Drug Resistance Induced by Ouabain via the Stimulation of MDR1 Gene Expression in Human Carcinomatous Pulmonary Cells

Franck Brouillard, Danielle Tondelier, Aleksander Edelman, and Maryvonne Baudouin-Legros
Institut National de la Santé et de la Recherche Médicale U.467, Faculté de Médecine Necker, 75015 Paris, France

ABSTRACT

The inhibition of the Na+/K+-ATPase by cardiotonic drugs like ouabain deeply perturbs both the properties of the cell membrane and the ionic composition of the cytoplasm and hence alters fundamental cell reactions. These three types of reactions may be involved in the stimulation of multidrug resistance 1 (MDR-1) gene expression and the synthesis of permeability glycoprotein [P-glycoprotein (P-gp)]. We have determined whether ouabain, which binds to an extracellular motif of the Na+/K+-ATPase, stimulates MDR-1 gene expression by measuring both mRNA and protein and whether the resulting P-gp extrudes hydrophobic compounds and causes resistance to antimitotic agents. The experiments were performed on Calu-3 cells, a human cell line from a pulmonary carcinoma. Northern blotting showed that treating the cells with submicromolar concentrations of ouabain stimulated MDR-1 gene expression within 24 h. The ouabain-induced stimulation of MDR-1 expression was not restricted to Calu-3 cells but also occurred in human carcinomatous colon (T-84 and HT-29) and hepatic (H7V3) cells. However, it is not ubiquitous because it was not found in HeLa cells. The stimulation was reproduced by other Na+/K+-ATPase inhibitors and occurred via enhanced gene transcription, apparently due to the increased cytosolic calcium concentration. Ouabain also increased the membrane content of P-gp, as detected by immunoblotting and immunohistology. We have developed a microvideo assay based on the properties of acetoxymethyl ester calcein and calcein to show that this P-gp extruded the hydrophobic acetoxymethyl ester calcein. Ouabain also caused the Calu-3 cells to become resistant to doxorubicin and vinblastine. Thus, although ouabain acts extracellularly, it may stimulate MDR-1 gene expression and P-gp synthesis and make cells resistant to hydrophobic cytotoxic compounds.

INTRODUCTION

The development of multidrug resistance is a major obstacle to the success of chemotherapy of neoplastic diseases. P-gp is a transmembrane protein that acts as an energy-dependent efflux pump to remove natural drugs from cells. It is encoded by the MDR-1 gene. P-gp is normally present in the apical membrane of some epithelial cells in renal proximal tubules, hepatic bile ducts, and colon villi, but its function in these cells is not clear. Its clinical deleterious role arises from the multidrug resistance caused by its production triggered by carcinogenesis and antimitotic treatments. The overproduction of P-gp is usually due to enhanced transcription of the MDR-1 gene, but the molecular mechanisms involved in the reaction are not clear. Various agents, such as differentiating compounds or environmental stresses (UV radiation and acid external pH), stimulate MDR-1 gene transcription, and many transcription factors can bind to and activate this gene promoter. Recent studies demonstrate that the stimulation of MDR-1 gene transcription by UV irradiation is due to the combined actions of several transcription factors and histone modification. Several molecular processes may also be involved in the multidrug resistance produced by P-gp. P-gp is a multifunctional protein that not only acts as an efflux pump for various hydrophobic compounds but also regulates membrane composition via its flippase properties and ion transport by modulating the activity of the cell swelling-stimulated Cl⁻ conductance. The relationship between its various properties is not clear. The multidrug cell resistance produced by P-gp may occur because the protein alters intracellular ion concentrations.

We have therefore examined the question of whether inhibiting Na+/K+-ATPase, a major membrane protein responsible for maintaining the membrane electrical potential and cell homeostasis, modulates MDR-1 gene expression. Na+/K+-ATPase is specifically inhibited by cardiotonics, the best known of which is ouabain. Ouabain also inhibits the cytotoxicity of various anticancer agents, but this quick-acting effect of ouabain is not related to P-gp activity, even when it acts against doxorubicin, a P-gp substrate. The effect of prolonged administration of ouabain has not been studied in terms of MDR-1 mRNA and P-gp. Ouabain, which can induce gene transcription, may exert such an action, and the phenomenon might have practical implications because cardiotonics are often administered to prevent cardiac damage during anticancer treatment. We have treated human pulmonary carcinomatous Calu-3 cells with ouabain and monitored MDR-1 gene expression and P-gp concentration. We have also explored P-gp function by monitoring the transport of CAL-AM, a P-gp substrate, and cell resistance to doxorubicin and vinblastine toxicity.

