Drug Resistance Induced by Ouabain via the Stimulation of MDR1 Gene Expression in Human Carcinomatous Pulmonary Cells

Franck Brouillard, Danielle Tondelier, Aleksander Edelman, and Maryvonne Baudouin-Legros
Institut National de la Santé et de la Recherche Médicale U.467, Faculté de Médecine Necker, 75015 Paris, France

ABSTRACT

The inhibition of the Na+/K+-ATPase by cardiotonic drugs like ouabain deeply perturbs both the properties of the cell membrane and the ionic composition of the cytoplasm and hence alters fundamental cell reactions. These three types of reactions may be involved in the stimulation of multidrug resistance 1 (MDR-1) gene expression and the synthesis of permeability glycoprotein [P-glycoprotein (P-gp)]. We have determined whether ouabain, which binds to an extracellular motif of the Na+/K+-ATPase, stimulates MDR-1 gene expression by measuring both mRNA and protein and whether the resulting P-gp extrudes hydrophobic compounds and causes resistance to antimitotic agents. The experiments were performed on Calu-3 cells, a human cell line from a pulmonary carcinoma. Northern blotting showed that treating the cells with submicromolar concentrations of ouabain stimulated MDR-1 gene expression within 24 h. The ouabain-induced stimulation of MDR-1 expression was not restricted to Calu-3 cells but also occurred in human carinomatous colon (T-84 and HT-29) and hepatic (H7V3) cells. However, it is not ubiquitous because it was not found in HeLa cells. The stimulation was reproduced by other Na+/K+-ATPase inhibitors and occurred via enhanced gene transcription, apparently due to the increased cytosolic calcium concentration. Ouabain also increased the membrane content of P-gp, as detected by immunoblotting and immunohistology. We have developed a microvideo assay based on the properties of acetoxyethyl ester calcein and calcein to show that this P-gp extruded the hydrophobic acetoxyethyl ester calcein. Ouabain also caused the Calu-3 cells to become resistant to doxorubicin and vinblastine. Thus, although ouabain acts extracellularly, it may stimulate MDR-1 gene expression and P-gp synthesis and make cells resistant to hydrophobic cytotoxic compounds.

INTRODUCTION

The development of multidrug resistance is a major obstacle to the success of chemotherapy of neoplastic diseases. P-gp is a transmembrane protein that acts as an energy-dependent efflux pump to remove natural drugs from cells. It is encoded by the MDR-1 gene. P-gp is normally present in the apical membrane of some epithelial cells in renal proximal tubules, hepatic bile ducts, and colon villi, but its function in these cells is not clear (1). Its clinical deleterious role arises from the multidrug resistance caused by its production triggered by carcinogenesis and antimitotic treatments (2). The overproduction of P-gp is usually due to enhanced transcription of the MDR-1 gene, but the molecular mechanisms involved in the reaction are not clear. Various agents, such as differentiating compounds or environmental stresses (UV radiation and acid external pH), stimulate MDR-1 gene transcription, and many transcription factors can bind to and activate MDR-1 gene transcription by UV irradiation is due to the combined actions of several transcription factors and histone modification (4, 5). Several molecular processes may also be involved in the multidrug resistance produced by P-gp. P-gp is a multifunctional protein that not only acts as an efflux pump for various hydrophobic compounds but also regulates membrane composition via its flippase properties and ion transport by modulating the activity of the cell swelling-stimulated Cl− conductance (6, 7). The relationship between its various properties is not clear. The multidrug cell resistance produced by P-gp may occur because the protein alters intracellular ion concentrations (8).

We have therefore examined the question of whether inhibiting Na+/K+-ATPase, a major membrane protein responsible for maintaining the membrane electrical potential and cell homeostasis, modulates MDR-1 gene expression. Na+/K+-ATPase is specifically inhibited by cardiotonics, the best known of which is ouabain. Ouabain also inhibits the cytotoxicity of various anticancer agents (9, 10), but this quick-acting effect of ouabain is not related to P-gp activity, even when it acts against doxorubicin, a P-gp substrate (9). The effect of prolonged administration of ouabain has not been studied in terms of MDR-1 mRNA and P-gp. Ouabain, which can induce gene transcription (11), may exert such an action, and the phenomenon might have practical implications because cardiotonics are often administered to prevent cardiac damage during anticancer treatment. We have treated human pulmonary carcinomatous Calu-3 cells (12) with ouabain and monitored MDR-1 gene expression and P-gp concentration. We have also explored P-gp function by monitoring the transport of CAL-AM, a P-gp substrate, and cell resistance to doxorubicin and vinblastine toxicity.

