Morphological and Molecular Heterogeneity within Nonmicrosatellite Instability-High Colorectal Cancer

Vicki L. J. Whitehall, Coral V. A. Wynter, Michael D. Walsh, Lisa A. Simms, David Purdie, Nirmala Pandeya, Joanne Young, Stephen J. Meltzer, Barbara A. Leggett, and Jeremy R. Jass

Conjoint Gastroenterology Laboratory, Clinical Research Centre, Royal Brisbane Hospital Research Foundation, Queensland 4029, Australia [V. L. J. W., C. V. A. W., M. D. W., L. A. S., J. Y., B. A. L.]; Division of Population Studies and Human Genetics, Queensland Institute of Medical Research, Queensland, Australia 4029 [D. P., N. P.]; University of Maryland, Baltimore, Baltimore, Maryland 21201 [S. J. M.]; and Department of Pathology, University of Queensland, Brisbane, Queensland, Australia 4006 [J. R. J.]

Abstract

Colorectal cancer (CRC) has traditionally been classified into two groups: microsatellite stable/low-level instability (MSS/MSI-L) and high-level MSI (MSI-H) groups on the basis of multiple molecular and clinicopathologic criteria. Using methylated tumor (MINT) markers 1,2, and 31, we stratified 77 primary CRCs into three groups: MINT++ (+2), MINT+ (+1–2), and MINT− (0 markers methylated). The MSS/MSI-L/ MINT++ group was indistinguishable from the MSI-H/MINT++ group with respect to methylation of p16ink4a, p14arf, and RIZ1, and multiple morphological features. The only significant difference between MSI-H and non-MSI-H MINT++ cancers was the higher frequency of K-ras mutation (P < 0.004) and lower frequency of hMLH1 methylation (P < 0.001) in the latter. These data demonstrate that the separation of CRC into two nonoverlapping groups (MSI-H versus MSS/MSI-L) is a misleading oversimplification.

Introduction

A series of CRCs1 may be perceived as a biological continuum within which there may be discontinuities as revealed by particular tests. A test may form the basis of a classification if it generates groups that are distinguished by clinical, pathological, or molecular features. Stratification on the basis of testing for DNA MSI identifies a MSI-H subset with well-established clinical and pathological correlates (1, 2). Silencing of the DNA mismatch repair gene hMLH1 by methylation of a CpG island within its promoter region is the usual mechanism for generating sporadic MSI-H CRC (3–5). The fact that no single feature is the exclusive property of MSI-H CRC indicates that the disease is a continuum rather than an aggregation of separate disease types.

Testing CRCs with DNA microsatellite markers identifies a low-level group (MSI-L) that is not as well defined as the MSI-H subset. Most CRCs reveal MSI-L to some degree when tested with a large panel of microsatellite markers, but the distribution of instability is nonrandom. At one end of the spectrum is an excess of “super-stable” cancers, whereas at the other end there is an excess of “true MSI-L” cancers with between 10 and 25% of markers showing instability (6).

Materials and Methods

The material was derived from a prospectively collected, hospital-based frozen tumor bank comprising 879 CRC specimens, and classified as MSI-H, MSI-L, and MSS using at least six DNA microsatellite markers (10, 11). Instability in ≥40% of markers was taken as the breakpoint distinguishing MSI-H from MSI-L cancers. Specimens comprising 16 MSI-H, 38 MSI-L, and 23 MSS cancers were included in the study on the basis of prior molecular characterization with regard to microsatellite status, K-ras mutation, methylation of MGMT, and immunohistochemical evaluation of MGMT and hMLH1 expression, as well as availability of DNA for additional methylation assays (7, 12). The MSS cases were a randomly selected subset of this dominant group.

Methylation-specific PCR was used to test for methylation as has been described previously for p16ink4a (13), p14arf (14), MGMT (15), and RIZ1 (16).

