The Human Immunodeficiency Virus (HIV)-1 Protease Inhibitor Saquinavir Inhibits Proteasome Function and Causes Apoptosis and Radiosensitization in Non-HIV-associated Human Cancer Cells

Frank Pajonk, Judith Himmelsbach, Katrin Riess, Alfred Sommer, and William H. McBride

ABSTRACT

Cancer cells frequently show high constitutive activity of the antiapoptotic transcription factor nuclear factor κB (NF-κB), which results in their enhanced survival. Activation of NF-κB classically depends on degradation of its inhibitor IκB by the 26s proteasome. Specific proteasome inhibitors induce apoptosis in cancer cells and, at nonlethal concentrations, sensitize cells to the cytotoxic effects of ionizing radiation and chemotherapeutic drugs. Recently, the protease coded by the HIV-1 virus has been shown to share cleavage activities with the proteasome. For this reason, we investigated whether the HIV-1 protease inhibitor saquinavir can inhibit NF-κB activation, block 26s proteasome activity in prostate cancer cells, and promote their apoptosis. The effect of saquinavir on LPS/IFN-γ-induced activation of NF-κB was assessed by gel-shift assays and by Western analysis of corresponding IκBα levels. Its effect on 20s and 26s proteasome activity was analyzed with a fluorogenic peptide assay using whole cell lysates from LnCaP, DU-145, and PC-3 prostate cancer cells pretreated with saquinavir for 9 h. Proteasome inhibition in living cells was assessed using ECV 304 cells stably transfected with an expression plasmid for an ubiquitin/green fluorescence protein fusion protein (ECV 304/10). Apoptosis was monitored morphologically and by flow cytometry. Saquinavir treatment prevented LPS/IFN-γ-induced activation of NF-κB in RAW cells and stabilized expression of IκBα. It inhibited 20s and 26s proteasome activity in lysates from LnCaP, DU-145, and PC-3 prostate cancer cells with an IC50 of 10 μM and caused the accumulation of an ubiquitin/green fluorescence protein fusion protein in living ECV 304/10 cells. Incubation of PC-3 and DU-145 prostate cancer, U373 glioblastoma, and K562 and Jurkat leukemia cells with saquinavir caused a concentration-dependent induction of apoptosis. In the case of PC-3 and DU-145, saquinavir sensitized the surviving cells to ionizing radiation. We conclude that saquinavir inhibits proteasome activity in mammalian cells as well as acting on the HIV-1 protease. Because saquinavir induced apoptosis in human cancer cells, HIV-1 protease inhibitors might become a new class of cytotoxic drugs, alone or in combination with radiation or chemotherapy.

INTRODUCTION

HIV-1 encodes for a protease required for the cleavage of the viral gag-pol polyprotein, and its inhibition leads to the release of noninfectious virus particles (1). The development of specific HIV-1 PIs3 has revolutionized HIV therapy. At present, five different HIV-1 PIs (ritonavir, saquinavir, nelfinavir, indinavir, and amprenavir) are clinically used (2). Bioavailability of at least ritonavir, saquinavir, and indinavir is limited by the fact that they are substrates, and in part inhibitors (3), of the same multidrug resistance gene product (mdr-1), P-glycoprotein (4, 5), that is a common cause for failure of chemotherapy in cancer patients.

The cleavage sites of action for HIV-1 protease were once thought to be unique and distinct from those of mammalian proteases. However, recently, the 20s proteasome has been shown to cleave the same sites (1). This led us to investigate whether saquinavir is an inhibitor of the 20s proteasome, as was previously reported for ritonavir (6). Proteasome inhibition may contribute to some of the effects of PIs that seem to be independent of virus inhibition, such as its immune-modulatory properties in HIV patients and its antitumoral action on HIV-associated Kaposi-sarcoma (6). We also examined whether saquinavir exhibits antitumoral effects in non-HIV-associated cancer of the prostate.

MATERIALS AND METHODS

Cell Culture. Cultures of PC-3, LnCaP, and DU-145 human prostate carcinoma and U373 glioblastoma cells and K562 erythroleukemia and Jurkat T-cell leukemia cells (American Type Culture Collection, Rockville, MD), RAW 264.7 murine macrophages (a gift of Dr. G. Hildebrandt, Department of Radiation Oncology, University Clinic Leipzig, Leipzig, Germany), and ECV 304 human bladder carcinoma cells (DSMZ, Braunschweig) were grown in 75-cm² flasks (Greiner) at 37°C in a humidified atmosphere of 5% CO2/95% air. DMEM (Cell Concepts, Freiburg, Germany) and RPMI 1640 (Cell Concepts) were supplemented with 10% FCS and 1% penicillin/streptomycin (Life Technologies, Inc.) before use. Saquinavir (a generous gift of Dr. Christiane Moehlinghoff, Hoffmann La-Roche, Grenzach, Germany) was solubilized in ethanol/H2O at a concentration 10 mM and used at concentrations of 0, 20, 50, 75, and 100 μM. Controls received solvent only.

