Oxytocin Synthesis and Oxytocin Receptor Expression by Cell Lines of Human Small Cell Carcinoma of the Lung Stimulate Tumor Growth through Autocrine/Paracrine Signaling

Christel Pégueux, Christophe Breton, Jean-Claude Hendrick, Marie-Thérèse Hagelstein, Henri Martens, Rosita Winkler, Vincent Geenen, and Jean-Jacques Legros

University of Liege, Institute of Pathology CHU-B23, +4. Center of Immunology & Laboratory of Neuroendocrinology [C. P., J-C. H., M-T. H., H. M., V. G., J-J. L.] and University of Liege, Institute of Pathology CHU-B23, Research Center on Experimental Carcinology & Laboratory of Molecular Oncology [R. W.], B-4000 Liege 1-Sart Tilman, Belgium, and University of Lille I. Endocrinology of Annelidae Laboratory, SIVS, F-59655 Villeneuve d'Ascq, France [C. B.]

ABSTRACT

The objective of the present work was to investigate the existence of an oxytocin (OT)-mediated autocrine/paracrine signaling upon small cell carcinoma of the lung (SCCL) cell growth. In that view, OT receptor (OTR) expression, concomitant with OT synthesis and secretion, was evidenced on three different SCCL cell lines (DMS79, H146, and H345) and related to the vasopressin (VP) system. Specific OT, VP, OTR, Vla VP receptor (VlaR), and Vlb/V3 VP receptor (Vlb/V3R) transcripts were identified by reverse transcription-PCR in all cell lines studied. Binding of 125I-d(CH2)5,1,Tyr(Me)2,Thr4,Orn8,Tyr9-NH2-vasotocin (OVTA) was observed on all SCCL cell lines, with a Kd (dissociation constant) ranging from 0.025 – 0.089 nM, depending on the cell line and the analytical method. Selectivity of 125I-OVTA binding was confirmed by displacement curves obtained with various OTR and VP receptor agonists and antagonists (OT, OVTA, L-371,257, VP, FI80). Immunocytochemistry identified cellular OT and VP, and peptide secretion was measured in supernatants of SCCL cultures. [3H]Thymidine incorporations, applied on H345 cells, demonstrated a dose-dependent mitogenic effect of exogenous OT (1 and 100 nM) that was abolished by the OTR antagonist OT Va. A decrease of proliferation was also observed with OVTA alone, showing a functional mitogenic effect of tumor-derived OT. Taken together, these observations demonstrate the existence of a functional OT-mediated autocrine/paracrine signaling actively implicated in growth and development of SCCL tumors. Furthermore, these findings point to the potential of OT antagonists for development as therapeutic agents for the treatment of SCCL.

INTRODUCTION

Of the various types of human lung cancer, SCCL, also called “ oat-cell” carcinoma, is one of the most aggressive. In the United States, SCCL accounts for 20% of all primary lung carcinoma. The overall cumulative 5-year survival rate is <1%, compared with 12–25% for other types of lung cancer (1). SCCL is most often associated with overexpression of VP, a neurohypophysial gene (2). VP overexpression leads, in many cases, to an ectopic secretion of VP that induces a paraneoplastic syndrome with water intoxication, hyponatremia, and hypernatriuaria known as Schwartz-Bartter syndrome (3). High plasma concentrations of VP and associated NP (VP-NP), a highly conserved 10-kDa domain present in VP precursor (4–10), are biological hallmarks of this syndrome. However, all neurohypophysial gene-expressing tumors do not secrete peptides. A NP-related protein is targeted to the outer surface of cell membrane as a NP-related cell surface antigen (8, 11). In vitro, VP has been shown to exert trophic and mitogenic effects on various human SCCL cell lines. This mitogenic effect seems to be mediated by the V1aR (12–15). The expression by SCCL cell lines of all known VP receptor subtypes [V1aR, V1bR (also called V3R), and V2R] has been demonstrated by North et al. (16, 17), suggesting a multifaceted autocrine role of VP on SCCL growth.