COBRA for hMLH1 methylation (17) was modified to include nested primers for increased sensitivity. The nested sense primer was 5′-GATTTAG-TAATTTAGAGT-3′ and antisense was 5′-AATACCTTCAACACT- CAC-3′. The primary product was amplified in a total volume of 25 µl containing 2.5 µl bisulfite-modified DNA, 1× PCR buffer (Applied Biosystems), 0.2 mM deoxyribonucleoside triphosphate, 1.3 mM Mg2+, 4 µµ of each primer, and 0.5 units Red Hot Taq (Applied Biosystems). One µl of the primary product was reamplified in a total volume of 50 µl using the same reagent concentrations. Fifteen µl of the nested PCR product was digested with 0.8 units RsaI at 37°C overnight. Digested samples were analyzed on 10% polyacrylamide gels and visualized with ethidium bromide. MINTs 1, 2, 12, and 31 were assayed by COBRA (Fig. 1).4

Received 3/12/02; accepted 9/18/02.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by National Cancer Institute Grant 1-U01-CA74778 (Collaborative Family Registry for Colorectal Cancer Family Studies); the National Health and Medical Research Council of Australia; the Walter Paulsen Memorial Tumor Bank; and NIH Grants CA77057, CA85069, and CA95323.

2 To whom requests for reprints should be addressed, at Conjoint Gastroenterology Laboratory, Bancroft Centre, Herston Road, Queensland 4029, Australia. Phone: 617-336-0491; Fax: 617-336-0188; E-mail: vickiWh@qmrda.edu.au.

3 The abbreviations used are: CRC, colorectal cancer; MSI, microsatellite unstable; MINT, microsatellite stable; MSI-L, low-level microsatellite instability; MSI-H, high-level microsatellite instability; MGMT, O-6-methylguanine-DNA-methyltransferase; CIMP, CpG island methylator phenotype; MINT, methylated in tumor; COBRA, combined bisulfite restriction analysis.

One explanation for the variation in MSI-L levels is somatic alteration of genes having a relatively subtle influence on the efficiency of DNA mismatch repair. In keeping with this suggestion, methylation and loss of expression of the DNA repair gene MGMT is associated with MSI-L status (7).

An alternative but related approach to classifying CRC is through testing for the presence of methylation of CpG islands. Sporadic MSI-H cancers with methylation of hMLH1 show the CIMP in which multiple CpG-rich genes and MINT loci are methylated (8). However, CIMP-positive cancers include some that are non-MSI-H (9). Because methylation is a specific mechanism for gene silencing, whereas MSI is merely an epiphenomenon serving as a biomarker for DNA mismatch repair deficiency, it might be supposed that methylator status would serve as the more valid basis for tumor classification. Classification on the basis of MSI testing might result in the artificial splitting of a group defined on the basis of CIMP status. To explore this hypothesis we have examined the distribution of multiple variables across CRCs stratified by both MSI and CIMP status. The study shows that cancers with multiple MSI-H-related features occur outside the MSI-H group, a finding that may be relevant to theories of tumorigenesis.

Materials and Methods

The material was derived from a prospectively collected, hospital-based frozen tumor bank comprising 879 CRC specimens, and classified as MSI-H, MSI-L, and MSS using at least six DNA microsatellite markers (10, 11). Instability in ≥40% of markers was taken as the breakpoint distinguishing MSI-H from MSI-L cancers. Specimens comprising 16 MSI-H, 38 MSI-L, and 23 MSS cancers were included in the study on the basis of prior molecular characterization with regard to microsatellite status, K-ras mutation, methylation of MGMT, and immunohistochemical evaluation of MGMT and hMLH1 expression, as well as availability of DNA for additional methylation assays (7, 12). The MSS cases were a randomly selected subset of this dominant group.

Methylation-specific PCR was used to test for methylation as has been described previously for p16ink4a (13), p14arf (14), MGMT (15), and RIZ1 (16).