Irradiation. PC-3 and DU-145 cells were trypsinized, counted, and diluted to a concentration of 10⁶ cells/ml. The cell suspension was immediately irradiated at room temperature using a 137Cs-laboratory irradiator (IBL 637; CIS bio international) at a dose rate of 0.78 Gy/min. Corresponding controls were sham irradiated.

Clonogenic Survival. Colony-forming assays were performed immediately after irradiation by plating an appropriate number of cells (2 × 10³ to 2 × 10⁴) into Petri dishes, in triplicate. After 14-days culture, cells were fixed, stained with crystal violet, and colonies consisting of more than 50 cells were counted. Resulting survival plots were fitted using a linear-quadratic model.

Transfection. ECV 304 cells were maintained in DMEM (10% FCS, 1% penicillin/streptomycin). Twelve h before transfection, cells were trypsinized and plated at a density of 250,000 cells/well into six-well plates. Cells were transfected with 5 μg of a plasmid (pEGFP-N1; Clontech) coding for an Ub-R-GFP fusion protein under control of a cytomegalovirus promoter (7; a kind gift from Dr. M. Masucci, Karolinska Institute, Sweden) using the Superfect transfection kit (Qiagen) and following the manufacturer’s instructions. Transfected cells were maintained in DMEM (10% FCS, 1% penicillin/streptomycin) supplemented with 500 μg/ml G418 (Sigma), and clones were obtained. Expression of Ub-R-GFP was analyzed by flow cytometry (FL1-H FACSCalibur, Becton Dickinson) using CellQuest Software before and after treatment with the protease inhibitor MG-132 (50 μM, Calbiochem) for 10 h at 37°C. Clone 10 (ECV 304/10), which showed low background and high expression of Ub-R-GFP after MG-132 treatment, was used for inhibition experiments.
Cell Extracts and Electrophoretic Mobility Shift Assays. Cellular extracts were prepared from normal and saquinavir-treated cells by dislodging the cells mechanically, washing with ice-cold PBS, and lysing them in TOTEX buffer [20 mM HEPES (pH 7.9), 0.35 mM NaCl, 20% glycerol, 1% NP40, 0.5 mM EDTA, 0.1 mM EGTA, 0.5 mM DTT, 50 μM PMSF, and 90 trypsin inhibitor units/ml aprotinin] for 30 min on ice. The lysate was centrifuged at 12,000 x g for 5 min. Protein concentration in the supernatant was determined by the Micro BCA method (Pierce). Fifteen μg of protein were incubated for 25 min at room temperature with 2 μl of BSA (10 μg/μl), 2 μl of ddIdC (1 μg/μl), 4 μl of Ficoll buffer (20% Ficoll 400, 100 mM HEPES, 300 mM KCl, 10 mM DTT, and 0.1 mM PMSF), 2 μl of buffer D+ (20 mM HEPES, 20% glycerol, 100 mM KCl, 0.5 mM EDTA, 0.25% NP40, 2 mM DTT, and 0.1 mM PMSF), and 10 μl of the [γ-32 P]ATP-labeled oligonucleotide (Promega; NF-kB, AGTGGAGGGGACTTTCCCCAGG). A negative control was prepared for one sample by adding unlabeled oligonucleotide in 50-fold excess. Electrophoresis was carried out in native 4% polyacrylamide/0.5-fold Tris/boric acid/EDTA gels. Dried gels were placed on a phosphor screen for 24 h and analyzed on a phosphorimager (IPR 1500; Fuji).

