Mechanism of Specific Nuclear Transport of Adriamycin: The Mode of Nuclear Translocation of Adriamycin-Proteasome Complex

Ken-ichi Kiyomiya, Saburou Matsuo, and Masaru Kurebe

Department of Toxicology, School of Veterinary Medicine, Osaka Prefecture University, Osaka 599-8531, Japan

ABSTRACT

Adriamycin (ADM), an anthracycline anticancer agent, is selectively stored in the nuclei of a variety of proliferating cells, but the precise mechanism of specific nuclear transport of ADM is not well known. Recently, we demonstrated that ADM shows high binding affinity to the cytoplasmic proteasomes of L1210 mouse leukemia cells and that taken up ADM by the cells selectively binds to proteasomes. Nuclear targeting of proteasome in proliferating cells may be mediated by the nuclear localization signals that are found in several of the α-type subunits of the 20S proteasome. To confirm nuclear transport of the ADM-proteasome complex, we synthesized a photoactive ADM analogue, N-(p-azidobenzoyl)-ADM, and generated a photofinity-labeled proteasome complex. The 26S proteasome purified from the cytosol of L1210 cells had a high affinity to N-(p-azidobenzoyl)-ADM. SDS-PAGE analysis of the photofinity-labeled proteasome showed that low molecular weight bands (~21–31 kDa) of 20S proteasome had the highest photofinity. The photofinity-labeled proteasome was distributed in the cytoplasm and nuclei of digitonin-permeabilized L1210 cells. The nuclear transport of ADM-proteasome complex is regulated by an ATP-dependent nuclear pore-mediated mechanism.

INTRODUCTION

The nucleus is the target organelle of the anthracycline anticancer agent ADM (1–3). The affinity of ADM for nuclear DNA is thought to account for the nuclear events that are responsible for the cytotoxic activity of this agent. Although ADM enters cancer cells by a passive diffusion process (4), the precise mechanism of nuclear transport of ADM is not well understood. Recently, we demonstrated that ADM shows high binding affinity to the cytoplasmic proteasomes of L1210 mouse leukemia cells (5) and that taken up ADM by the cells selectively binds to the proteasomes (6).

Proteasomes are intracellular proteinase complexes involved in nonsylosomal mechanisms of protein degradation. The 26S proteasome is essential for the normal turnover of cytosolic and nuclear proteins and plays a role in processing and degradation of regulatory proteins that control cell growth and metabolism (7–9). The 26S proteasome consists of three large multisubunit complexes, i.e., a 20S proteasome core particle and two 19S cap structures (10, 11). Immunocytochemical studies have shown that proteasomes are present both in the nucleus and in the cytoplasm of a variety of eukaryotic cells and tissues (12–14). Although the regulation of proteasome distribution between the nucleus and the cytoplasm is not well known in transformed cells and proliferating tissues, proteasomes have been found to occur predominantly in the nuclei (12, 15–18). Proteasomes isolated from the nuclei and cytoplasm of rat liver show the same basic properties (19). Active transport of proteasomes through the nuclear pores has been proposed to be mediated by nuclear localization signals, which have been found in several of the α-type subunits of the 20S proteasome (20–23).

In the present study, we demonstrated that the proteasome is a nuclear transporter of ADM and also clarified the mode of nuclear translocation of the ADM-proteasome complex. To visualize the ADM-proteasome complex and confirm its nuclear transport, we synthesized a photoactive ADM analogue and covalently coupled it to the proteasome by photofinity labeling. To monitor nuclear transport of the photofinity-labeled proteasome, digitonin-permeabilized cells were analyzed by confocal laser scanning microscopy. We showed that the proteasome had high affinity to the photoactive ADM analogue and that the photofinity-labeled proteasome was transported into the nuclei in the presence of ATP.

MATERIALS AND METHODS

Materials. ADM-HCl was purchased from Sigma Chemical Co. (St. Louis, MO). N-hydroxysuccinimidyld-4-azidobenzoate was from Pierce Chemical Co. (Rockford, IL). Suc-LVY-MCA was from the Peptide Institute (Osaka, Japan), and digitonin was from Wako Pure Chemicals (Osaka, Japan). All other chemicals and reagents were of high commercial quality.

