 ml of 1 mM a-monothioglycerol-10 mM glucose (pH 8.0) and were centrifuged twice (15 min, 12,000 × g, 4°C). The pellets were resuspended in the same buffer and incubated for 10 min. The Triton-soluble protein fraction obtained by ultracentrifuga-
tion was determined in dot-plot FSC/FL-2 (red fluorescence) windows.

Results and Discussion

Verteporfin Induces Apoptosis in Jurkat Cells. The general principles of the apoptotic pathway appear to be similar in different cell types (29). We have used the widely studied human Jurkat T leukemia cell line to address the apoptosis-inducing mode of action of verteporfin. Jurkat cells, overexpressing (J-Bcl-2) or not (J-Neo) Bcl-2 in mitochondria (Fig. 1A), were cultured in the presence of verteporfin and irradiated by red light. Then mitochondrial and nuclear parameters of apoptosis were assessed by flow cytometry as described in Material and Methods. The combination of verteporfin plus light, but not verteporfin alone, kill Jurkat cells in a dose-dependent manner (Fig. 1). When used at a dose of 140 nm, verteporfin induced a significant loss of the mitochondrial inner membrane potential (ΔΨm) 3 h after light irradiation, as shown by a decrease in the DiOC(6)3 fluorescence (Fig. 1B). This event was accompanied by

Downloaded from cancerres.aacrjournals.org on April 18, 2017. © 2001 American Association for Cancer Research.
Verteporfin induces a Bcl-2-dependent apoptosis in Jurkat cells. A, Bcl-2 and ANT expression levels in Jurkat cells (J-NEO) and Jurkat cells hyperexpressing Bcl-2 (J-Bcl-2). Bcl-2. Arrows, the presence of ANT in J-NEO and J-Bcl-2 as positive controls and the presence of Bcl-2 in J-Bcl-2. B, verteporfin induces the loss of ΔΨm and the generation of ROS. Jurkat cells (J-NEO) and Jurkat cells hyperexpressing Bcl-2 (J-Bcl-2) were treated with verteporfin (Verte) and irradiated with red light. Five μM CsA or 50 μM zVAD.fmk were added 15 min prior to verteporfin treatment. After 3-h culture, cells were labeled with 40 nM DiOC6(3) and 2 μM hydroethidine and were analyzed by cytofluorometry. C, verteporfin induces nuclear signs of apoptosis. The frequency of hypoploid cells was determined by propidium iodide staining of ethanol-permeabilized cells.

Can enhanced generation of ROS capable of oxidizing hydroethidine oxidation to ethidium (Fig. 1B), as well as 8 h later by nuclear DNA loss, as shown by the staining with the DNA intercalating dye propidium iodide (Fig. 1C). No toxicity of verteporfin was observed in the absence of light (Fig. 1, B and C). As expected, preincubation of cells with zVAD, the caspase inhibitor, failed to inhibit the verteporfin-induced ΔΨm dissipation (Fig. 1B) but prevented the appearance of hypoploid cells (Fig. 1C).

Overexpression of Bcl-2, an inhibitory protein that stabilizes the barrier function of mitochondrial membranes (29–31), inhibited the ΔΨm dissipation (Fig. 1B). However, Bcl-2 did not reduce the production of ROS induced by verteporfin plus light. This latter observation suggests that ROS production may be stimulated independently of the ΔΨm loss, presumably by the photoactivation process of verteporfin itself, which leads to the local generation of ROS. Although Bcl-2 has been initially proposed to function as an antioxidant (32), this result is in agreement with several reports that indicate Bcl-2 protects from apoptosis via a mechanism that does not rely on the inhibition of ROS production or activity (33, 34).

Collectively, these data indicate that light-activated verteporfin elicits a mitochondrion-dependent apoptosis under the control of Bcl-2. Because Bcl-2 generally inhibits cell death induced by chemotherapeutic agents acting on PTPC, namely CD437, lonidamine, betulinic acid, and arsenite (3–6), a hypothesis was that verteporfin may act on mitochondria through the PTPC.