Proteasome Function Assays. Proteasome function was measured as described previously (8) with some minor modifications. Briefly, cells were washed with PBS, then with buffer I [50 mM Tris (pH 7.4), 2 mM DTT, 5 mM MgCl2, and 2 mM ATP], and pelleted by centrifugation. Glass beads and homogenization buffer [50 mM Tris (pH 7.4), 1 mM DTT, 5 mM MgCl2, 2 mM ATP, and 250 mM sucrose] were added and cells were vortexed for 1 min. Beads and cell debris were removed by centrifugation at 1,000 x g for 5 min, and the supernatant was further clarified by spinning at 10,000 x g for 20 min. Protein concentration was determined by the Micro BCA protocol (Pierce) with BSA (Sigma) as standard. Twenty μg of protein from each sample was diluted with buffer I to a final volume of 200 μl. To assess 26S function, fluorogenic proteasome substrate SucLLVY-AMC (chymotrypsin-like; Sigma) was dissolved in DMSO and added in a final concentration of 80 μM (in 0.8% DMSO). To assess 20S function, buffer I was replaced by buffer containing SDS [20 mM HEPES (pH 7.8), 0.5 mM EDTA, and 0.03% SDS (9)]. Proteolytic activity was monitored continuously using a fluorescence plate reader (Spectra Max Gemini XS; Molecular Devices; 37°C) at 380/460 nm by release of the fluorescent group AMC.

Immunoblotting. Cells were lysed in radioimmunoprecipitation assay buffer [50 mM Tris-HCl (pH 7.2), 150 mM NaCl, 1% NP40, SDS, 10 mM PMSF, aprotinin, and sodium vanadate]. Protein concentrations were determined using the Micro BCA protocol (Pierce) with BSA (Sigma) as standard. Ten μg of protein were separated on SDS gel (0.1% SDS/12% polyacrylamide) and blotted to polyvinylidene difluoride membranes at 4°C. After blocking with Blotto-buffer (Tris-buffered saline, 0.1% Tween 20, and 5% skim milk) for 1 h at room temperature, the membranes were incubated with a polyclonal antibody against IκBα (0.5 μg/ml; BD PharMingen) for 1 h at room temperature. A secondary horseradish peroxidase-conjugated antibody and the ECLplus system (Amersham) were used for visualization.

Flow Cytometry. For assessment of Ub-R-GFP expression, cells were trypsinized, pelleted (5 min, 500 x g) and washed twice in PBS. GFP content was analyzed by flow cytometry using the CellQuest Software (FL1-H, FACSCalibur; Becton Dickinson). The DNA profiles of adherent and nonadherent cells in drug-treated populations were analyzed by flow cytometry using CellQuest Software (FL2-A, FACSCalibur; Becton Dickinson). Cells were washed in PBS and fixed overnight in ice-cold 75% ethanol. The next day, cells were washed in PBS. The cell pellet was incubated with 50 μg/ml RNase A and 1 mg/ml propidium iodide for 10 min and washed in PBS before examination. TUNEL assay was performed using the FlowTACS in situ kit (R&D Systems GmbH, Wiesbaden, Germany) following the manufacturer’s instructions.

RESULTS
Saquinavir Prevents Activation of Transcription Factor NF-kB. NF-kB signaling is normally dependent on proteasomal degradation of the binding inhibitor IκBα and is prevented by treatment of cells with proteasome inhibitors (10). Murine RAW 264.7 macrophages respond strongly with NF-kB activation to treatment with LPS (0.1 μg/ml) and IFN-γ (100 units/ml) for 6 h. This model was, therefore, used to determine whether simultaneous addition of different concentrations of saquinavir (0, 6.25, 12.5, 25, and 50 μM) affected the activation process. When total cellular lysates were analyzed at 6 h, we found a concentration-dependent inhibitory effect of saquinavir on constitutive and LPS/IFN-γ-induced increase of NF-κB DNA-binding activity (Fig. 1A). This inhibition coincided with an accumulation of IκBα, which indicated involvement of the classical activation pathway of NF-κB by proteasome-dependent degradation of IκBα (Fig. 1B). Similar results were observed for human PC-3 prostate cancer cells using 25-μM concentrations of saquinavir (data not shown).
Saquinavir is an inhibitor of the 26s proteasome. We have previously shown that prostate cancer cells express high constitutive levels of NF-kB that can be blocked by treatment with proteasome inhibitors (11). The ability of saquinavir to inhibit proteasome function was examined by incubating cellular extracts of PC-3, DU-145, and LnCaP human prostate cancer cells with different concentrations of the drug (100, 50, 25, 12.5, 6.25, 3.125, 1.6, and 0 \mu M). Chymotryptic, trypsin, and peptidyl-glutamyl 20s and 26s proteasome activities were continuously monitored for 30 min by the release of AMC from the fluorogenic proteasome substrates SucLLVY-AMC, Z-AAR-AMC, and Z-LLE-AMC. Saquinavir inhibited the function of both chymotryptic 26s (Fig. 2, A, B, and C) and 20s (Fig. 2D) and peptidyl-glutamyl (data not shown) proteasome activity in a concentration-dependent fashion. The IC_{50} for the chymotryptic 26s proteasome activity was 10 \mu M, 1.8 \mu M for the chymotryptic 20s proteasome activity, 5.2 \mu M for the peptidyl-glutamyl 26s proteasome activity, and 1.6 \mu M for the peptidyl-glutamyl 20s proteasome activity. We could not show any effect on trypsin 20s or 26s proteasome activity. In contrast, when PC-3 and LnCaP cells were treated with saquinavir supplemented media for 45 min and the extracts were then tested for proteasome activity, the IC_{50} was about 80 \mu M (Fig. 2, E and F). The difference in the ability of saquinavir to inhibit proteasome activity in whole cells and in extracts is probably attributable to its bioavailability, which may be adversely affected by saquinavir being a substrate of the mdr-1 gene product P-glycoprotein, which is expressed at high levels in prostate cancer cells (12).
To confirm that saquinavir can inhibit proteasome activity in cells, ECV 304 cells, transfected with Ub-R-GFP fusion protein (clone 10), were treated for 12 h with media supplemented with different concentrations of saquinavir and incubated for an additional 9 h. Subsequent flow cytometric analysis revealed a concentration-dependent increase in GFP-positive cells from initially, 0.38% (0 μM) to 20.9% (80 μM; Fig. 3).