Cell Culture. L1210 mouse lymphocytic leukemia cells and B-16 mouse melanoma cells were cultured in 15 mM HEPES-buffered (pH 7.3) DMEM supplemented with 5% heat-inactivated FCS at 37°C under an atmosphere of 5% CO₂ in air. The cells were used for the following studies during log growth phase after 2–3 days in culture.

Synthesis of Photofinity ADM Analogue. The photoactive ADM analogue, NAB-ADM, was synthesized by N-azidobenzoylation of ADM with N-hydroxysuccinimidyld-4-azidobenzoate according to the method of Felsted et al. (24). A yield of ~70% was obtained. The final product gave a symmetrical single peak on reverse phase (C₁₈) high performance liquid chromatography (4.6 mm × 250 mm; solvent system, 70% acetonitrile; 0.1% acetic acid, and water; at a flow rate of 1 ml/min; retention time, 4.1 min (NAB-ADM), 2.2 min (ADM)) and no other UV (270 nm)-visible (488 nm) absorbing peaks were seen on the chromatogram. The UV-visible absorption spectrum of NAB-ADM was a composite of the spectra of its component chromophores, i.e., the p-azidobenzoyl group (λmax 270 nm) and the adriamycinone ring (λmax 488 nm). The fluorescence emission spectrum of NAB-ADM was identical with that of ADM (data not shown).

Purification of the Proteasome. The 26S proteasome was purified from the cytosol of L1210 cells by ultracentrifugation, followed by hydroxyapatite, gel permeation, and DEAE ion exchange chromatography. After the final step, the proteasome was eluted with two bed volumes of buffer A containing 100 mM NaCl and 200 mM NaCl, respectively. The chymotrypsin-like protease activity (19) of the proteasome was measured using the fluorogenic substrate Suc-LVY-MCA (5). The purified 20S proteasome (570 μg/ml) was incubated with 10 μM NAB-ADM in buffer A. After incubation at 4°C for 3 h, unbound NAB-ADM was removed by
passage through a Sephadex G-100 (Pharmacia, Tokyo, Japan) column equilibrated with buffer A. The eluent was immediately UV irradiated at 4°C for 5 min with two 10-W self-filtering 312 nm lamps at a distance of 2 cm. Following irradiation, the sample was applied to a Sephadex G-25 (Pharmacia) column equilibrated with nuclear import assay buffer (20 mM HEPES-KOH, pH 7.3/110 mM potassium acetate/2 mM magnesium acetate/1 mM EGTA/2 mM DTT/2 mM ATP), and the void volume fraction was collected. The fraction was immediately used for nuclear import assay.

Nuclear Import Assay. We used the digitonin-permeabilized cell method to study nuclear import of the photoaffinity-labeled proteasome by a slight modification of the method reported by Moore and Biobel (25) as follows.

L1210 cells or B-16 cells were grown in the chambers of slide glasses to which was attached an O-ring (inside diameter, 9 mm) with silicone grease. For permeabilization, the slide glass was placed on ice, and the chamber was washed once with 0.1 ml of ice-cold nuclear import assay buffer. The cells were treated with 0.1 ml of the same buffer containing 35 μg/ml digitonin on ice for 5 min. Then, the chamber was washed twice with 0.1 ml of ice-cold nuclear import assay buffer. The permeabilized cells were incubated with 30 μl of the photoaffinity-labeled proteasome (NAB-ADM at 2.4 μM, protein at 380 μg/ml), and the cytosolic fraction (15 μg protein) was prepared from L1210 cells at 25°C for 30 min in the presence or absence of ATP-regenerating system (2 mM ATP/5 mM phosphocreatine/20 units/ml creatine phosphokinase). After incubation, the cells were washed twice with 0.1 ml of ice-cold nuclear import assay buffer and fixed in 0.1 ml of ice-cold 3% paraformaldehyde in nuclear import assay buffer without DTT on ice for 15 min.

