Transformation of Mammary Epithelial Cells by 3-Phosphoinositide-dependent Protein Kinase 1 (PDK1) Is Associated with the Induction of Protein Kinase Ca

Xiao Zeng, Hangmin Xu, and Robert I. Glazer

Departments of Pharmacology and Oncology, Lombardi Cancer Center, Georgetown University School of Medicine, Washington, DC 20007

ABSTRACT

3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a mediator of multiple signaling pathways coupled to growth factor receptor activation in human cancers. To evaluate the role of PDK1 in mammary gland oncogenesis, COMMA-1D mouse mammary epithelial cells were retrovirally transduced with PDK1, and transformation was measured by anchorage-independent growth in soft agar. PDK1-expressing cells exhibited a high degree of transformation that was associated with the activation of Akt1 and an elevation of protein kinase Ca (PKCa) expression. Cells overexpressing Akt1 did not exhibit anchorage-independent growth, whereas PKCa overexpression produced significant transformation, although to a lesser extent compared with PDK1. Coexpression of Akt1 and PKCa led to a more than additive effect on transformation activity. Isografts of either PDK1- or PKCa-expressing cells but not Akt1-expressing cells in syngeneic mice led to formation of poorly differentiated mammary carcinomas. PDK1 was highly expressed in a majority of human breast cancer cell lines. These results suggest that activation of PDK1 can lead to mammary tumorigenesis, in part through PKCa, and that PDK1 expression may be an important target in human breast cancer.

INTRODUCTION

The deregulation of protein kinases involved in modulating cell proliferation and survival is often associated with malignant transformation (1). One pathway that prominently plays a role in oncogenesis is the growth factor receptor-coupled activation of PI3-K (2) and its downstream targets, including AKT (5), PKC (11–15), ribosomal p90 S6 kinase, S6K (16–19), and SGK (20, 21). In addition, PDK1 activates the Rho kinase, PAK1, Rac/ Cdc42 kinase, and the Rac/Cdc42 kinase, which are associated with increased invasion and metastasis (25). This suggests that PDK1 functions as a master control point for the activation of a number of signaling pathways involved in proliferation, survival, and invasion.

There are few studies of the functional role of PDK1 in cancer cells. Recently, it was found that antisense oligonucleotides targeting PDK1 could block the proliferation of U-87 glioblastoma cells by promoting apoptosis (26). This effect could have resulted from inhibition of one or more downstream targets of PDK1 such as Akt or PKC. The PDK1 substrates, Akt1, Akt2, and Akt3, are highly expressed in several human cancers (27), and one or more PKC isoforms are elevated in breast and colon tumors (28, 29). Akt2 and PKCα have also been shown to transform rodent fibroblasts in vitro, whereas Akt1 and Akt3 were not oncogenic (30, 31). Despite these findings, a direct functional link between PDK1 activation and processes involved in malignant transformation has not been explored.

In the present study, we demonstrate for the first time that expression of PDK1 in mouse mammary epithelial cells is sufficient to elicit transformation in vitro and tumor formation in vivo. This process was associated with activation of Akt1 and PKCα, as well as an increase in PKCα levels, and expression of PKCα but not Akt1 in mammary epithelial cells resulted in transformation in vitro and tumorigenesis in vivo. These results suggest that the PKCα signaling pathway is a major route mediating PDK1-dependent transformation.

MATERIALS AND METHODS

Cells and Antibodies. Mouse mammary epithelial cell line COMMA-1D (Ref. 32; provided by Dr. Robert Dickson, Georgetown University) was maintained at 37°C under 5% CO2 in IMEM with 1× supplement (2.5% fetal bovine serum, 10 ng/ml epidermal growth factor, and 5 μg/ml insulin). Cell pellets of human breast cancer cell lines MCF-7, ZR-75-1, T47D, MDA-MB-231, MDA-MB-436, MDA-MB-157, BT483, and SK-Br-3, and human mammary epithelial cell line MCF-10A were obtained from the Lombardi Cancer Center Tissue Culture Core Facility. Polyclonal antibodies to PDK1, Akt1, Akt1/pThr308, PKCα, pSer657PKCa, PKCa, SGK, S6K, and pThr412S6K, and monoclonal antibodies to the myc epitope tag (9E10) were obtained from Upstate Biotechnology, Inc (Lake Placid, NY). Monoclonal antibodies to PKβ, δ, ε, η, θ, and μ were obtained from Transduction Laboratories (Lexington, KY) and to β-actin (C-11) from Santa Cruz Biotechnology (Santa Cruz, CA).