MATERIALS AND METHODS

Cell Culture and Treatment

Calu-3 cells were obtained from the ATCC and cultured in DMEM containing 1 mm sodium pyruvate, nonessential amino acids, and 10% FCS at 37°C in 5% CO2-enriched atmosphere. Cells were cultured on plastic for RNA and protein analysis and on glass slides for measuring the P-gp function. They were incubated with freshly prepared ouabain (Sigma-Aldrich) for the indicated time (generally, 24 h for RNA analysis and 48 h for protein detection and functional studies). Ouabain toxicity was assessed by treating the confluent cell cultures with various concentrations of the drug for 48 h and then counting the living cells (trypan blue exclusion). The capacity of ouabain to modulate the MDR-1 mRNAs in other human cell lines was also studied. The cells were T-84 and HT-29 cells derived from colon carcinoma (obtained from the ATCC), HeLa cells (obtained from the ATCC), and hepatic carcinomatous HuH7 cells (13). The T-84 cells were cultured in DMEM/Ham’s F-12; the HT-29, HeLa, and HuH7 cells were cultured in DMEM.

RNA Extraction and Analysis

MDR-1 mRNAs were measured in confluent cells placed in serum-free medium for 24 h before being treated with ouabain in the absence of FCS. Total RNAs were isolated with phenol/chloroform using the Trizol reagent (Life Technologies, Inc.) according to the manufacturer’s instructions, fractionated on 0.9% agarose gels (15 μg/well), and transferred to nylon membranes (Hybond-N+; Amersham) (14). The membranes were hybridized with 32P-labeled cDNA probes (specific activity > 106 cpm/μg) with the Quik Hly protocol provided by Stratagene. The MDR-1 probe was the 1.5-kb EcoRI-EcoRI

Received 7/13/00; accepted 12/13/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by the Institut National de la Santé et de la Recherche Médicale and by a grant from the Association Française de Lutte contre la Mucoviscidose.

2 To whom requests for reprints should be addressed, at Institut National de la Santé et de la Recherche Médicale U.467, Faculté de Médecine Necker, 156 Rue de Vaugirard, 75015 Paris, France. Phone: 33-1-40-61-56-28; Fax: 33-1-40-61-55-91; E-mail: legros@necker.fr.

3 The abbreviations used are: P-gp, P-glycoprotein; CAL-AM, acetoxyethyl ester calcein; CAL, calcein; ATCC, American Type Culture Collection; BAPTA, [1,2-bis(o-aminophenoxy)ethane-N,N',N"-tetraacetic acid].

1693

[cancerresearch.aacrjournals.org on April 14, 2017]. © 2001 American Association for Cancer Research.
results

MDR-1 mRNA

Serum-deprived Calu-3 cells treated with ouabain for 24 h showed dose-dependent increases in **MDR-1** mRNA from 0.05 to 0.5 μM ouabain. There was very little **MDR-1** mRNA in control cells, and 0.1 μM ouabain produced a significant increase (Fig. 1). The ouabain effect was time dependent; it was maximal at 24 h and half-maximal after 12 h (Fig. 2, A1 and B). The effect of ouabain was reversible (Fig. 2A2); cells treated for 24 h with 0.2 μM ouabain that were rinsed and allowed to recover for 24 h in normal medium had the same **MDR-1** mRNA content as untreated cells.

High concentrations of ouabain also decreased the β-actin mRNA in Calu-3 cells (Figs. 1 and 2), and this decrease was also reversed by washing out the ouabain. Despite their opposing changes, the increase in **MDR-1** mRNA and the decrease in β-actin transcripts triggered by ouabain may both be due to stress caused by the drug. There were significantly fewer living cells in cultures treated with 0.5 or 1 μM ouabain for 48 h than in controls (Table 1). Therefore, all subsequent experiments were performed on cells treated with 0.2 μM ouabain.

Ouabain also stimulated **MDR-1** gene expression in human colic...
T-84 and HT-29 cells and in hepatic HuH7 cells, but not in HeLa cells (Fig. 3).

Digoxin and palitoxin, two other Na\(^+\)/K\(^+\)-ATPase inhibitors chemically distinct from ouabain (15), had the same effect as ouabain on Calu-3 cells (Fig. 4A). Increased MDR-1 gene transcripts thus appeared to be triggered by inhibiting the Na\(^+\)/K\(^+\)-pump. The ouabain-induced increase in MDR-1 mRNA still occurred in the presence of cycloheximide (6 \(\mu\)M; Fig. 4B), indicating that the phenomenon does not require protein synthesis. The inhibition of the ouabain effect by actinomycin D (5 \(\mu\)g/ml added to the medium 30 min before ouabain (0.2 \(\mu\)M) and remained in the medium during the ouabain treatment (the figure is representative of three experiments). C, thapsigargin (Thaps.; 2 \(\mu\)M) and BAPTA-AM at the indicated concentrations were added to the cultures 30 min before ouabain (0.2 \(\mu\)M) for the incubation time.