Verteporfin Can Act Directly on Isolated Mitochondria. To determine possible direct effects of verteporfin on mitochondria, these organelles were purified from healthy mouse liver and treated with verteporfin plus light; their ΔΨm was determined by flow cytometry using the potential sensitive dye JC1. When mitochondria were incubated with the potentially sensitive fluorochrome JC1 (Fig. 2, upper panels), they exhibited a fluorescence significantly higher than unlabeled mitochondria (Fig. 2, upper panel, Co.). This JC1-dependent fluorescence was reduced by depolarization of the ΔΨm with the protonophore CCCP (Fig. 2, upper panel, JC1 + CCCP). Verteporfin triggered a rapid loss of the ΔΨm measured with JC1, within less than 5 min (Fig. 2, lower panel, JC1 + verteporfin). This effect was complete, as compared with that of the maximum ΔΨm depolarizing agent CCCP (Fig. 2, upper panel, JC1 + CCCP). The ΔΨm loss triggered by verteporfin was inhibited by pretreatment of mitochondria with BA and CsA, two PT inhibitors (Fig. 2, lower panel), which suggests again that verteporfin mediates its proapoptotic activity by acting on PTPC. In addition, this indicated that verteporfin toxicity did not require any pre-mitochondrial activation of an intermediate cytoplasmic compound which, in turn, would act on mitochondria. We conclude that verteporfin can exert its toxicity directly on isolated mitochondria.

Verteporfin Effect on PTPC Reconstituted into Liposomes. We have previously shown that rat brain PTPC can be purified and reconstituted into liposomes (13). The ΔΨm of isolated mitochondria was measured by flow cytometry using the potential sensitive dye JC1. When mitochondria were incubated with the potentially sensitive fluorochrome JC1 (Fig. 2, upper panels), they exhibited a fluorescence significantly higher than unlabeled mitochondria (Fig. 2, upper panel, Co.). This JC1-dependent fluorescence was reduced by depolarization of the ΔΨm with the protonophore CCCP (Fig. 2, upper panel, JC1 + CCCP). Verteporfin triggered a rapid loss of the ΔΨm measured with JC1, within less than 5 min (Fig. 2, lower panel, JC1 + verteporfin). This effect was complete, as compared with that of the maximum ΔΨm depolarizing agent CCCP (Fig. 2, upper panel, JC1 + CCCP). The ΔΨm loss triggered by verteporfin was inhibited by pretreatment of mitochondria with BA and CsA, two PT inhibitors (Fig. 2, lower panel), which suggests again that verteporfin mediates its proapoptotic activity by acting on PTPC. In addition, this indicated that verteporfin toxicity did not require any pre-mitochondrial activation of an intermediate cytoplasmic compound which, in turn, would act on mitochondria. We conclude that verteporfin can exert its toxicity directly on isolated mitochondria.
reconstituted into liposomes to mimic the function of mitochondrial PTPC in vitro (8, 9, 13, 15). On treatment with inducers of mitochondrial permeability transition, the PTPC response consists in an increase in liposomal permeability that can be measured as the release of a liposome-encapsulated substrate, 4-MUP, which becomes accessible to externally added alkaline phosphatase to yield the fluorescent product 4-MU (15). Verteporfin plus light, but not verteporfin alone, induced the release of 4-MUP from PTPC liposomes, yet had no effect on protein-free control liposomes (Fig. 3A). The verteporfin-induced 4-MUP release was dose-dependent and attained the same magnitude as did the 4-MUP release induced by the Atr, a proapoptotic ligand of ANT (Fig. 3A). To further investigate the mechanism of action of verteporfin, we evaluated a series of ROS-detoxifying agents that were added to PTPC containing liposomes prior to treatment with verteporfin plus light. Catalase, an H₂O₂-scavenging enzyme, and DTT, a thiol reducing agent, fully inhibited the membrane permeabilization induced by verteporfin plus light. In contrast, SOD and histidine, a singlet oxygen quencher, failed to inhibit the permeabilization of liposomal membranes under the same conditions (Fig. 3B). These results suggest that the PTPC opening effect of light-activated verteporfin are mediated, at least in part, by H₂O₂ and/or thiol oxidation of PTPC components. ATP and ADP, the two physiological ligands of ANT, also inhibited the effect of verteporfin plus light on PTPC, thus confirming that ANT constitutes (one) of the physical target(s) of the photosensitizer within PTPC (Fig. 3B).