High NP plasma levels are reported in approximately two of three cases of SCCL (8). The evidence of ectopic secretion is not restricted only to VP and related NP. High levels of the other neurohypophysial hormone OT, together with OT-NP, were measured in plasma of 30–40% of these cases (6, 8, 18), as well as in aceton extracts of SCCL tumors (5). Nevertheless, up to now, very little is known about the pathophysiological consequences of OT overexpression and OT secretion by SCCL on tumor development and patient survival. The expression of OTR has been demonstrated in breast cancer, in neuroblastomas and glial tumors, and in endometrial adenocarcinomas. In these cases, OT exhibits an OTR-mediated antiproliferative effect on cancer cells (19–29). On the contrary, an increase of cell proliferation through an OTR-mediated effect has been demonstrated in human trophoblast and chorionicarcinoma cell lines (30).

Therefore, there was a high interest in assessing the biological role of OT on SCCL cells. The objective of the present work was to determine the existence of an OT-mediated autocrine/paracrine signaling upon SCCL cell growth. OTR expression, OT synthesis, and secretion were investigated on three different SCCL cell lines (DMS79, H146, and H345). Then, the implication of exogenous and endogenous OT was assessed on cell proliferation. To characterize the whole neurohypophysial peptide system of SCCL cell lines, VP and VPR expression and VP or VP-NP synthesis and secretion were also investigated.

MATERIALS AND METHODS

Reagents and Cells

DPBS (17-513F), FCS, and RPMI 1640 were purchased from BioWhittaker. TriPure isolation reagent RNase-free DNA I, complete protease inhibitor mixture tablet, the Expand Reverse Transcriptase System, and the Expand Long Template PCR System were purchased from Roche. Other reagents were Triton X-100 (ICN); Tissue-Tek (Sakura); [3H]TdTh (Amersham Pharmacia Biotech); scintillation liquid (Packard Bioscience); primers, Moloney murine leukemia virus reverse transcriptase, Taq polymerase, ethidium bromide, and agarose (Life Technologies, Inc.); and the QIAQuick Gel Extraction Kit (Qia-gen). OT, VP, insulin-transferrin-selenium solution (I-1884), and BSA (BSA fraction V, A-4503) were obtained from Sigma. OTR ligand was 125I-OVTA.
OT from transfected plasmids (positive control). The reaction was performed using Moloney murine leukemia virus reverse transcriptase (200 units) and random primers as described previously (39). The first-strand synthesis reaction (1:6) was amplified for 30 cycles using Taq polymerase (1 unit) and 100 pmol of each forward and reverse primer (Table 1). Cycling parameters were 94°C for 90 s, 70°C for 90 s, and 72°C for 120 s. Negative control RT-PCR reactions were performed by omitting reverse transcriptase or RNA from the reaction mixture. PCR products were separated on a 2% agarose gel and revealed by ethidium bromide staining. PCR products were subcloned using pGEM-T easy vector systems (Promega) and sequenced.

**OT Binding Assays**

**Saturation Binding.** Incubation was carried out with 2 × 10^6 cells/sample in a final volume of 500 μl of assay buffer [DBPS + 1% BSA (pH 7.5)] in a 30°C water bath for 1 h. 125I-OVTA (0.005–0.32 nM) was added either without or with 0.5 μM OT, assumed to reflect NSB. The reaction was stopped on an ice bath, and 2 ml of assay buffer (4°C) were added to each tube before centrifugation (700 × g, 4°C, 10 min). Supernatants were discarded, and pellets were washed with 10 ml of assay buffer (4°C), followed by an additional centrifugation step. After removal of the supernatants, pellets were homogenized with assay buffer (200 μl). Each sample was performed in duplicate; NSB and total binding (B_t) values were measured by automatic gamma counter (Wallac; Perkin-Elmer).

**Competitive Displacements.** Selectivity of 125I-OVTA binding was assessed by competition studies with various neurohypophysial receptor ligands. Competitive binding curves were generated with cold OT, OVTA, L-371,257 (OTR antagonist), VP, and F180 (V1aR agonist). Incubation was carried out with 2 × 10^6 cells/sample in a final volume of 500 μl of assay buffer in a 30°C water bath for 1 h. Cold ligand (0–200 nM) was added with 125I-OVTA (0.08 nM). The procedure was ended as reported above.