Plasmid Construction, Virus Production, and Transduction of COMMA-1D cells. The human PDK1 cDNA with an NH2-terminal myc epitope tag was provided by Dr. Dario Alessi, University of Dundee, Dundee, United Kingdom. The mouse Akt1 cDNA was obtained from Drs. Peter Vogt and Masashiro Aoki, The Scripps Research Institute, La Jolla, CA. Rabbit PKCα cDNA was provided by Dr. Shigeo Ohno, Yokohama University, Yokohama, Japan. Akt1 and PKCα were amplified by PCR and subcloned into vectors pGADT7 and pGBK7 (Clontech, Inc.), respectively, to obtain an NH2-terminal hemaglutinin epitope tag for Akt1 and an NH2-terminal myc epitope tag for PKCa. All of the cDNAs were then cloned into the retroviral vector pRSReMSV/Myrneo (33). Retroviral vector pCMV/hyg was generated by replacement of the Tet on/off control element on vector pRevTRE (Clontech, Inc.) with the CMV promoter from pRcCMV (Invitrogen). Either pRSReMSV/Myrneo or pRSReMSV/Myrneo encoding PKCa, Akt1, or PKCα were cotransfected with the pSv-ψ-E-MLV ecotropic vector into 293T cells. After 48 h, the supernatants were collected, mixed with an equal volume of fresh IMEM medium plus 2× supplement in the presence of 4 μg/ml Polybrene, and added to COMMA-1D cells. After four rounds of infection, G418-resistant COMMA-1D cells were selected for 2 weeks. To generate cells overexpressing Akt1+PKCα, Akt1+PKCa, or PKCa+PKD1, a second round of transduction was carried...
out using amphotrophic viruses produced in 293T cells cotransfected with pCMV/hyg-Akt1 and the pSV-ψ-A-MLV amphotropic vector. After 2 weeks of selection in 50 μg/ml hygromycin, the expression of both genes was confirmed by Western blotting.

Western Analysis for pThr308Akt1, pSer657PKCα, and pThr412S6K.

Subconfluent cells were lysed in Buffer A containing: 50 mM Tris-HCl (pH 7.5), 0.1% (v/v) Triton X-100, 1 mM EDTA, 1 mM EGTA, 50 mM NaF, 10 mM sodium β-glycerol phosphate, 5 mM Na3P, 1 mM sodium orthovanadate, 0.1% (v/v) 2-mercaptoethanol, 1 μM Microcystin LR, and protease inhibitor mixture (Boehringer-Mannheim). Whole cell extracts containing 50 μg of protein were analyzed by SDS-PAGE and Western blotting. To measure IGF-I-dependent activation of Akt1 and PKCα, cells were grown to subconfluence, washed once in serum-free IMEM medium, and incubated overnight (12–14 h) in serum-free medium. Fresh serum-free medium was added with or without 100 ng/ml IGF-I, and cells were incubated for 10 min at 37°C. Stimulation was stopped by the addition of serum-free medium prechilled to 4°C. Cells were collected on ice by scraping into prechilled Buffer A. Lysates were clarified by centrifugation at 13,000 × g for 15 min. Lysates (400 μg protein) were then incubated at 4°C for 2 h with 4 μg of prewashed protein A/G-agarose (Santa Cruz Biotechnology) adsorbed with anti-Akt1, anti-PKCα, or anti-S6K antibodies. After washing four times in Buffer A, bound proteins were eluted directly into Laemmli sample buffer by boiling for 5 min. The eluted proteins were then analyzed by Western blotting using the antibodies specific for pThr308Akt1, pSer657PKCα, and pThr412S6K.