Confocal Laser Scanning Microscopy. The fixed cells were mounted in a drop of 10% PBS and 90% glycerol. The edges of the coverslip were sealed with nail polish. The sample was viewed under a confocal laser scanning microscope (Leica, Heidelberg, Germany), with the 488 nm line of the argon laser used for excitation.

Quantification of NAB-ADM. For quantification of photoaffinity adduct formation, the photoaffinity-labeled proteasome was treated with ice-cold 7% trichloroacetic acid at 4°C for 2 h and centrifuged at 5000 × g for 5 min. The protein pellet was washed three times with ice-cold ethanol/ether (1:1) to remove residual trichloroacetic acid. The dried sample was dissolved in 1 ml of 0.3 N HCl, 50% ethanol, and 1% SDS, and ADM was measured fluorimetrically (excitation, 480 nm; emission, 588 nm) after hydrolysis at 90°C for 15 min.

Gel Electrophoresis. SDS-PAGE was performed as described by Laemmli (26) in 10% polyacrylamide gels. Nondenaturing gels consisted of 3% polyacrylamide stacking and 4.5% polyacrylamide resolving gels cast in 90 mM Tris/80 mM boric acid, pH 8.3/0.1 mM EDTA buffer. The gels were run at 50 V for 400 V-h at 4°C in 90 mM Tris/80 mM boric acid, pH 8.3/0.1 mM EDTA buffer. Protein staining was performed with Coomassie Brilliant Blue R-250. The photoaffinity adducts were detected by visualizing the fluorescence of the NAB-ADM on a UV-fluorescent table equipped with two 10-W self-filtering 312 nm lamps.

RESULTS

Purity of Two Proteasome Fractions. The purity of the proteasome preparations was examined by gel permeation chromatography, nondenaturing PAGE, and SDS-PAGE. An aliquot of the each fraction eluted from the DEAE-Toyopearl column was applied to a Bio-Gel A-5m (Bio-Rad, Richmond, CA) column (1 × 97 cm) equilibrated with buffer A. The protease-active protein in the 100 mM NaCl fraction was eluted at a median molecular mass of ~700 kDa and that of the 200 mM NaCl fraction was eluted at a median molecular mass of ~1500 kDa (Fig. 1A). As shown in Fig. 1B, nondenaturing PAGE revealed two major protein complexes in the large protease-active fraction from the DEAE-Toyopearl column, whereas only a single major band was present in the smaller protease-active fraction obtained by chromatography. The preparation showed the same SDS-PAGE pattern characteristic of the 20S and 26S proteasomes, respectively (Fig. 1C, Lanes 1 and 2). The 700-kDa fraction eluted by DEAE-Toyopearl column chromatography contained a closely related 20S proteasome, whereas a 26S proteasome was found in the 200 mM NaCl fraction (1500 kDa). Approximately 1.4 mg of the purified proteasome was obtained from 533 mg of the cytosol of L1210 cells with a yield of 15% of total proteolytic activity. The protease activity was purified by 70-fold by this procedure.

Photoaffinity Labeling of the Proteasome. In vitro photoaffinity labeling of the purified 26S proteasome with NAB-ADM showed high binding affinity of NAB-ADM to the proteasome. The yield of trichloroacetic acid-precipitable photoaffinity adducts from the proteasome was 36%, and the specific binding activity was 6.3 nmol/mg protein (Table 1). The photoaffinity-labeled proteasome showed low protease activity, and ~70% inhibition of the activity was observed (Table 1). The NAB-ADM photoaffinity labeling pattern of the 26S proteasome was examined by gel permeation chromatography, nondenaturing PAGE, and SDS-PAGE. An aliquot of the each fraction eluted from the DEAE-Toyopearl column was applied to a Bio-Gel A-5m column (1 × 97 cm) equilibrated with buffer A. The protease-active protein in the 100 mM NaCl fraction was eluted at a median molecular mass of ~700 kDa and that of the 200 mM NaCl fraction was eluted at a median molecular mass of ~1500 kDa (Fig. 1A). As shown in Fig. 1B, nondenaturing PAGE revealed two major protein complexes in the large protease-active fraction from the DEAE-Toyopearl column, whereas only a single major band was present in the smaller protease-active fraction obtained by chromatography. The preparation showed the same SDS-PAGE pattern characteristic of the 20S and 26S proteasomes, respectively (Fig. 1C, Lanes 1 and 2). The 700-kDa fraction eluted by DEAE-Toyopearl column chromatography contained a closely related 20S proteasome, whereas a 26S proteasome was found in the 200 mM NaCl fraction (1500 kDa). Approximately 1.4 mg of the purified proteasome was obtained from 533 mg of the cytosol of L1210 cells with a yield of 15% of total proteolytic activity. The protease activity was purified by 70-fold by this procedure.