**OT and VP Immunocytochemistry**

SCC cells (0.1 × 10^6) were transferred on microscope slides by centrifugation in a cytospin tube (100 × g, 10 min.). Cells were fixed successively by parafomaldehyde (4°C, 20 min) and methanol (–20°C, 7 min) and then incubated for 30 min at room temperature with 10% normal goat serum to prevent NSB of goat secondary Ab. Single immunostaining was performed with the following reagents: (a) antihuman CK mAb MNF116 (1:40); (b) anti-OT mAb O33 (1:50) followed by secondary Ab A (FITC-conjugated goat anti-mouse IgG; 1:40); (c) anti-VP O4 (1:1000) followed by secondary Ab B (FITC-conjugated goat anti-rabbit IgG; 1:50); (d) anti-OT-AOS (1:100) followed by secondary Ab B (TRITC-conjugated goat anti-rabbit IgG; 1:50); and (e) anti-VP mAb C2.23 (kindly given by P. Riviere; Ref. 38) and L-371,257 (kindly provided by L. Koch; Merck Research Laboratories). OT and VP immunocytochemistry were performed in the presence of NSB as described previously (40). Competitive binding curves were generated with cold OT, OVTA, L-371,257 (OTR antagonist), VP, and F180 (V1aR agonist). Incubation was carried out with 2 × 10^6 cells/sample in a final volume of 500 μl of assay buffer in a 30°C water bath for 1 h. Cold ligand (0–200 nM) was added with 125I-OVTA (0.08 nM). The procedure was ended as reported above.

**OT and VP-NP Production**

OT-NP and VP-NP RIA (40) were performed on supernatants and cell contents. RNA was isolated from cell pellets at each incubation step to perform OT and VP RT-PCR. LDH was measured, using a standard clinical chemical procedure, to assess the rate of living cells at each incubation step. Lactate was measured, using a standard clinical chemical procedure, to estimate the rate of lysis of cells at each incubation step. In that view, after separation of supernatants and pellets, cell pellets were lysed with Triton 2% in RPMI 1640 (900 μM). Protease inhibitor (40 μl) and glycerol (900 μl) were added to each sample of supernatant and cell solution before storage at −20°C.

---

**Table 1 Synthetic primers**

<table>
<thead>
<tr>
<th>Primer</th>
<th>Nucleotide</th>
<th>Sequence</th>
<th>Strand</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Forward</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT</td>
<td>5′-CGG-AGG-TAC-ACC-GGC-GGA-GCA-A-3′</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>5′-CGG-CTG-TCT-CTT-CTG-GGA-GCA-GAA-3′</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>OTR</td>
<td>5′-CGG-CTG-CCT-CTG-GTA-GGA-GCT-GGT-GCA-3′</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>V1aR</td>
<td>5′-CGG-CTG-CCT-CTG-GTA-GGA-GCT-GGT-GCA-3′</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>V1bR</td>
<td>5′-CCG-CTG-CCT-CTG-GTA-GGA-GCT-GGT-GCA-3′</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>5′-GGT-GCT-CTG-CTG-GTA-GGA-GCT-GGT-GCA-3′</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td><strong>Reverse</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT</td>
<td>5′-CAT-CAA-CCT-TCT-CTG-CTG-AGG-CGC-3′</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>5′-CTG-TCG-GAG-TAG-ATT-GGC-GAA-3′</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>OTR</td>
<td>5′-CTG-TCG-GAG-TAG-ATT-GGC-GAA-3′</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>V1aR</td>
<td>5′-CTG-TCG-GAG-TAG-ATT-GGC-GAA-3′</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>V1bR</td>
<td>5′-CTG-TCG-GAG-TAG-ATT-GGC-GAA-3′</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>5′-CTG-TCG-GAG-TAG-ATT-GGC-GAA-3′</td>
<td>−</td>
<td></td>
</tr>
</tbody>
</table>
FUNCTIONAL OXYTOCIN SIGNALING IN SCCL GROWTH