COBRA for hMLH1 methylation (17) was modified to include nested primers for increased sensitivity. The nested sense primer was 5′-GATTTAG-TAATTTAGAGT-3′ and antisense was 5′-AATACCTTCAACACT- CAC-3′. The primary product was amplified in a total volume of 25 µl containing 2.5 µl bisulfite-modified DNA, 1× PCR buffer (Applied Biosystems), 0.2 mM deoxyribonucleoside triphosphate, 1.3 mM Mg2+, 4 µµ of each primer, and 0.5 units Red Hot Taq (Applied Biosystems). One µl of the primary product was reamplified in a total volume of 50 µl using the same reagent concentrations. Fifteen µl of the nested PCR product was digested with 0.8 units RsaI at 37°C overnight. Digested samples were analyzed on 10% polyacrylamide gels and visualized with ethidium bromide. MINTs 1, 2, 12, and 31 were assayed by COBRA (Fig. 1).4

Morphological features were scored without knowledge of either MSI or methylator status: (1) grade (poor or other); (2) cytoplasm (eosinophilic or basophilic); (3) morphological heterogeneity with respect to either tumor type or grade of tumor differentiation (absent or present); (4) tumor infiltrating (intraepithelial) lymphocytes (absent or present); (5) invasion (expanding or infiltrating); (6) nuclear chromatin pattern (condensed or vesicular); (7) nuclear shape (round or ovoid); (8) nucleoli (large or small); (9) extracellular mucin (absent or present); (10) solid or medullary pattern (absent or present); (11) goblet cells (absent or present); and (12) epithelial serration (absent or present).

Cancers were grouped as MINT++ (3–4 markers methylated), MINT++ (1–2 markers methylated), and MINT−. All 16 of the MSI-H cancers were MINT++ (group A, n = 16). Non-MINT++/MSI-H cancers may arise through germ line or somatic mutation of a DNA mismatch repair gene. There were 6 MSI-H cancers that showed little or no methylation of MINT loci. These cancers were excluded from this study on the basis that they may have been derived from patients with hereditary nonpolyposis colorectal carcinoma or represent examples of somatic mutation of hMLH1. The non-MSI-H cancers were grouped as B (MINT++; n = 8), C (MINT++; n = 29), and D (MINT−; n = 24).

Morphological and genotypic characteristics of tumors were compared across levels of methylation and MSI using Pearson’s χ2 test for association and Fisher’s Exact test (for rare features). As the morphological characteristics of tumors are related, we also conducted multivariate analysis to determine factors that were independently associated with methylation. In particular, anatomical location, tumor heterogeneity, presence of tumor infiltrating lymphocytes, invasion, and extracellular mucin were interrelated, so were adjusted for in all of the analyses. When comparing the four methylation/MSI groups, multinomial logistic regression was used (18), and when comparing two methylation groups, binary logistic regression was conducted. All of the analyses were performed using SAS for Windows release 8.2. A P < 0.05 was used to determine statistical significance.

Results

Groups A and B (MINT+++) were combined and compared with group C plus D (MINT++/−) with respect to morphological features. Crudely, features significantly associated with MINT+++ cancers were: tumor heterogeneity (P < 0.001), tumor-infiltrating lymphocytes (P = 0.004), round nuclei (P = 0.015), vesicular nuclei (P = 0.007), prominent nucleoli (P = 0.012), extracellular mucin (P < 0.001), and proximal location (P < 0.001). After multivariate analyses, the only features to retain a significant association with MINT+++ cancers were extracellular mucin (P = 0.001) and proximal location (P = 0.05). Group A and B cancers differed from each other only with respect to tumor heterogeneity (P = 0.04). Additionally group B cancers were more likely to show diffuse infiltration (P = 0.03). There were no differences between group A and group B cancers with respect to methylation of p16INK4a, p14ARF, or RIZ1, but K-ras mutation was associated with group B cancers (P = 0.004), and more group B cancers showed MGMT methylation, although the difference was not significant (P = 0.12). Methylation of hMLH1 occurred in all of the group A cancers and in no group B cancers (P < 0.001). There was full immunohistochemical concordance.

After adjusting for confounding factors, group B cancers differed from group C cancers in showing significantly more cases with p16INK4a (P = 0.03) and RIZ1 (P < 0.02) methylation, and included more cases with extracellular mucin (P = 0.05). There were more group B cancers with methylation of p14ARF, although this did not reach significance (P = 0.09). Differences between group B and group D cancers were in a similar direction with respect to methylation, although the findings for p16INK4a (P = 0.09), p14ARF (P = 0.06), and RIZ1 (P = 0.1) fell short of significance (Table 1). The distribution of specific MINT methylation appeared to be non-random between the four groups. MINT1 methylation was more frequent in group A than group B (P = 0.02), whereas MINT31 was more frequently methylated in group B than group A, although the difference was not significant (P = 0.14). There was no difference in MINT1 methylation between group B and group C (P = 0.2; see Table 1 for crude and adjusted Ps across the four groups).