Table 1 Photoaffinity labeling of 26S proteasome with NAB-ADM

<table>
<thead>
<tr>
<th>Photoaffinity labeling</th>
<th>Protease activity (control %)</th>
<th>NAB-ADM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μM</td>
<td>nmol/mg protein</td>
</tr>
<tr>
<td>+</td>
<td>97.7</td>
<td>10.0 (added)</td>
</tr>
<tr>
<td></td>
<td>29.7</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.5 (added)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3</td>
</tr>
</tbody>
</table>
both a cytosolic and a nuclear proteinase function and have been observed in cells (5). Proteasomes are multicatalytic proteinase complexes that possess proteolytic activity and play a crucial role in cell survival by regulating the degradation of damaged proteins. The cellular uptake of ADM by the cells selectively binds to the nuclei of these cells and tissues (12–14). Interestingly, in neoplastic cells as well as in undifferentiated normal cells undergoing proliferation, proteasomes have been found to occur predominantly in the nuclei (12, 15, 18), and proteasome gene expression has been shown to be more pronounced than in nonproliferative, differentiated normal cells and tissues (15–17). The high levels of proteasome gene expression and nuclear localization are down-regulated in these cells by induction of differentiation (17, 18). Thus, the high cellular uptake and cytotoxicity of ADM in proliferating cells appears to be due to the marked nuclear localization and high-level gene expression of proteasomes in the cells.

To visualize and analyze the cellular distribution and nuclear transport of the proteasome complex, photoactive NAB-ADM was synthesized, and 26S proteasome purified from the cytosol of L1210 cells was cross-linked with NAB-ADM by UV irradiation. The formation of proteasome complex by photoaffinity labeling is based on the assumption that a reversible complex is formed between the photoactive NAB-ADM and the proteasome acceptor sites, which specifically recognize structural characteristics of the drug. Then, irradiation converts NAB-ADM into a reactive nitrene intermediate, which covalently attaches to the acceptor-binding sites (33, 34). Because the nitrene intermediate has a short half-life, photoactivated NAB-ADM should efficiently label only those acceptors to which it is closely associated. NAB-ADM showed high affinity to the 26S proteasome, and the photoaffinity-labeled proteasome showed