MATERIALS AND METHODS

Cell Culture and Treatment

Calu-3 cells were obtained from the ATCC and cultivated in DMEM containing 1 mM sodium pyruvate, nonessential amino acids, and 10% FCS at 37°C in 5% CO₂-enriched atmosphere. Cells were cultured on plastic for RNA and protein analysis and on glass slides for measuring the P-gp function. They were incubated with freshly prepared ouabain (Sigma-Aldrich) for the indicated time (generally, 24 h for RNA analysis and 48 h for protein detection and functional studies). Ouabain toxicity was assessed by treating the confluent cell cultures with various concentrations of the drug for 48 h and then counting the living cells (trypan blue exclusion). The capacity of ouabain to modulate the MDR-1 mRNAs in other human cell lines was also studied. The cells were T-84 and HT-29 cells derived from colon carcinoma (obtained from the ATCC), HeLa cells (obtained from the ATCC), and hepatic carcinomatous HuH7 cells. The T-84 cells were cultured in DMEM/Ham’s F-12; the HT-29, HeLa, and HuH7 cells were cultured in DMEM.

RNA Extraction and Analysis

MDR-1 mRNAs were measured in confluent cells placed in serum-free medium for 24 h before being treated with ouabain in the absence of FCS. Total RNAs were isolated with phenol/chloroform using the Trizol reagent (Life Technologies, Inc.) according to the manufacturer’s instructions, fractionated on 0.9% agarose gels (15 μg/well), and transferred to nylon membranes (Hybond-N) (14). The membranes were hybridized with 32P-labeled cDNA probes (specific activity > 10⁶ cpm/μg) with the Quik Hyb protocol provided by Stratagene. The MDR-1 probe was the 1.5-kb EcoRI-EcoRI

Received 7/13/00; accepted 12/13/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

2 To whom requests for reprints should be addressed, at Institut National de la Santé et de la Recherche Médicale U.467, Faculté de Médecine Necker, 136 Rue de Vaugirard, 75015 Paris, France. Phone: 33-1-40-61-56-28; Fax: 33-1-40-61-55-91; E-mail: legros@necker.fr.

3 The abbreviations used are: P-gp, P-glycoprotein; CAL-AM, acetoxymethyl ester calcein; CAL, calcein; ATCC, American Type Culture Collection; BAPTA, [1,2-bis(o-aminophenoxy)ethane-N,N',N''-tetraaceticacid].
fragment of human MDR-1 cDNA probe (generously supplied by Dr. J. P. Marie; Institut National de la Santé et de la Recherche Médicale E.9912, Paris, France), and the human β-actin cDNA probe was purchased from Oncogene Science. The mRNAs were quantified by densitometry using an ImageMaster VSD (Pharmacia-Biotech-Amersham, Orsay, France), and the amounts of MDR-1 mRNA were normalized to those of β-actin. All experiments were repeated at least four times.

Protein Analysis

Western Blot Analysis. Newly synthesized P-gp was detected in membranes extracted from cells treated for 48 h with ouabain by Western blotting (15) using the monoclonal antibody C-219 against P-gp (Valbiotech). The 100,000 g membrane extracts were prepared from cells lysed in hypotonic buffer enriched with a classical antiprotease mixture. The extract was then electrophoresed in a denaturing 6% SDS-polyacrylamide gel run at 15–25 mV, with 30 μg membrane protein/lane. The separated proteins were transferred to a nitrocellulose membrane (0.45 μm; Bio-Rad), which was probed with the anti-Pgp monoclonal antibody C-219. The secondary antibody was a horseradish peroxidase-conjugated antimouse IgG. The blots were developed with the enhanced chemiluminescence reagent (ECL kit; Amersham) and exposed with Hyperfilm (Amersham).