PDK1 Kinase Assay. Immunoprecipitation was carried out as described above with 4 μg of anti-myc IgG and 400 μg of protein contaminating whole cell lysate. PDK1 activity was measured with the PDK1 Kinase Assay kit (Upstate Biotechnologies, Inc.) according to the manufacturer’s instructions. This assay measures PDK1-dependent phosphorylation and activation of recombinant SGK and the subsequent incorporation of [γ-32P]ATP into a basic peptide substrate.

Soft Agar Assay for Anchorage-independent Growth. After eight passages of the retrovirally transduced cells, exponentially growing cells (1 × 105) were suspended in 2 ml 0.33% (w/v) SeaPlaque agar (BMA, Rockland, ME) dissolved in IMEM containing 1× supplement and layered over 1% agar dissolved in IMEM containing 1× supplement in six-well plates. Cultures (in triplicate for each condition) were fed with fresh medium once a week. Colonies >50 cells were counted visually at the end of 3 weeks.

Isograft Transplantation into Syngeneic Mice. COMMA-1D cells were trypsinized, washed, and resuspended in serum-free IMEM medium at a concentration of 105 cells/ml. Aliquots of 10 μl were injected into the cleared inguinal mammary fat pad of 3 week-old female BALB/c mice (34). Eight weeks after transplantation, mice were sacrificed, and isografts were fixed in 10% formalin in 1× PBS, embedded in paraffin, and stained with H&E by the Histopathology Core Facility, Lombardi Cancer Center. In instances where COMMA-1D/PDK1 and COMMA-1D/PKCα cells produced adenocarcinomas, part of the tumor was removed aseptically and mechanically dispersed with a 28-gauge needle in 1× PBS. The suspension was centrifuged and replated in IMEM containing 1× supplement, 600 μg/ml G418 (Life Technologies, Inc.), and 50 μg/ml gentamicin. After four passages, cells were collected and cell extracts prepared in Buffer A for Western blotting with the antibodies specific for IGF-I, and cells were incubated for 10 min at 37°C. Stimulation was stopped by the addition of serum-free medium prechilled to 4°C. Cells were collected on ice by scraping into prechilled Buffer A. Lysates were clarified by centrifugation at 13,000 × g for 15 min. Lysates (400 μg protein) were then incubated at 4°C for 2 h with 4 μg of prewashed protein A/G-agarose (Santa Cruz Biotechnology) adsorbed with anti-Akt1, anti-PKCα, or anti-S6K antibodies. After washing four times in Buffer A, bound proteins were eluted directly into Laemmli sample buffer by boiling for 5 min. The eluted proteins were then analyzed by Western blotting using the antibodies specific for pThr308Akt1, pSer657PKCα, and pThr412S6K.

RESULTS

To evaluate the role of PDK1 in mammary epithelial cell transformation, mouse mammary epithelial cell line COMMA-1D was retrovirally transduced with PDK1 (Fig. 1). Cells expressing PDK1 exhibited a high degree of anchorage-independent growth in soft agar, a feature that is considered indicative of transformation.

To determine whether the activity of downstream substrates of PDK1 were changed, immunocomplex kinase assays were carried out (Fig. 2). Cells expressing PDK1 exhibited higher Akt1 activity as shown by enhanced phosphorylation of Thr308 (Fig. 2A). The activity of PKCα, as measured by autophosphorylation of Ser657, was increased almost 7-fold in response to IGF-I stimulation (Fig. 2B), but the phosphorylation of another PDK1 substrate, S6K, was not changed (Fig. 2C).

To determine whether PDK1 altered the levels of PKCα or other PKC isoforms, cell lysates were analyzed by Western blotting (Fig. 3). The steady state level of PKCα was increased 6-fold, whereas other PKC isoforms remained unchanged (Fig. 3). PKCδ and θ were absent in these cell lines. We also noted that the steady state levels of Akt1, S6K, and SGK were not changed in COMMA-1D/PDK1 cells (Fig. 3).