A solid or medullary architecture and an expanding growth pattern are associated with MSI-H cancers. Although these features were not significantly more frequent in group A and B cancers in this study, they were added to heterogeneity, lymphocytes, nuclear shape, chromatin, nucleoli, and mucin to give an overall morphology score (maximum 8). Fifteen of 16 group A cancers scored 5 or more. Four group B (50%), 8 group C (28%), and 4 group D (17%) cancers scored ≥5. Among the 16 non-MSI-H cancers with an MSI-H morphology score of ≥5, 12 showed methylation of target genes other than hMLH1. The frequency of methylation of MGMT, p16INK4a, p14ARF, and RIZ1 in these cases was 56, 19, 31, and 6%, respectively. The 16 cases showing morphological mimicry of sporadic MSI-H cancer presented at a mean age of 72 years, 8 (50%) occurred in the proximal colon, 9 subjects (56%) were female, and 9 (56%) cancers were MSI-L. Figs. 1 and 2 illustrate an MSS, group B cancer showing morphological and molecular mimicry of MSI-H cancers.

Discussion

CRCs may be considered as a continuum in which particular tests such as MSI and CIMP status reveal discontinuities. Features additional to MSI and CIMP status that were tested in this study included...
12 morphological variables, methylation of hMLH1, p16\(^{INK4a}\), p14\(^{ARF}\), RIZ1, and MGMT, and K-ras mutation. There was a decreasing gradient of MSI-H-associated morphological and molecular features among non-MSI-H cancers stratified as MINT/H11001/H11001 (group B), MINT/H11001/H11001 (group C), and MINT/H11002 (group D; Table 1). Group B cancers showed few morphological or molecular differences from group A cancers. Whereas none showed hMLH1 methylation, 7 of the 8 were MSI-L. Even the single MSS MINT/H11001/H11001 cancer revealed marked morphological (Fig. 2) and molecular (methylation of p16\(^{INK4a}\), p14\(^{ARF}\), and MGMT) overlap with MSI-H cancers. The findings suggest that MSI-H morphology, and p16\(^{INK4a}\), p14\(^{ARF}\), and MGMT methylation are not dependent on MSI status. It is more likely that the shared features among MSI-H and subsets of non-MSI-H cancers are explained by a common pathway of tumorigenesis in which methylation plays a key role in gene silencing.

A distinguishing feature of group A and group B cancers (apart from methylation of hMLH1) was the high frequency of K-ras mutation within the latter. A low frequency of K-ras mutation in sporadic MSI-H cancer is described in the literature (11, 19, 20). Within the non-MSI-H group there is evidence that the highest frequency of K-ras mutation occurs within CIMP-positive CRCs (9, 21), MSI-L CRCs (11, 22, 23), or both. The highest frequency of K-ras mutation

Table 1 Distribution of molecular variables in groups A–D (with percentages in brackets)