Cell Proliferation

Incorporation of $[^3]HdTd$ into DNA was measured by liquid scintillation counting. H345 cells in stock culture were washed in DPBS and replated in culture flasks (25 cm$^2$) in RPMI 1640 added with 5% charcoal-coated-FCS (charcoal treatment discards small molecules and proteins such as OT and VP) and 1% insulin-transferrin-selenium solution at an initial density of $1 \times 10^5$ cells/ml. After 24 h of incubation in a humidified atmosphere of 5% CO$_2$ and 95% O$_2$ at 37°C, OT, OVTa, OT + OVTa, VP, or EGF were added to the culture medium at final concentrations ranging from 1–100 nM. Each day, 1 ml of cell suspension was taken and distributed in quadruplicate on 96-well plates (200 µl/well). $[^3]HdTd$ (25 µl, 11.5 µCi/ml) was added, and plates were incubated for 4 h in a humidified atmosphere of 5% CO$_2$ and 95% O$_2$ by air at 37°C. Cellular DNA was harvested from the cells using a Titertek cell harvester (Flow Laboratories). One-min sample counts were obtained in a Beckman liquid scintillation counter (Beckman).

Statistical Analyses

Binding assays were analyzed with GraphPad Prism software, using a one site binding (hyperbola) model or a one site competition model without weighting method. Proliferation curves were analyzed with GraphPad Prism software, using ANOVA followed by Student-Newmaan-Keuls test.

RESULTS

RT-PCR and Sequencing. Total RNA preparations from SCCL cell lines DMS79, H146, and H345 and hypothalamus (positive control) were used in RT-PCR studies to generate products representing OT mRNA and VP mRNA. In each case, a cDNA product of the expected size (OT, 288 bp; VP, 258 bp) was obtained (Fig. 1A).

Transcript sizes were predicted from GenBank sequence HUMOTNPI (G189414) for the human prepro-oxytocin-NP gene and GenBank sequence HUMVPNP (G340302) for the human prepro-8-arginin-NP gene. Sequencing of OT and VP PCR products confirmed the specificity and selectivity of the OT and VP primers. Each primer set fits with mRNA regions corresponding to minimal sequence similarity between OT and VP. Indeed, each PCR product presents 90–99% homology compared with their respective GenBank sequence.

Four different primer sets were used to amplify OTR, V1aR, V1bR/V3R, and V2R. In all pairs, the position of the oligonucleotides fitted with a region corresponding to minimal homology between OTR and different VPR. Moreover, the priming sites were separated by an intron, thus distinguishing products from cDNA from those generated through any contaminating genomic DNA (for OTR, V1aR, and V1bR/V3R) or genomic amplification with a different size than the cDNA product (for V2R; data not shown). As shown in Fig. 1B, a single product of the expected size (408, 468, and 254 bp) was amplified in each of the SCCL cell lines for OTR, V1aR, and V1bR/V3R, respectively. No amplification of V2R (437 bp) mRNA was

Fig. 1. OT, VP, and receptor RT-PCR. A, OT and VP RT-PCR products obtained from total RNA preparation of human hypothalamus (Lane 1) and SCCL cell lines DMS79 (Lane 2), H146 (Lane 3), and H345 (Lane 4). H$_2$O was used as negative control (–), and Lane $M$ represents the molecular weight marker. B, RT-PCR products of OTR (Lanes 5, 9, 13, and 17), V1aR (Lanes 6, 10, 14, and 18), V1bR/V3R (Lanes 7, 11, 15, and 19), and V2R (Lanes 8, 12, 16, and 20) obtained from total RNA preparation of SCCL cell lines H345, DMS79, and H146 and from CHO cells expressing human V1aR, V1bR/V3R, V2R, and OTR from transfected plasmids (positive control, +). H$_2$O was used as negative control (–) respectively for OTR (lane 1), V1aR (lane 2), V1bR/V3R (lane 3) and V2R (lane 4). Selected primers yielded cDNAs of 408 (OTR), 468 (V1aR), 254 (V1bR/V3R), and 437 (V2R) bp.

Fig. 2. OTR binding on H345. A, hyperbolic analysis of saturation binding with $^{125}$I-OVTa. Data are expressed as a function of bound $^{125}$I-OVTa (pM) ± SD (B $^{125}$I-OVTa = B$_T$ – NSB [concentration of radioactive ligand binding]) versus $^{125}$I-OVTa (nM) added. B, Scatchard analysis of H345 saturation binding with $^{125}$I-OVTa. Data are expressed as a function of B/F ratio between radioactive ligand bound and free ligand ± SD versus B $^{125}$I-OVTa (pM). C, competitive displacement of $^{125}$I-OVTa with OVTa (OTR antagonist; □), OT (▲), L-371,257 (OTR antagonist; ●), F180 (V1aR agonist; ●), and VP (●). Data are expressed as a function of B/B0 (%) ± SD, versus log (ligand) (M, molar).