Table 1 Ouabain-induced cell death

<table>
<thead>
<tr>
<th>Ouabain ((\mu)M)</th>
<th>No. of living cells ((\times 10^3)/cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>603 ± 48 (100)</td>
</tr>
<tr>
<td>0.05</td>
<td>610 ± 47 (101) NS*</td>
</tr>
<tr>
<td>0.1</td>
<td>576 ± 45 (101) NS</td>
</tr>
<tr>
<td>0.2</td>
<td>518 ± 47 (86) NS</td>
</tr>
<tr>
<td>0.5</td>
<td>489 ± 49 (81) P < 0.05</td>
</tr>
<tr>
<td>1</td>
<td>387 ± 43 (64) P < 0.01</td>
</tr>
</tbody>
</table>

* NS, nonsignificant.
P-gp Synthesis

Western blot analysis with mAb C-219 showed a single immunoreactive band of about Mr 170,000, compatible with P-gp, in the microsomes from Calu-3 cells. It was very faint in control membranes and dose-dependently increased by ouabain (0.05 to 0.2 μM; Fig. 5).

Immunocytochemistry (Fig. 6) also revealed a surface immunoreactivity to mAb MRK-16; it was very faint in control cells (Fig. 6B1) and enhanced by treating the cells with 0.2 μM ouabain for 48 h (Fig. 6C1). Labeling was specific because it did not exist when the cells were incubated with the secondary antibody directly (Fig. 6A1). Ouabain thus stimulates MDR-1 gene transcription and P-gp synthesis.

P-gp Function

CAL Efflux. When control Calu-3 cells were incubated with CAL-AM (0.25 μM), the intracellular de-esterification of the dye led to increased cell CAL fluorescence [ΔF/Δt]basal = 0.198 ± 0.056 (n = 14)] (Fig. 7). Pretreating the cells with 0.2 μM ouabain considerably reduced the rate of increase of fluorescence [ΔF/Δt]ouab = 0.066 ± 0.022 (n = 14)], which went on for 30 min (data not shown). Incubation with the specific anti-P-gp mAb MRK-16 (10 μg/ml added 15 min before CAL-AM) significantly reduced the difference between the treated and untreated cells. The rate of increase of fluorescence in the ouabain-treated cells in the presence of MRK-16 [ΔF/Δt]MRK16-ouab = 0.125 ± 0.037 (n = 14)] was very close to that of controls [ΔF/Δt]MRK16-control = 0.145 ± 0.066 (n = 14)], and the maximal fluorescence was the same in both cases. This indicates that the low fluorescence of the ouabain-treated cells not incubated with MRK-16 could be due to a rapid extrusion (before its de-esterification) of the CAL-AM from these treated cells. Verapamil (50 μM) reproduced the effect of mAb MRK-16 and increased the rate of fluorescence of the ouabain-treated cells (results not shown), but it also decreased the responses of the control cells at this concentration. These results show that the ouabain-induced P-gp extrudes hydrophobic compounds.

Resistance to Doxorubicin and Vinblastine. The toxicity of doxorubicin and vinblastine, estimated as indicated in “Materials and Methods” 3 days after treating the cells with the anticancer drugs, showed that treating the cells with ouabain (0.2 μM for 48 h) made them resistant to a 4-h exposure with 0.5 μM of both drugs (Fig. 8). Three days after the exposure, control cells treated with 0.5 μM doxorubicin or vinblastine were less numerous [−38 ± 8% (n = 6) and −42 ± 6% (n = 4), respectively] than those that were not incubated with the anticancer agents; verapamil had no significant effect. However, ouabain-treated cells were significantly resistant to doxorubicin, which decreased their numbers by only 18 ± 10% (n = 6), and to vinblastine, which decreased their numbers by

Fig. 5. Changes in membrane P-gp. The Western blots were performed as indicated in “Materials and Methods” on membranes extracted from cells incubated for 48 h with the indicated concentrations of ouabain. The proteins were separated by electrophoresis (30 μg/lane) and transferred to the membrane. They were detected by incubation with mAb C-219 directed against human P-gp. The figure is representative of three experiments.