Immunocytochemistry. Cells grown on glass slides under basal conditions or after treatment with 0.2 μM ouabain for 48 h were fixed in PBS/3% formaldehyde. They were then washed with PBS and incubated for 2 h at room temperature with a monoclonal antibody directed against an extracellular epitope of human P-gp, mAb MRK-16 (Valbiotech; diluted 1:10). The secondary FITC-conjugated antibody (Nordic Immunology; diluted 1:500) was used to detect mAb MRK-16. The slides were washed in PBS, mounted on a horizontal stage, and imaged using a Zeiss confocal microscope. Images were collected using a ×40 plan-apochromatic oil immersion objective. Serial scans were collected using a 495 nm laser line to excite the Nordic fluorochrome.

Functional Assays

P-gp-mediated Transport of CAL-AM. We monitored the function of newly synthesized P-gp by microvideo imaging using the properties of CAL-AM and CAL. The nonfluorescent hydrophobic CAL-AM enters the cells by diffusion and is de-esterified to form fluorescent CAL in the cytoplasm (16). CAL fluorescence is insensitive to ion concentration, such as [Ca2+]i, or pH, which may vary during many cell stimulation (17). Therefore, the increase in fluorescence of cells incubated with CAL-AM represents CAL accumulation. P-gp in the membrane extrudes a portion of CAL-AM before it is de-esterified to fluorescent CAL, so that cell fluorescence increases more slowly (ΔF/Δt is smaller than in controls). The assay was done using cells subcultured on glass slides with or without ouabain (0.2 μM) for 2 days. The cells were then placed in a perfusion chamber on the stage of an inverted microscope (Diaphot, Nikon, France) and perfused with physiological saline at 37°C containing 0.25 mM CAL acetylmethyl ester (Molecular Probes) and perfused with physiological saline at 37°C containing 0.25 mM CAL acetylmethyl ester (Molecular Probes). The membrane-permeable nonfluorescent form of the dye. The CAL fluorescence (excitation, 390 nm; emission, 410 nm) was measured in single cells with a digital imaging system and a CDD camera (Photonic Sci, Millham, United Kingdom). The results were analyzed using Instar software (Paris, France), which calculates the mean fluorescence of the 10–12 cells present in the field at a given time (every 30 or 60 s). The slopes of the curves (ΔF/Δt) reflecting the rate of formation of intracellular CAL were determined using Microsoft Excel software. CAL-AM efflux by P-gp was antagonized by adding mAb MRK-16 (10 μg/ml), which inhibits P-gp function (2), to the superfusing medium.

Analysis of the Cell Sensitivity to Doxorubicin and Vinblastine. Confluent Calu-3 cells were cultured under control conditions or with 0.2 μM ouabain for 2 days and then cultured for 4 h with doxorubicin and vinblastine (0.5 or 1 μM) alone or with the P-gp inhibitor verapamil (50 μM), or in normal medium with or without verapamil (18). The cells were washed twice with culture medium, trypsinized, seeded at 10^5/cm^2 in normal culture medium, and allowed to grow for 3 days. The toxicity of doxorubicin and vinblastine was then assessed by counting the living cells (trypan blue test). For each experimental condition (pretreatment or no pretreatment with ouabain; the presence or absence of verapamil), the number of living cells found in the cultures of doxorubicin- or vinblastine-treated cells was expressed as a percentage of the number found in the cultures of cells that were not incubated with the anticancer agent.

RESULTS

MDR-1 mRNA

Serum-deprived Calu-3 cells treated with ouabain for 24 h showed dose-dependent increases in MDR-1 mRNA from 0.05 to 0.5 μM ouabain. There was very little MDR-1 mRNA in control cells, and 0.1 μM ouabain produced a significant increase (Fig. 1). The ouabain effect was time dependent; it was maximal at 24 h and half-maximal after 12 h (Fig. 2, A1 and A2). The effect of ouabain was reversible (Fig. 2A2); cells treated for 24 h with 0.2 μM ouabain that were rinsed and allowed to recover for 24 h in normal medium had the same MDR-1 mRNA content as untreated cells.