Fig. 2. OTR binding on H345. A, hyperbolic analysis of saturation binding with $^{125}$I-OVTa. Data are expressed as a function of bound $^{125}$I-OVTa (ps) ± SD (B $^{125}$I-OVTa = B$_T$ – NSB [concentration of radioactive ligand binding]) versus $^{125}$I-OVTa (ps) added. B, Scatchard analysis of H345 saturation binding with $^{125}$I-OVTa. Data are expressed as a function of B/F ratio between radioactive ligand bound and free ligand ± SD versus B $^{125}$I-OVTa (ps). C, competitive displacement of $^{125}$I-OVTa with OVTa (OTR antagonist; □), OT (▲), L-371,257 (OTR antagonist; ●), F180 (V1aR agonist; ●), and VP (●). Data are expressed as a function of B/B0 (%) ± SD, versus log (ligand) (M, molar).
OT Binding Assays. Binding of $^{125}$I-OVTA is observed in SCCL cell lines H345 (Fig. 2) DMS79, and H146 (data not shown). Depending on the analytical method (hyperbola or Scatchard), $K_d$ ranges from 0.025–0.06 nM for DMS79 cells and from 0.037–0.089 nM for H146 cells. Both analyses give similar $K_d$ values (0.065 and 0.07 nM) for H345 cells. Saturation bindings with $^{125}$I-OVTA exhibit $K_d$ values of the same order for the three SCCL cell lines. On the contrary, the estimated number of binding sites per million cells is about 10 times higher for H345 cells than for H146 and DMS79 cells. Indeed, 1.10–1.18 fmol/million cell binding sites (depending on analysis method) are deduced from $B_{max}$ (maximal bindings value) for H345 cells, whereas there is 0.15–0.20 fmol/million DMS79 cells binding sites, and 0.10–0.15 fmol/million H146 cells binding sites. Characterization of the receptor evidenced by saturation binding with $^{125}$I-OVTA has been investigated by displacement with various ligands. On H345 cells, OVTA (OTR antagonist), OT, and L-371,257 (OTR agonist) displace $^{125}$I-OVTA in a similar manner with an average EC$_{50}$ of 0.57 ± 0.14 (SD) nM. Displacements observed with VP and F180 (V1aR agonist) do not reach 50% B/Bo, even if ligand concentrations are 200 nM. If ligand is used at 1 nM, the average displacement obtained with OVTA, OT, and L-371,257 is 42.1% B/Bo, whereas it is 90.7% B/Bo with F180 and 79.5% B/Bo with VP. For DMS79 cells, a preferential displacement is observed with OT ligands (OVTA > L-371,257 > OT). Displacements with VP and F180 never exceed 40% B/Bo. For H146 cells, similar displacement curves are observed with OVTA, L-371,257, OT, and VP. However, F180 displacement remains over 60% B/Bo even when the ligand concentration used is 200 nM.

OT and VP Immunocytochemistry. Fig. 3 shows the staining obtained with anti-C (MNF116) and anti-VP (C2.23) on H345, as well as the staining obtained with anti-OT (O33) on DMS79. Similar labeling was observed with other anti-OT Abs (O4 and AOS), and comparable results were obtained for all three different SCCL cell lines studied (data not shown). Staining obtained with anti-CK demonstrates the epithelial phenotype of SCCL cells. Distinct spots are observed with anti-OT mAb O33, whereas a more diffuse labeling is observed with anti-VP mAb C2.23. No staining is observed in the nucleus of cells; the crown-like staining obtained with anti-neurohypophysial peptide Abs seems to correlate with cytoplasm and cell membrane localization.