Saquinavir Induces Apoptosis in Non-HIV-associated Human Cancer Cells. One of the many consequences of proteasome inhibition is induction of apoptosis (13). The ability of saquinavir treatment to achieve this end point was, therefore, tested. In PC-3, cells, 100 μM induced apoptosis starting within 60 min (Fig. 4A). Comparable results were obtained in DU-145 (data not shown), U373 (data not shown), and K562 and Jurkat cells (Fig. 4B). By 24 h, all of the cell lines showed typical morphological criteria of apoptosis. Most PC-3 cells tolerated up to 50 μM for over 24 h, but 60 μM induced considerable apoptosis by this time point. By 48 h, PC-3 cells showed an increase of the apoptotic (sub-G1) fraction from 10.4% (0 μM) to 48.2% (50 μM), 55.7% (60 μM) and 78.2% (80 μM; Fig. 4C). The induction of apoptosis was confirmed by TUNEL-staining (Fig. 4D).

Saquinavir Sensitizes PC-3 and DU-145 Prostate Cancer Cells to Ionizing Radiation. Transient inhibition of proteasome function has been shown to sensitize tumor cells to ionizing radiation (14). To test a possible effect of saquinavir on the clonogenic survival of PC-3 cells after radiation therapy, clonogenic assays were performed. Two-h pretreatment of PC-3 or 3-h pretreatment of DU-145 cells with...
50 μM and 60 μM concentrations of saquinavir did not significantly alter the plating efficiency of PC-3 cells (control cells, 52.1 ± 4.2%; saquinavir-treated cells, 47.3 ± 1.7%) and DU-145 cells (control cells, 23.1 ± 2.5%; saquinavir-treated cells, 26.0 ± 2.6%). However, pretreatment with saquinavir sensitized the surviving cells to ionizing radiation (Fig. 5; PC-3: control cells, α = 0.35, β = 0.045, α/β = 7.8; saquinavir-treated cells: α = 0.334, β = 0.069, α/β = 4.8; DU-145 cells: control cells, α = 0.35, β = 0.034, α/β = 10.3; saquinavir-treated cells, α = 0.36, β = 0.075, α/β = 4.8).

DISCUSSION

The Ub/26s proteasome pathway is the major non-lysosomal proteolytic pathway in mammalian cells. It is responsible for the degradation of short-lived (15), and 70–90% of all long-lived proteins (15, 16). Inhibition of proteasome function has been shown to induce apoptosis in cancer cells (11, 17–22), and partial inhibition sensitizes surviving cells to the cytotoxic effects of ionizing radiation and chemotherapeutic drugs (11, 23). Proteolysis by the Ub/26s proteasome pathway is an important component of regulation of cellular functions like signal transduction, cell cycle control, and immune responses (24). Interestingly, the 20s core unit of the proteasome is the only mammalian protease known, thus far, to share specific cleavage action sites with the HIV-I protease, which may be a pathogenic mechanism adopted by the virus. A recent report indicated that the HIV-I PI ritonavir inhibits 20s proteasome function (25). Here, we investigated the effect of the HIV-I PI saquinavir, which is clinically less toxic (1), on 20s and 26s proteasome function and the possible physiological consequences of such an inhibition in human cancer cells.