Fig. 6. Immunocytochemistry. The pictures on the left show the immunological staining with mAb MRK-16. The cells, either under basal conditions (A and B) or after incubation for 48 h with 0.2 μM ouabain (C), were incubated with mAb MRK-16 for 3 h (B and C). A, cells incubated with the second antibody directly. The pictures on the right show the same cells observed under a phase-contrast microscope.

Fig. 7. P-gp-mediated CAL-AM efflux. Representative experiment showing the increase in the intracellular fluorescence of CAL, expressed in arbitrary units, on control cells (diamonds) and on cells treated for 48 h with 0.2 μM ouabain (circles) incubated with CAL-AM (0.25 μM, black symbols) alone or with mAb MRK-16 (0.25 μM) plus CAL-AM (empty symbols). Fluorescence intensity and SD were calculated from the Imstar software integrating the values found in each cell of the slide. Insert, means ± SE of the ΔF/Δt ratios calculated on 14 experiments in each experimental condition. n = 14; *, P < 0.001.
OUABAIN-STIMULATED MULTIDRUG RESISTANCE IN Calu-3 CELLS

Fig. 8. Ouabain-induced resistance of the cells to doxorubicin and vinblastine. Control cells (□) and cells treated with ouabain (0.2 μM; 48 h; □) were incubated for 4 h with doxorubicin or vinblastine (0.5 and 1 μM) with (batched columns) or without verapamil (50 μM), washed, counted, and incubated for an additional 3 days. They were then counted, and the results for doxorubicin- and vinblastine-treated cells were expressed as percentages of those for controls. Each figure is the mean ± SE of four (vinblastine) or six (doxorubicin) experiments. The means were compared using Student’s unpaired t test. *, P < 0.05.

19 ± 9% (n = 4). In both cases, the resistance was inhibited by verapamil; with verapamil, doxorubicin and vinblastine decreased the number of living ouabain-pretreated cells by 47 ± 9% (n = 6) and 56 ± 9% (n = 4), respectively. The ouabain treatment did not significantly modify the effect of 1 μM doxorubicin (however, verapamil significantly increased doxorubicin-induced cell death in ouabain-treated cells), but it still protected the cells against 1 μM vinblastine.

DISCUSSION

We have shown that submicromolar concentrations of ouabain stimulate MDR-1 gene expression and P-gp synthesis in human tumoral cells. We believe that this is the first demonstration of a P-gp-mediated drug efflux that is pharmacologically induced by a hydrophobic glycoside that acts on an extracellular site of a transmembrane protein, the Na+/K+-ATPase. The microscopic CAL-AM/CAL assay developed to demonstrate this P-gp function at the cellular level may be suitable for clinical use on small tissue samples.

The concentration dependence of the increase in MDR-1 transcripts caused by ouabain corresponds to the parameters of the Na+/K+-ATPase inhibition. The changes in MDR-1 mRNA occurred at 0.1–0.5 μM ouabain, whereas the drug binds to the Na+/K+ pump with an affinity constant of about 0.01 or 0.1 μM, depending on the form of the α protein subunit. Half-maximal inhibition of the human Na+/K+ pump occurs at 0.1 μM in nonmyocardial human cells (19). The fact that both digoxin, another Na+/K+-ATPase inhibitor that is a lipid compound and acts intracellularly, and palitoxin, which decreases the pump activity by a different mechanism (19), also increase MDR-1 transcripts further demonstrates that inhibition of Na+/K+-ATPase activity triggers MDR-1 gene expression in our experimental model. This MDR-1 gene overexpression is not limited to Calu-3 cells because it also occurred in T-84 and HT-29 colon cells, which differ in differentiation, and in HuH7 carcinomatous hepatic cells. However, the fact that it was not found in HeLa cells demonstrates that it is not a ubiquitous cell response to the cardiotoxic.