OT and VP Production. IR OT and IR VP-NP were measured in cell contents, as well as in supernatants of H345 cells cultured for a total period of 120 h. Expression of VP and OT mRNA and LDH levels were established for each incubation step. Data for IR OT has been presented elsewhere (18). IR OT measurement in supernatants ranged from 5–40 pg/ml, and the relative IR OT cellular fraction ranged from 6.5–14 pg/10$^6$ H345 cells. Similar results were obtained for DMS79 and H146 cells, but in these SCCL cell lines, the relative IR OT cellular fraction seemed to be significantly higher than the H345 one. Indeed, IR OT measurement in supernatants was in the same range of concentration for the three cell lines, whereas the relative IR OT cellular fraction ranged from 32.5–70 pg/10$^6$ cells for H146 and 65–140 pg/10$^6$ cells for DMS79. IR VP-NP levels are presented in Fig. 4A, and a maximal secretion of 3.2 ng/ml is measured after 96 h of incubation. Hormone production is concomitant with OT and VP mRNA production (Fig. 4B). LDH quantification shows a constant number of living H345 cells (±4 × 10$^6$ cells) during the whole culture procedure (Fig. 4C).

OT Effect on Cell Growth. The effect of OT on H345 cellular proliferation was evaluated by $[^3]$HdThd incorporation assays (Fig. 5). After 48 h of OT treatment, a significant increase in cell proliferation was observed, compared with the control curve, with 1 nM OT (*, P < 0.01) and 100 nM OT (**, P < 0.001; Fig. 5A). The mitogenic effect of exogenous OT was dose dependent and time persistent. Indeed, the incubation with 1 nM OT showed a growth increase ranging from 18–25%, and the effect of 100 nM OT was from 28–58%. When cells were incubated with a mix of OVTA (1 nM) and OT (1 nM), the OT mitogenic effect was completely abolished, and the proliferation profile was maintained in the range of the control curve. A significant reduction of cell growth (**, P < 0.001) was detected after 24 h of OVTA (1 nM, OTR antagonist) treatment. This decrease...
of cell proliferation was observed at all time points (**, \( P < 0.001 \)) and ranged from 33–48%. VP (1 nM) and EGF (8 nM) stimulation was used as positive control (Fig. 5B). A significant mitotic effect appeared after 48 h of treatment (**, \( P < 0.001 \)), ranging from 24–49%.

The increase in cell proliferation induced by exogenous OT is in the same order of magnitude as the one induced by VP or EGF.

**DISCUSSION**

Although the expression of all known VP receptors (V1aR, V1bR/V3R, and V2R) has already been reported in SCCL (17), the expression of OTR has never been investigated in SCCL cell lines. Our data clearly demonstrate that OTR mRNA is detected in three SCCL cell lines. Binding of \(^{125}\text{I}-\text{OVTA}\) is observed on all SCCL cell lines studied, with a \( K_d \) ranging from 0.025–0.089 nM, depending on the cell line and the analytical method. These values correspond to the characteristics of \(^{125}\text{I}-\text{OVTA}\) binding to mammary tissue, uterus, and testis (44). The selectivity of \(^{125}\text{I}-\text{OVTA}\) binding is confirmed by the results of displacements observed with various OTR and VPR agonists and antagonists. For H345 cells, parallel and equal displacements are observed with OVTA, OT, and L-371,257 (OTR antagonist), whereas VP and F180 (V1aR agonist) show a very poor displacement of \(^{125}\text{I}-\text{OVTA}\). Indeed, VP and F180 displacement curves are shifted to the right and do not reach 50% B/Bo when OVTA, OT, and L-371,257 curves exhibit a complete displacement. These data identify the neurohypophysial binding site present at the H345 cell surface as true OTR. For DMS79 and H146 cells, the binding site density is about 10 times lower than that for H345 cells. The order of binding affinity for DMS79 was OVTA > L-371,257 > OT > VP > F180. For H146, similar displacements were observed with OVTA, OT, L-371,257 and VP, whereas only F180 exhibited very low affinity. The variations observed between these displacement profiles could result from various OTR densities or could be due to the concomitant presence of VPR, as shown by RT-PCR and competitive binding analyses. As a matter of fact, V1aR and V1bR/V3R mRNAs were also identified in concordance with previous studies (17). However, with the primers and the experimental conditions used in this study, we were unable to observe V2R mRNA amplification, although
North et al. (17) have previously demonstrated the presence of this receptor in SCCL cells. Nevertheless, our observations strongly support the expression of OTR by H345, DMS79, and H146 SCCL cell lines. In particular, the cell line H345 seems to be a very appropriate model for additional studies about OTR expression in SCCL.