<table>
<thead>
<tr>
<th>Group</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Crude P</th>
<th>Adjusted P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSI-H</td>
<td>MINT++</td>
<td>MINT++</td>
<td>MINT++</td>
<td>MINT--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-MSI-H</td>
<td>16</td>
<td>8</td>
<td>29</td>
<td>24</td>
<td><0.0001</td>
<td>0.05</td>
</tr>
<tr>
<td>MSI-L</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSS</td>
<td>—</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal location</td>
<td>14 (88)</td>
<td>4 (50)</td>
<td>12 (41)</td>
<td>4 (17)</td>
<td><0.0001</td>
<td>0.05</td>
</tr>
<tr>
<td>Poor differentiation</td>
<td>4 (25)</td>
<td>3 (38)</td>
<td>8 (28)</td>
<td>5 (21)</td>
<td>0.80</td>
<td>0.70</td>
</tr>
<tr>
<td>Eosinophilic cytoplasm</td>
<td>4 (25)</td>
<td>2 (25)</td>
<td>15 (52)</td>
<td>8 (33)</td>
<td>0.26</td>
<td>0.44</td>
</tr>
<tr>
<td>Tumor heterogeneity</td>
<td>11 (69)</td>
<td>2 (25)</td>
<td>3 (10)</td>
<td>6 (25)</td>
<td><0.0001</td>
<td>0.06</td>
</tr>
<tr>
<td>Invasion (expanding)</td>
<td>11 (69)</td>
<td>3 (38)</td>
<td>8 (28)</td>
<td>5 (21)</td>
<td>0.013</td>
<td>0.27</td>
</tr>
<tr>
<td>Vascular nucleus</td>
<td>16 (100)</td>
<td>5 (63)</td>
<td>21 (72)</td>
<td>18 (75)</td>
<td>0.06</td>
<td>0.33</td>
</tr>
<tr>
<td>Round nucleus</td>
<td>10 (63)</td>
<td>4 (50)</td>
<td>9 (31)</td>
<td>5 (21)</td>
<td>0.04</td>
<td>0.73</td>
</tr>
<tr>
<td>Conspicuous nuclei</td>
<td>10 (63)</td>
<td>4 (50)</td>
<td>16 (55)</td>
<td>8 (33)</td>
<td>0.008</td>
<td>0.05</td>
</tr>
<tr>
<td>EC mucin present</td>
<td>15 (94)</td>
<td>5 (63)</td>
<td>8 (28)</td>
<td>19 (79)</td>
<td><0.001</td>
<td>0.02</td>
</tr>
<tr>
<td>Solid pattern present</td>
<td>3 (19)</td>
<td>3 (38)</td>
<td>4 (14)</td>
<td>2 (8)</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>Goblet cells present</td>
<td>5 (31)</td>
<td>4 (50)</td>
<td>9 (31)</td>
<td>6 (25)</td>
<td>0.63</td>
<td>0.42</td>
</tr>
<tr>
<td>Serration present</td>
<td>7 (44)</td>
<td>3 (38)</td>
<td>15 (52)</td>
<td>6 (25)</td>
<td>0.27</td>
<td>0.06</td>
</tr>
<tr>
<td>K-ras mutation</td>
<td>0 (0)</td>
<td>4 (50)</td>
<td>13 (45)</td>
<td>8 (33)</td>
<td>0.002</td>
<td>0.59</td>
</tr>
<tr>
<td>RIZ1 methylation</td>
<td>6 (38)</td>
<td>2 (25)</td>
<td>0 (0)</td>
<td>1 (4)</td>
<td><0.0001</td>
<td>0.05 (^a)</td>
</tr>
<tr>
<td>MGMT methylation</td>
<td>3 (19)</td>
<td>4 (50)</td>
<td>15 (52)</td>
<td>10 (42)</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>p16 methylation</td>
<td>10 (63)</td>
<td>4 (50)</td>
<td>10 (34)</td>
<td>5 (21)</td>
<td>0.005</td>
<td>0.06</td>
</tr>
<tr>
<td>p14 methylation</td>
<td>10 (63)</td>
<td>5 (63)</td>
<td>6 (21)</td>
<td>6 (25)</td>
<td>0.009</td>
<td>0.20</td>
</tr>
<tr>
<td>hMLH1 methylation</td>
<td>16 (100)</td>
<td>0 (0)</td>
<td>2 (7)</td>
<td>0 (0)</td>
<td><0.0001</td>
<td>0.05 (^b)</td>
</tr>
<tr>
<td>MINT1 methylation</td>
<td>16 (100)</td>
<td>5 (63)</td>
<td>11 (38)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINT2 methylation</td>
<td>16 (100)</td>
<td>8 (100)</td>
<td>16 (55)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINT12 methylation</td>
<td>15 (94)</td>
<td>8 (100)</td>
<td>11 (38)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINT31 methylation</td>
<td>9 (56)</td>
<td>7 (88)</td>
<td>1 (3)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Ps adjusted for anatomical location, heterogeneity, tumor-infiltrating lymphocyte present, invasion, and extracellular mucin.