High concentrations of ouabain also decreased the β-actin mRNA in Calu-3 cells (Figs. 1 and 2), and this decrease was also reversed by washing out the ouabain. Despite their opposing changes, the increase in MDR-1 mRNA and the decrease in β-actin transcripts triggered by ouabain may both be due to stress caused by the drug. There were significantly fewer living cells in cultures treated with 0.5 or 1 μM ouabain for 48 h than in controls (Table 1). Therefore, all subsequent experiments were performed on cells treated with 0.2 μM ouabain.

Ouabain also stimulated MDR-1 gene expression in human colic
Digoxin and palitoxin, two other Na$^{+}$/K$^{+}$-ATPase inhibitors chemically distinct from ouabain (15), had the same effect as ouabain on Calu-3 cells (Fig. 4A). Increased MDR-1 gene transcripts thus appeared to be triggered by inhibiting the Na$^{+}$/K$^{+}$-ATPase pump. The ouabain-induced increase in MDR-1 mRNA still occurred in the presence of cycloheximide (6 μM; Fig. 4B), indicating that the phenomenon does not require protein synthesis. The inhibition of the ouabain effect by actinomycin D (5 μg/ml added to the medium 30 min before ouabain) suggests that ouabain stimulates MDR-1 gene transcription (Fig. 4B). The stimulation of MDR-1 gene transcription by ouabain was enhanced by thapsigargin, which increases cytosolic calcium concentration, and suppressed when intracellular calcium was chelated by BAPTA (Fig. 4C). These results indicate that the increase in cytosolic calcium concentration produced by inhibiting the Na$^{+}$/K$^{+}$-ATPase participates in the stimulation of MDR-1 gene transcription.
P-gp Synthesis

Western blot analysis with mAb C-219 showed a single immunoreactive band of about M, 170,000, compatible with P-gp, in the microsomes from Calu-3 cells. It was very faint in control membranes and dose-dependently increased by ouabain (0.05 to 0.2 \textmu M; Fig. 5).

Immunocytochemistry (Fig. 6) also revealed a surface immunoreactivity to mAb MRK-16; it was very faint in control cells (Fig. 6A) and enhanced by treating the cells with 0.2 \textmu M ouabain for 48 h (Fig. 6B1). Labeling was specific because it did not exist when the cells were incubated with the secondary antibody directly (Fig. 6A1). Ouabain thus stimulates MDR-1 gene transcription and P-gp synthesis.

P-gp Function

CAL Efflux. When control Calu-3 cells were incubated with CAL-AM (0.25 \textmu M), the intracellular de-esterification of the dye led to increased cell CAL fluorescence \([\Delta F/\Delta t]_{\text{basal}} = 0.198 \pm 0.056 \quad (n = 14)\] (Fig. 7). Pretreating the cells with 0.2 \textmu M ouabain considerably reduced the rate of increase of fluorescence \([\Delta F/\Delta t]_{\text{ouab}} = 0.066 \pm 0.022 \quad (n = 14)\], which went on for 30 min (data not shown). Incubation with the specific anti-P-gp mAb MRK-16 (10 \textmu g/ml added 15 min before CAL-AM) significantly reduced the difference between the treated and untreated cells. The rate of increase of fluorescence in the ouabain-treated cells in the presence of MRK-16 \([\Delta F/\Delta t]_{\text{MRK16-ouab}} = 0.125 \pm 0.037 \quad (n = 14)\] was very close to that of controls \([\Delta F/\Delta t]_{\text{MRK16-control}} = 0.145 \pm 0.066 \quad (n = 14)\), and the maximal fluorescence was the same in both cases. This indicates that the low fluorescence of the ouabain-treated cells not incubated with MRK-16 could be due to a rapid extrusion (before its de-esterification) of the CAL-AM from these treated cells. Verapamil (50 \textmu M) reproduced the effect of mAb MRK-16 and increased the rate of fluorescence of the ouabain-treated cells (results not shown), but it also decreased the responses of the control cells at this concentration. These results show that the ouabain-induced P-gp extrudes hydrophobic compounds.