Prostate cancer cells in general show elevated constitutive DNA-binding activity of the antiapoptotic transcription factor NF-κB (26, 27), and we, and others, have demonstrated that the inhibition of NF-κB induces apoptosis in cancer cells (17, 20, 26, 28). NF-κB is a hetero- or homodimer of the subunits p50, p52, p65/RelA, c-Rel, and Rel-B. It is sequestered preformed in the cytosol by inhibitor molecules of the IκB family. Activation of this pathway is normally achieved by phosphorylation, polyubiquitination, and subsequent degradation by the 26s proteasome of one of its most important inhibitors, IκBα. Degradation of IκBα frees NF-κB for translocation to the nucleus and activation of its target genetic programs (reviewed in Ref. 29). We have shown that the HIV-I PI saquinavir blocks NF-κB activation in the murine RAW macrophage and human PC-3 prostate cancer cell lines and stabilizes IκBα in a concentration-dependent fashion. Because activation of NF-κB is an important precondition for replication and persistence of HIV (30), this suggests a pathway for action of saquinavir that is independent of direct viral protease inhibition.

Saquinavir, like ritonavir, was shown to directly inhibit 20s and 26s proteasome function in vitro. Because the inhibition of both 20s and 26s function showed similar drug concentration dependency, we conclude that it acts on the 20s core unit of the proteasome. Treatment of cells with saquinavir also inhibited proteasome function, although the IC50 was markedly higher, perhaps because saquinavir is a substrate for the multidrug resistance (mdr-1) gene product P-glycoprotein, which is highly expressed in PC-3 human prostate cancer cells (12). Physiological inhibition of proteasome function by saquinavir was demonstrated by the finding of an accumulation of the Ub-R-GFP reporter of proteasome function (7) in living ECV 304 cells stably transfected with this construct.

A physiological consequence of the saquinavir treatment of PC-3 and DU-145 prostate cancer, U373 glioblastoma, and K562 and Jurkat leukemia cells was apoptosis, which occurred at concentrations that were similar to those needed to inhibit proteasome function. These data are consistent with the hypothesis that saquinavir-induced apoptosis is the result of the inhibition of proteasome function and the blocking of NF-κB activation. We have previously shown that the inhibition of NF-κB activation in these cell lines by transduction with an IκB super-repressor gene also results in apoptosis (11).

The Ub/26s proteasome has recently been identified as a novel target for cancer therapy (11, 21, 31, 32). In this study, short-time preincubation with saquinavir clearly sensitized PC-3 and DU-145 prostate cancer cells to ionizing radiation, which resulted in a change...
of the α:β ratio from 7.8 and 10.3, respectively, in control cells to 4.8 in saquinavir-treated cells. The clinical significance of these observations is supported by a recent report showing dramatically improved survival for AIDS patients suffering from HIV-related primary central nervous system lymphoma (PCNSL) treated with highly active anti-retroviral therapy (HAART) and cranial irradiation when compared with cranial irradiation or HAART treatment alone (33). Results from two recent reports indicate that this effect is independent of the recovery of the immune system (34, 35). Because the inhibition of proteasome function, in general, sensitizes tumor cells to ionizing radiation (11, 23) and HIV-I Ps have been shown to inhibit P-glycoprotein-mediated multidrug resistance (3), HIV-I Ps may become a new class of chemotherapeutic agents in radiochemotherapy. As in HIV therapy, the use of radiation therapy combined with saquinavir and “baby-concentrations” of ritonavir may overcome the problem of low bioavailability of the drug (36).

ACKNOWLEDGMENTS

We are grateful to Dr. M. Masucci, Karolinska Institute, Sweden, for providing the Ub-R-GFP plasmid, and Dr. Christiane Mocklinghoff, Hoffmann La-Roche (Grenzach, Germany), for providing saquinavir.

REFERENCES

The Human Immunodeficiency Virus (HIV)-1 Protease Inhibitor Saquinavir Inhibits Proteasome Function and Causes Apoptosis and Radiosensitization in Non-HIV-associated Human Cancer Cells

Frank Pajonk, Judith Himmelsbach, Katrin Riess, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/62/18/5230

Cited articles
This article cites 33 articles, 8 of which you can access for free at:
http://cancerres.aacrjournals.org/content/62/18/5230.full#ref-list-1

Citing articles
This article has been cited by 20 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/62/18/5230.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.