Verteporfin Effects on ANT Reconstituted in Liposomes. In an attempt to identify the functional target of verteporfin within PTPC, we purified rat heart ANT to homogeneity and reconstituted it into phosphatidylcholine/cardiolipin liposomes. In a similar experimental set-up as for PTPC, we showed that verteporfin plus light induced the permeabilization of ANT proteoliposomes (Fig. 4A). As expected, verteporfin did not trigger the opening of the ANT pore in the absence of light irradiation, nor did it induce permeabilization of plain liposomes, underscoring the specificity of the verteporfin effect for ANT and its absence of effects on lipids and notably cardiolipin, a phospholipid that is reputed for its sensitivity to ROS (35). In contrast to diamide, a proapoptotic thiol-oxidizing agent (15), verteporfin had no inhibitory effect on the antiporter function of ANT (Fig. 4B). Again, the two ligands of ANT, ATP and ADP, prevented the pore opening effect of verteporfin plus light (Fig. 4C). Pretreatment of ANT liposomes with DTT and catalase, confirmed that the light-activated verteporfin effect is mediated by an oxidative modification of ANT by H₂O₂ and/or by thiol oxidation. In contrast, SOD did not inhibit the light-activated verteporfin-induced permeabilization of ANT liposomes, indicating an oxidative mechanism independent of the anion superoxide generation or, alternatively, an incapacity of SOD to intercept the formation of anion superoxide as an intermediate in the cascade of reactive oxygen intermediates triggered by the photoactivation of verteporfin (Fig. 4D).
As shown above, Bcl-2 prevents the mitochondrial membrane permeabilization induced by verteporfin plus light in intact cells (Fig. 1). Because ANT appears (one of) the verteporfin targets in mitochondria, we wondered whether Bcl-2 exerts its protective effect via ANT. To clarify this issue, verteporfin was added to proteoliposomes containing either ANT alone or ANT combined with recombinant Bcl-2. In this chemically defined, synthetic set-up, Bcl-2 totally inhibited the ANT-dependent permeabilization of membranes induced by verteporfin plus light (Fig. 4D). These data constitute the first demonstration, to our knowledge, that a clinically relevant chemotherapeutic agent may act on ANT to exert its cytocidal function. Moreover, they establish for the first time that Bcl-2 may intercept proapoptotic photochemotherapy at the level of ANT. In conclusion, based on the present results, ANT becomes a plausible target of the photosensitizer verteporfin. Of note, the PBR has been proposed in the past to be the mitochondrial receptor for porphyrin derivatives (25, 36, 37), and PBR has been shown to physically interact with ANT (38). However, PBR may not be the only target of verteporfin, given that Jurkat cells lack PBR expression (39) are efficiently killed by this porphyrin derivative. It remains possible, however, that interaction of porphyrins with PBR ameliorates their proapoptotic potential, by increasing the local concentration of verteporfin, near to its true physiological target, ANT. Irrespective of these theoretical considerations, the present data suggest ANT to be a target of at least one photosensitizing agent. Future studies will determine whether the active search for agents acting on ANT will yield a new class of anticancer agents.

References

Apoptosis Induction by the Photosensitizer Verteporfin: Identification of Mitochondrial Adenine Nucleotide Translocator as a Critical Target

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/4/1260

Cited articles
This article cites 37 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/4/1260.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
/content/61/4/1260.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.