Resistance to Doxorubicin and Vinblastine. The toxicity of doxorubicin and vinblastine, estimated as indicated in “Materials and Methods” 3 days after treating the cells with the anticancer drugs, showed that treating the cells with ouabain (0.2 \textmu M for 48 h) made them resistant to a 4-h exposure with 0.5 \textmu M of both drugs (Fig. 8). Three days after the exposure, control cells treated with 0.5 \textmu M doxorubicin or vinblastine were less numerous \([-38 \pm 8\% \quad (n = 6)\] and \(-42 \pm 6\% \quad (n = 4)\], respectively) than those that were not incubated with the anticancer agents; verapamil had no significant effect. However, ouabain-treated cells were significantly resistant to doxorubicin, which decreased their numbers by only 18 \pm 10\% \quad (n = 6), and to vinblastine, which decreased their numbers by
19 ± 9% (n = 4). In both cases, the resistance was inhibited by verapamil; with verapamil, doxorubicin and vinblastine decreased the number of living ouabain-pretreated cells by 47 ± 9% (n = 6) and 56 ± 9% (n = 4), respectively. The ouabain treatment did not significantly modify the effect of 1 μM doxorubicin (however, verapamil significantly increased doxorubicin-induced cell death in ouabain-treated cells), but it still protected the cells against 1 μM vinblastine.

DISCUSSION

We have shown that submicromolar concentrations of ouabain stimulate MDR-1 gene expression and P-gp synthesis in human tumoral cells. We believe that this is the first demonstration of a P-gp-mediated drug efflux that is pharmacologically induced by a hydrophobic glycoside that acts on an extracellular site of a transmembrane protein, the Na+/K+-ATPase. The microscopic CAL-AM/CAL assay developed to demonstrate this P-gp function at the cellular level may be suitable for clinical use on small tissue samples.

The concentration dependence of the increase in MDR-1 transcripts caused by ouabain corresponds to the parameters of the Na+/K+-ATPase inhibition. The changes in MDR-1 mRNA occurred at 0.1–0.5 μM ouabain, whereas the drug binds to the Na+/K+ pump with an affinity constant of about 0.01 or 0.1 μM, depending on the form of the α protein subunit. Half-maximal inhibition of the human Na+/K+ pump occurs at 0.1 μM in nonmyocardial human cells (19). The fact that both digoxin, another Na+/K+-ATPase inhibitor that is a lipid compound and acts intracellularly, and palitoxin, which decreases the pump activity by a different mechanism (19), also increase MDR-1 transcripts further demonstrates that inhibition of Na+/K+-ATPase activity triggers MDR-1 gene expression in our experimental model. This MDR-1 gene overexpression is not limited to Calu-3 cells because it also occurred in T-84 and HT-29 colon cells, which differ in differentiation, and in Huh7 carcinomatous hepatic cells. However, the fact that it was not found in HeLa cells demonstrates that it is not a ubiquitous cell response to the cardiotonic.

The inhibition of the Na+/K+-ATPase by ouabain is immediate, leading to gradual changes in cytosolic ion concentrations. Various ion transports are activated during the cell adaptation that follows these changes. The time dependence of the reversible ouabain-induced increase in MDR-1 gene expression agrees with the participation of P-gp in the adaptation of the cell to the Na+/K+ pump blockade. The increase in MDR-1 transcripts (and the decrease in β-actin mRNA) in Calu-3 cells may be due to ouabain-induced changes in cell ion concentrations. It appears to start with enhanced transcription and does not depend on the synthesis of any intermediate protein. The contrast between the stimulation of MDR-1 gene expression triggered by low concentration of ouabain in Calu-3, T-84, HT-29, and Huh7 cells and the absence of response of HeLa cells may result from cell-to-cell differences in either cytoplasmic or nuclear reactions. Further work is needed to define these cell characteristics, which may be responsible for the differing sensitivities of cancerous cells to multidrug resistance. The elevation in cytosolic calcium concentration that follows the increase in intracellular Na+ caused directly by the Na+/K+-ATPase blockade (20) may be involved in the phenomenon. For example, ouabain stimulates early-activated gene (c-fos and c-jun) transcription via increased cytosolic calcium concentration in both rat cardiac myocytes and various human cell lines (10, 21, 22). The reaction (which is triggered in HeLa cells by micromolar concentrations of ouabain; Ref. 22) does not require protein synthesis but results from the stimulation of mitogen-activated protein kinases (21), which control various gene expressions in several cell types (23). In Calu-3 cells, an increased intracellular calcium concentration also appears to be the link between Na+/K+-ATPase inhibition and the increase in MDR-1 mRNA stimulated by ouabain because the ouabain effect was reinforced by thapsigargin and suppressed by the calcium chelator BAPTA. Because it was detected with low concentrations of ouabain (0.1 μM), it cannot be a consequence of the cell damage caused by higher concentrations of ouabain via elevated cytosolic calcium and activation of kinases. Ouabain-induced cell detachment, which is due to phosphorylation of proteins devoted to cell support or cell-cell contacts and which leads to cell death (24), may occur in our model with 0.5 and 1 μM ouabain, but it is preceded by MDR-1 gene overexpression, which is maximally induced by 0.2 μM ouabain.