DISCUSSION

ADM is selectively stored in the nuclei of a variety of tissues and cells (1–3), but the precise mechanism of specific nuclear transport is not well understood. ADM specifically induces cytotoxicity at lower concentrations in proliferating than in nonproliferating cells, and higher cellular uptake of ADM was reported in proliferating than in nonproliferating cells (27–29). Recently, we demonstrated that ADM shows high binding affinity to the cytoplasmic proteasomes of L1210 cells (5) and that taken up ADM by the cells selectively binds to the proteasomes by using in situ photoaffinity labeling with NAB-ADM (6). Proteasomes are multicatalytic protease complexes that possess both a cytosolic and a nuclear proteinase function and have been isolated from a wide variety of eukaryotic cells and tissues (30–32). Immunohistochemical studies showed proteasomes to be located in the cytoplasm and nuclei of these cells and tissues (12–14). Interestingly, in neoplastic cells as well as in undifferentiated normal cells undergoing proliferation, proteasomes have been found to occur predominantly in the nuclei (12, 15, 18), and proteasome gene expression has been shown to be more pronounced than in nonproliferative, differentiated normal cells and tissues (15–17).
low chymotrypsin-like protease activity. The β-type subunit and the NH₂-terminal threonine of the 20S proteasome contribute to the catalytic active sites (9, 35, 36). Figueiredo-Pereira et al. (37) showed that aclacinomycin A, an anthracycline anticancer agent, is a reversible noncompetitive inhibitor of the chymotrypsin-like protease activity of the 20S proteasome. We have found that ADM inhibited the protease activity in the same manner. Although the precise binding sites of ADM in the 20S proteasomal subunit are not yet known, the photoaffinity-labeled components of the 20S proteasome with NAB-ADM may be necessary for the chymotrypsin-like protease activity of 20S proteasome. ADM may bind to an allosteric site, causing distortion of the catalytic site and obstructing its access to the scissile bond.

Nuclear import experiments using digitonin-permeabilized cells showed that the photoaffinity-labeled proteasome is distributed in the cytoplasm and the nucleus in the presence of ATF, although nuclear localization is predominant. In contrast, the rate of nuclear translocation of the photoaffinity-labeled proteasome was remarkably low in the absence of ATP. Macromolecular transport into the nuclei is mediated by the nuclear pore complex, which is dependent on ATP hydrolysis (38). The nuclear targeting of proteasomes may be directed by some of the α-type subunits containing nuclear localization signal sequences (20–23). The ATP dependency of nuclear condensation of the photoaffinity-labeled proteasome may reflect nuclear pore-mediated macromolecular transport into the nucleus, which is mediated by nuclear localization signals in the proteasomal α-type subunits.

On the basis of these observations, we propose the following mechanism for the nuclear translocation of ADM-proteasome complexes as shown in Fig. 4: (a) ADM enters cancer cells by simple diffusion (4), and ADM-proteasome complex is formed in the cytoplasm due to the high affinity of ADM to the proteasome; (b) ADM-proteasome complex is translocated from the cytoplasm into the nucleus of the cell. The complex may be translocated into the nucleus via nuclear pores because the proteasome possesses nuclear localization signals (20–23); (c) In the nucleus, DNA-binding affinity of ADM is higher than that of the proteasome (5). Thus, ADM dissociates from the proteasome and intercalates into the DNA, thereby inhibiting DNA synthesis; (d) On the other hand, ADM bound to the proteasome shows low protease activity. Inhibition of protease activity induces inhibition of processing and degradation of regulatory proteins that control cell growth and metabolism (7–9), thereby inducing apoptosis of cancer cells (39, 40). Thus, agents that target the proteasome may be useful for the treatment of cancer. This hypothetical mechanism based on the results of the present study suggests that the proteasome is a specific translocator of ADM from the cytoplasm to the nucleus, and this agent might therefore be useful as a new candidate for cancer chemotherapy.

REFERENCES

6. Kiyomiya, K-I., Matsuo, S., and Kurebe, M. In situ photoaffinity labeling of protea-

17. Shimbara, N., Orino, S., Sone, S., Ogura, T., Takashina, M., Shono, M., Tamura, T., Yasuda, H., Tanaka, K., and Ichihara, A. Regulation of gene expression of protea-

K-I. Kiyomiya, H. Nakagawa, S. Matsuo, and M. Kurebe, unpublished observations.

Fig. 4. Schematic representation of the hypothetical mechanism of nuclear translocation of ADM-proteasome complex. See text for details.

MECHANISM OF NUCLEAR TRANSPORT OF ADM

Mechanism of Specific Nuclear Transport of Adriamycin: The Mode of Nuclear Translocation of Adriamycin-Proteasome Complex

Ken-ichi Kiyomiya, Saburou Matsuo and Masaru Kurebe

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/6/2467

Cited articles
This article cites 37 articles, 19 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/6/2467.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/61/6/2467.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.