Because COMMA-1D/PDK1 cells expressed greater Akt1 and PKCα activity, transformation was measured in COMMA-1D cells transduced with either Akt1 or PKCα (Fig. 4). In contrast to Akt1-expressing cells, which did not exhibit anchorage-independent growth in soft agar, PKCα-expressing cells showed significant growth, although less than PDK1-expressing cells (Fig. 4A). These results suggested that a portion of the transforming ability of PDK1 might be caused by the up-regulation of PKCα. When cells expressing PKCα were cotransduced with Akt1, cell transformation was increased by 20% in comparison to cells expressing PKCα alone (Fig. 4B), indicating a small degree of potentiation between the Akt1 and PKCα signaling pathways. When either Akt1 or PKCα was coexpressed with PDK1, no additional change in transformation occurred (Fig. 4C).

To determine the tumorigenicity of the various COMMA-1D cell lines, isografts of each cell line were transplanted into the cleared fat pad of syngeneic BALB/c mice, and the mammary gland was examined 8 weeks later (Fig. 5). Mice receiving isografts of COMMA-1D cells retrovirally transduced with either neo (Fig 5A, Ctl) or Akt1 (Fig. 5A, Akt1) exhibited a normal ducal morphology. In contrast, all mice receiving isografts of COMMA-1D/PDK1 (Fig 5A, PDK1) or COMMA-1D/PKCα (Fig 5A, PKCα) cells presented with poorly differentiated mammary adenocarcinomas. PDK1-derived tumors exhibited an acinar morphology with an absence of glandular structure and were highly invasive to the musculature, as well as highly vascular (results not shown). PKCα-derived tumors were more focal,

![Fig. 1. Transformation of COMMA-1D cells by PDK1.](Image 308x530 to 560x741)

Fig. 1. Transformation of COMMA-1D cells by PDK1. A, COMMA-1D cells were retrovirally transduced with either neo (Ctl) or PDK1 (PDK1), and colony formation in soft agar was determined as the number of colonies per 10,000 cells plated. PDK1 and β-actin expression were determined in control (Ctl) and PDK1-expressing cells (PDK1) by immunoblotting with a myc-tag and β-actin antibody, respectively (right). B, quantitation of colony formation in soft agar as depicted in A. Each value is the mean of three experiments; bars, ± SD. C, PKD1 activity was determined in control (Ctl) and COMMA-1D/PDK1 cells (PDK1) as described in “Materials and Methods,” and is expressed in arbitrary units relative to control cells transduced with the empty retrovirus (Ctl). Each value is the mean of three experiments.
not as invasive, and exhibited a squamous morphology. To ascertain the origin of the tumors, a portion of the tumor was removed and cultured in vitro in the presence of G418. PKCa and PDK1 expression in the respective COMMA-1D cell lines used for the isografts were comparable with their levels expressed in the cell lines derived from these tumors (Fig. 5B, C).

PDK1 expression was also evaluated in several human breast cancer cell lines by Western blotting (Fig. 6). In all instances, PDK1 levels were greater in the cancer cells compared with untransformed human mammary epithelial cell line MCF-10A. It was also noted that all of the cell lines expressed variable levels of a NH2-terminally truncated PDK1.

Fig. 2. Akt1 and PKC activity, but not S6K activity are increased in COMMA-1D/PDK1 cells. A, COMMA-1D cells were retrovirally transduced with neo (Ctl), Akt1 (Akt1), PKCa (PKCa), or PDK1 (PDK1). Colony formation in soft agar was determined as the number of colonies per 10,000 cells plated. Each value is the mean of three determinations; bars, ±SD. B, a second round of retroviral transduction was carried out in COMMA-1D/PKCa cells with either hsg (PKCa) or Akt1 (PKCa) or Akt1 (PKCa), or in COMMA-1D/PDK1 cells with hsg (PDK1), Akt1 (PDK1 Akt1), or PKCa (PKCa PDK1). Colony formation in soft agar was determined as in A. Each value is the mean of three experiments; bars, ±SD. C, Western analysis of PKCa, PDK1, and Akt1 expression in the cell lines shown in B.