The presence of IR OT has been reported previously in acetone extracts of SCCL tumors (5). In the present study, OT synthesis and release by SCCL cells expressing OTR were further investigated. The presence of OT transcripts was evidenced by RT-PCR with a novel set of specific primers, designed and controlled on human hypothalamus mRNA. The identification of IR OT was performed using fluorescence immunocytochemistry with three different Abs. Our experiments demonstrate an endogenous OT peptide synthesis. The release of OT has been quantified on H345, DMS79, and H146 cells by OT enzyme immunoassay (18). The variations in total OT levels during the whole culture could reflect a balance between its synthesis/secretion and enzymatic degradation, which could be influenced during autocrine/paracrine signaling. Continuous OT production during the whole culture is confirmed by OT RT-PCR on mRNA cell extracts. The characterization of the neurohypophysial peptide system in these SCCL cells includes VP expression (as shown by RT-PCR) and VP-NP secretion (which reflects the amount of VP released by SCCL cells). The experiments have been performed in such a way that VP and OT synthesis and release could be compared. Our results show that both OT and VP are concomitantly synthesized and released by the three SCCL cell lines investigated, even though in the hypothalamus, these peptides are synthesized by distinct neurons (45). Thus, in the limits of cell line biology, our data clearly demonstrate that, in addition to the VP system, OT and OTR are also implicated in SCCL biology.

In a recent editorial (46), Bussolati and Cassoni emphasized the complexity of the OT/OTR system in physiology and pathophysiology. In breast cancer, in vitro effects of OT on cell proliferation vary from antiproliferative to mitogenic (26, 28, 47, 48). In chorocarcinoma, OT promotes cell growth (30), whereas it decreases proliferation of glial tumors, endometrial adenocarcinomas, and neuroblastosmas (23, 27). Neurohypophysial peptides were also shown to exert mitogenic effects on freshly isolated immature T cells (thyomocytes; Ref. 49). In our experiments, we observed a mitogenic effect of exogenous OT on H345 cell proliferation. This effect, tested at 1 and 100 nm, was dose dependent and time persistent. It was already significant (P < 0.01) after a 48-h incubation with 1 nm OT, which is an efficient and physiological value to activate OTR. This mitogenic effect of exogenous OT (1 nm) was abolished by 1 nm OVT A, demonstrating that the increase of proliferation observed was really induced by OT. The effect of endogenous OT was assessed by incubating the cells with 1 nm OT alone. The inhibition of cell proliferation obtained under these conditions strongly supports a mitogenic action of the OT secreted by the SCCL cells. Such an effect of OT that mimics a growth factor was also recently suggested to be involved in a study on Kaposi’s sarcoma cells (50) as well as when OTR presents a caveolar localization (51).

In conclusion, the present study demonstrates concomitant OT synthesis and secretion, as well as OTR expression, by three distinct human SCCL cell lines. Moreover, we observed an exogenous as well as an endogenous OT-induced increase in SCCL proliferation. The clinical significance of these findings is currently being investigated in human patients with this type of lung cancer. Nevertheless, immuno-therapy toward tumor-derived OT or OT-NP already appears as a valuable new perspective not only for the treatment of SCCL patients with poor response to chemotherapy and radiotherapy-resistant disease but also for all patients expressing OTR. Finally, our results suggest that OT antagonists may offer promise as a potential new therapeutic modality for the treatment of SCCL.

ACKNOWLEDGMENTS

We thank Dr. Y. de Keyzer (INSERM CJF 9208, Paris, France) for the gift of the DMS79 cell line and Ch. Charlet for excellent immunostaining technical assistance. We are also grateful to Dr. D. Hodzic for molecular biology teaching and to Dr. A. Péqueux and F. Brilot for critical reading of the manuscript.

REFERENCES


FUNCTIONAL OXYTOCIN SIGNALING IN SCCL GROWTH


Oxytocin Synthesis and Oxytocin Receptor Expression by Cell Lines of Human Small Cell Carcinoma of the Lung Stimulate Tumor Growth through Autocrine/Paracrine Signaling

Christel Péqueux, Christophe Breton, Jean-Claude Hendrick, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/62/16/4623

Cited articles
This article cites 46 articles, 7 of which you can access for free at:
http://cancerres.aacrjournals.org/content/62/16/4623.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/62/16/4623.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.