Enhancement of MDR-1 gene expression by ouabain led to synthesis of P-gp, which was immunodetected in the cell membranes. The efflux of hydrophobic drugs is the major function of P-gp, and this was why we looked for it in the ouabain-treated Calu-3 cells. Because P-gp extrudes the nonfluorescent hydrophobic CAL-AM before its
de-esterification to fluorescent CAL, we measured the rate of increase of fluorescence in cells incubated with CAL-AM to detect functional P-gp in the cell membrane. This technique was first developed to assess the P-gp-related multidrug resistance in large numbers of tumoral cells by flow cytometry (16). These results show that the rate of increase of the fluorescence was slower in cells from patients who had multidrug resistance or in cultured cells treated for a long time with high concentrations of drugs such as doxorubicin or colchicine that induce MDR-1 gene expression. However, this method can only be used with large numbers of cells producing large amounts of P-gp. We detected activities of P-gp in isolated cells or clusters of cells (50 cells) in our experiments using low CAL-AM concentrations (up to 0.25 μM) and a sensitive videomicroscopy system. The difference between control and treated cells was very significant under these conditions. Although CAL fluorescence is insensitive to variation in ionic concentration (17), this difference could be due to some alteration in the cytoplasm induced by ouabain. Its inhibition by mAb MRK-16, which allows the maximal fluorescence of ouabain-treated cells to reach control level, clearly indicates that the inhibition of CAL accumulation in ouabain-treated cells in the absence of the P-gp antagonist is linked to P-gp function. These results agree with our data on the resistance of ouabain-treated cells to doxorubicin and vinblastine cytotoxicity. The cell resistance was not complete and was seen only with low concentrations of the anticancer drugs. However, it was significant, especially versus vinblastine, and was inhibited by verapamil. Hence, our results show that inhibiting Na⁺/K⁺-ATPase may cause multidrug resistance by stimulating MDR-1 gene expression and drug efflux mediated by P-gp.

The stimulation by ouabain of the synthesis of P-gp able to extrude hydrophobic compounds appears to result from disturbed cell ion concentrations. The data show that cells do not need to be exposed to cytotoxic agents to make P-gp able to extrude such drugs, but the cell damage caused by ouabain via the ionic disorders that stimulate MDR-1 gene expression cannot be ruled out. The P-gp-mediated CAL-AM efflux and the resistance of the ouabain-treated Calu-3 cells to both doxorubicin and vinblastine are not very large. Low resistance to chemotherapeutic drugs was shown to be a characteristic of cells transfected with MDR-1, and the alterations in pH and membrane potential caused by the induced P-gp were sufficient to trigger this reduced multidrug resistance (8). Additional studies are now required to determine whether the ouabain-treated cells behave as a pharmacological equivalent of these “pure transfects.” This would mean that P-gp is essential for the integrated control of cell ion concentrations. The ouabain-induced multidrug cell resistance might also be important in clinical situations because cardiotoxins may be prescribed together with certain anticancer drugs.

ACKNOWLEDGMENTS

We thank Dr. Jeanine Fritsch for help with immunohistology and Owen Parkes for correcting the manuscript.

REFERENCES

Drug Resistance Induced by Ouabain via the Stimulation of MDR1 Gene Expression in Human Carcinomatous Pulmonary Cells

Franck Brouillard, Danielle Tondelier, Aleksander Edelman, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/61/4/1693

Cited articles This article cites 22 articles, 12 of which you can access for free at: http://cancerres.aacrjournals.org/content/61/4/1693.full#ref-list-1

Citing articles This article has been cited by 4 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/61/4/1693.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/61/4/1693. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.