DISCUSSION

The purpose of this study was to determine whether activation of the PDK1 signaling pathway resulted in the transformation of mouse mammary epithelial cells. Our results indicate that wild-type PDK1 was highly transforming in mammary epithelial cells both in cell culture and as isografts in syngeneic mice. Although PDK1 expression by retroviral transduction was high by physiological standards, our findings that some human breast cancer cells also contain very high levels of PDK1 suggest that perhaps this signaling pathway is relevant to the malignant phenotype. Because PDK1 controls the activation of several protein kinase families, we wished to determine whether its known activation of Akt1 and PKCa (14, 15) was associated with its ability to produce transformation. The finding that PDK1 increased the steady state level of PKCa is consistent with the findings that PKCa is down-regulated in embryonic stem cells null for PDK1 (36). Whether PDK1 modulates PKC expression transcriptionally or enhances post-translational stability (35) remains to be established; however, we have noted that the human PKCa promoter (36) is down-regulated in embryonic stem cells null for PDK1 (35).

Fig. 3. PKC, Akt1, S6K, and SGK levels in COMMA-1D cells. Cell lysates were prepared from COMMA-1D/PDK1 cells, and protein kinase levels were analyzed by Western blotting as described in “Materials and Methods.”

Alternative signaling pathways other than those directly associated with PDK1 may also be involved in the regulation of PKCα/H9251 and Akt1. Ha-Ras and polyoma middle T antigen activate PI3-K (43–45), and induce and activate PKCα/H9251 (29, 46), as well as Akt1 activity (47, 48). Because PKCα is also an upstream activator of the Ras/Raf pathway (49), PKCα could conceivably regulate its own expression through the Ras pathway by a positive feedback loop. Coexpression of activated Ras and constitutively active Akt1 have also been shown to act synergistically to induce gliomagenesis in vivo (50). Because PKCα can directly stimulate Akt1 phosphorylation at Ser473 (51, 52), this could account for the small degree of potentiation of PKCα-mediated transformation by Akt1.

One or more Akt isoforms highly expressed in human breast cancer cells are coupled to estrogen receptor and growth factor receptor activation (53–57). However, none of the Akt isoforms have shown oncogenicity in chick embryo and mouse 3T3 fibroblasts (30, 58–60), and mouse mammary epithelial cells (25), with the exception of constitutively activated forms of Akt (30, 59, 60). Moreover, mammary gland-directed expression of either constitutively active or wild-type Akt1 in transgenic animals has failed to induce a malignant phenotype (61–63), suggesting that additional factors or signaling pathways are required for transformation. The latter findings are consistent with the present study indicating that overexpression of Akt1 alone does not suffice to induce transformation or tumorigenesis.

The invasive characteristics of the tumors formed from allografts of COMMA-1D/PDK1 cells agree with our earlier finding that Akt1-expressing mammary epithelial cells exhibited increased extracellular matrix invasion through induction of MMP-2 (25). The acquisition of an invasive phenotype is also in accord with the findings that PKCα expression in MCF-7 breast cancer cells leads to enhanced anchorage-independent growth in soft agar (64), as well as increased motility and adhesion in human MCF-10A breast epithelial cells (41). Interestingly, isografts of COMMA-1D cells overexpressing v-Ha-Ras showed an undifferentiated morphology (65) that was very similar to the tumors arising from isografts of COMMA-1D/PDK1 cells in the present study.

In summary, PDK1 expression in mouse mammary epithelial cells caused an increase in anchorage-independent growth in soft agar and...
PDK1 AND MAMMARY EPITHELIAL CELL TRANSFORMATION

malignant transformation in vivo. Although, PDK1 up-regulated PKCα expression and Akt1 activity, only expression of PKCα was associated with transformation and tumor formation. These results suggest that the PCKα signaling pathway is a major component of the PDK1 oncogenic pathway.

REFERENCES

Transformation of Mammary Epithelial Cells by 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Is Associated with the Induction of Protein Kinase Cα

Xiao Zeng, Hangmin Xu and Robert I. Glazer