The inhibition of the Na+/K+ ATPase by ouabain is immediate, leading to gradual changes in cytosolic ion concentrations. Various ion transports are activated during the cell adaptation that follows these changes. The time dependence of the reversible ouabain-induced increase in MDR-1 gene expression agrees with the participation of P-gp in the adaptation of the cell to the Na+/K+ pump blockade. The increase in MDR-1 transcripts (and the decrease in β-actin mRNA) in Calu-3 cells may be due to ouabain-induced changes in cell ion concentrations. It appears to start with enhanced transcription and does not depend on the synthesis of any intermediate protein. The contrast between the stimulation of MDR-1 gene expression triggered by low concentration of ouabain in Calu-3, T-84, HT-29, and HuH7 cells and the absence of response of HeLa cells may result from cell-to-cell differences in either cytoplasmic or nuclear reactions. Further work is needed to define these cell characteristics, which may be responsible for the differing sensitivities of cancerous cells to multidrug resistance. The elevation in cytosolic calcium concentration that follows the increase in intracellular Na+ caused directly by the Na+/K+-ATPase blockade (20) may be involved in the phenomenon. For example, ouabain stimulates early-activated gene (c-fos and c-jun) transcription via increased cytosolic calcium concentration in both rat cardiac myocytes and various human cell lines (10, 21, 22). The reaction (which is triggered in HeLa cells by micromolar concentrations of ouabain; Ref. 22) does not require protein synthesis but results from the stimulation of mitogen-activated protein kinases (21), which control various gene expressions in several cell types (23). In Calu-3 cells, an increased intracellular calcium concentration also appears to be the link between Na+/K+ ATPase inhibition and the increase in MDR-1 mRNA stimulated by ouabain because the ouabain effect was reinforced by thapsigargin and suppressed by the calcium chelator BAPTA. Because it was detected with low concentrations of ouabain (0.1 μM), it cannot be a consequence of the cell damage caused by higher concentrations of ouabain via elevated cytosolic calcium and activation of kinases. Ouabain-induced cell detachment, which is due to phosphorylation of proteins devoted to cell support or cell-cell contacts and which leads to cell death (24), may occur in our model with 0.5 and 1 μM ouabain, but it is preceded by MDR-1 gene overexpression, which is maximally induced by 0.2 μM ouabain.

Enhancement of MDR-1 gene expression by ouabain led to synthesis of P-gp, which was immunodetected in the cell membranes. The efflux of hydrophobic drugs is the major function of P-gp, and this was why we looked for it in the ouabain-treated Calu-3 cells. Because P-gp extrudes the nonfluorescent hydrophobic CAL-AM before its...
de-esterification to fluorescent CAL, we measured the rate of increase of fluorescence in cells incubated with CAL-AM to detect functional P-gp in the cell membrane. This technique was first developed to assess the P-gp-related multidrug resistance in large numbers of tumoral cells by flow cytometry (16). These results show that the rate of increase of the fluorescence was slower in cells from patients who had multidrug resistance or in cultured cells treated for a long time with high concentrations of drugs such as doxorubicin or colchicine that induce MDR-1 gene expression. However, this method can only be used with large numbers of cells producing large amounts of P-gp. We detected activities of P-gp in isolated cells or clusters of cells (50 cells) in our experiments using low CAL-AM concentrations (up to 0.25 μM) and a sensitive videomicroscopy system. The difference between control and treated cells was very significant under these conditions. Although CAL fluorescence is insensitive to variation in ion concentration (17), this difference could be due to some alteration in the cytoplasm induced by ouabain. Its inhibition by mAb MRK-16, which allows the maximal fluorescence of ouabain-treated cells to doxorubicin and vinblastine, suggests that the resistance was not complete and was seen only with low concentrations of the anticancer drugs. However, it was significant, especially versus vinblastine, and was inhibited by verapamil. Hence, our results show that inhibiting Na/K+ -ATPase may cause multidrug resistance by stimulating MDR-1 gene expression and drug efflux mediated by P-gp.

The stimulation by ouabain of the synthesis of P-gp able to extrude hydrophobic compounds appears to result from disturbed cell ion concentrations. The data show that cells do not need to be exposed to cytotoxic agents to make P-gp able to extrude such drugs, but the cell damage caused by ouabain via theionic disorders that stimulate MDR-1 gene expression cannot be ruled out. The P-gp-mediated CAL-AM efflux and the resistance of the ouabain-treated Calu-3 cells to both doxorubicin and vinblastine are not very large. Low resistance to chemotherapeutic drugs was shown to be a characteristic of cells transfected with MDR-1, and the alterations in pH and membrane potential caused by the induced P-gp were sufficient to trigger this reduced multidrug resistance (8). Additional studies are now required to determine whether the ouabain-treated cells behave as a pharmacological equivalent of these “pure transfects.” This would mean that P-gp is essential for the integrated control of cell ion concentrations. The ouabain-induced multidrug cell resistance might also be important in clinical situations because cardiotonics may be prescribed together with certain anticancer drugs.

ACKNOWLEDGMENTS

We thank Dr. Jeanine Fritsch for help with immunohistochemistry and Owen Parkes for correcting the manuscript.

REFERENCES

Drug Resistance Induced by Ouabain via the Stimulation of MDR1 Gene Expression in Human Carcinomatous Pulmonary Cells

Franck Brouillard, Danielle Tondelier, Aleksander Edelman, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/4/1693

Cited articles
This article cites 22 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/4/1693.full.html#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
/content/61/4/1693.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.