\(^b\) Not included in multivariate analysis because of 0 cells.
in a selective growth advantage, and in the case of MGMT

References

event. In summary, a subset of non-MSI-H cancers mimics MSI-H

although the adjusted

rated adenomas, and sporadic MSI-H CRC (27). In this study, glan-

morphological, extending to the up-regulation of gastric (MUC5AC)

cytological and architectural features of CIMP

also been observed in serrated adenomas (26). It is also relevant that

common origin, for example driven by silencing of

hMLH1

molecular heterogeneity with subsets characterized by methylation of

aberrant crypt foci. Both aberrant crypt foci and serrated polyps show

polyps probably arise within nondysplastic microscopic lesions called

hypomethylated DNA repair genes and/or K-

mutation has

Methylation of these genes may result

21. Hawkins, N., Norrie, M., Cheong, K., Mokany, E., Ku, S., Meagher, A., O’Conner, T., Ward, R.

13. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. Methy-

14. Esteller, M., Tortola, S., Toyota, M., Capella, G., Peinado, M. A., Peinado, M. A.,

mutation (24).

References

1387, 2002.

1307, 2002.

1358, 2002.

1307, 2002.

1307, 2002.

1307, 2002.

1307, 2002.

1307, 2002.

1307, 2002.

Announcements

MEETING OF THE RADIATION RESEARCH SOCIETY

The annual meeting of the Radiation Research Society will be held at the State University of Iowa, Iowa City, on June 22–24, 1953. The Society will be the guest of the University, and all meetings will be held on the campus. The program will consist of: (1) Two symposia, one on "The Effects of Radiation on Aqueous Solutions," which includes the following speakers: E. S. G. Barron, Edwin J. Hart, Warren Garrison, J. L. Magee, and A. O. Allen. The second is "Physical Measurements for Radiobiology" and companion talks by Ugo Fano, Burton J. Moyer, G. Failla, L. D. Marinelli, and Payne S. Harris. (2) On Monday night, June 22, a lecture by Dr. L. W. Alvarez on meson physics has been tentatively scheduled. On Tuesday night, June 23, Dr. L. H. Gray of the Hammersmith Hospital, London, will speak on a topic to be announced. Dr. Gray's lecture is sponsored by the Iowa Branch of the American Cancer Society. Those desiring to report original research in radiation effects, or interested in attending or desiring additional information, please contact the Secretary of the Society, Dr. A. Edelmann, Biology Department, Brookhaven National Laboratory, Upton, L.I., New York.

ERRATUM

The following correction should be made in the article by Beck and Valentine, "The Aerobic Carbohydrate Metabolism of Leukocytes in Health and Leukemia. I. Glycolysis and Respiration," November, 1952, page 891; substitute for the last paragraph:

The data in Table 8 permit several interesting calculations. If one compares the amount of glucose actually disappearing with the sum of the amount equivalent to lactic acid produced plus that equivalent to O₂ consumption, it is seen that the amount of glucose "cleavage products" exceeds the amount of glucose utilized by 12 per cent in N and 27 per cent in CML and is exceeded by the glucose utilized by 16 per cent in CLL. If the assumption is made that, in this respect, the myeloid and lymphoid cells of leukemia are similar to those of normal blood, it may be that the computed normal figure represents a summation of the myeloid (M) and lymphoid (L) cells that make up the normal leukocyte population. Thus, if M = +0.27 and L = −0.16 and the normal differential is 65 per cent M and 35 per cent L, then

\[0.65 (+0.27) + 0.35 (-0.16) = +0.12 \]

a figure identical to the observed +0.12 for normal leukocytes.
Morphological and Molecular Heterogeneity within Nonmicrosatellite Instability-High Colorectal Cancer

Vicki L. J. Whitehall, Coral V. A. Wynter, Michael D. Walsh, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/62/21/6011

Cited articles
This article cites 26 articles, 17 of which you can access for free at:
http://cancerres.aacrjournals.org/content/62/21/6011.full#ref-list-1

Citing articles
This article has been cited by 19 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/62/21/6011.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/62/21/6011.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.