DNA Ligase IV Suppresses Medulloblastoma Formation

Youngsoo Lee and Peter J. McKinnon

Abstract

Substantial neural defects are often present in mice with targeted inactivation of DNA repair factors such as DNA ligase IV (Lig4). Whereas Lig4−/− mice undergo widespread neural apoptosis and die during development, p53 deficiency rescues this death. We found that all Lig4−/− p53+/− mice developed medulloblastoma, but did not develop other tumors of the nervous system. Lig4−/− p53−/− medulloblastoma occurred as early as 21 days of age, originated in the external granule layer of the developing cerebellum, and was synaptophysin immunoreactive. These data reveal a pronounced susceptibility of the cerebellum to the effects of chronic DNA damage and provide a direct link between genotoxic stress and medulloblastoma formation.

Introduction

Maintenance of genomic integrity is of paramount importance for the survival of an organism. Damage to the genome can occur during cellular proliferation (e.g., during S phase), through oxidative damage as a byproduct of cellular metabolism, and also physiologically during meiosis or V(D)J recombination. In these situations, DNA DSBs initiate a coordinated cellular response leading to DNA repair and cellular proliferation (1). A high frequency of lymphoma, all tumors of the nervous system.

Results and Discussion

We rescued the embryonic lethality associated with Lig4 deficiency (8, 18) by additional inactivation of p53 to generate Lig4−/− p53−/− mice. Previous work has shown that Lig4−/− p53−/− animals develop pro B-cell lymphoma at a high frequency (11). However, this earlier study did not address the consequence of chronic genotoxic stress toward nervous system function. Analysis of the cerebral cortex of neonatal wild-type animals and the TaqMan One Step PCR Reagent (ABI), and the TaqMan primer probe sets: (a) Math1 forward (ATGGCAGGGGCTGAAAAC), Math1 reverse (TCGGTGGAGAAGGCCGAGATGTA), and Math1 TaqMan probe (CCTGGACAGCTGGCGAACG); (b) Gli1 forward (GCTTTGAGAACAGCTTGGT), Gli1 reverse (GCCTGATCACTGTTAGTG), Gli1 TaqMan probe (CCTGCCTTACGCTTCCG); (c) Gli3 forward (CTGATCCATTAGCCAATCT), Gli3 reverse (AATGGCGAGCCCTAAGGTTTC), and Gli3 TaqMan probe (TCTCCTAATGATCAGCCG). The PCR reactions were analyzed using SDS v2.0 software (ABI). Total RNA from the cerebral cortex of neonatal wild-type animals was used to generate standard curves for relative quantitation. 18S rRNA was used as an endogenous control.

Received 8/5/02; accepted 10/4/02.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by the NIH Grants NS-37956, NS-39867, and CA-21765 and by the American Lebanese and Syrian Associated Charities of St. Jude Children’s Research Hospital.

2 To whom requests for reprints should be addressed, at Department of Genetics, St. Jude Children’s Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105. Phone: (901) 420-2700; Fax: (901) 326-2907; E-mail: peter.mckinnon@stjude.org.

3 The abbreviations used are: DSB, double-strand breaks; Lig4, ligase IV; NHEJ, nonhomologous end joining; HRR, homologous recombination repair.

Materials and Methods

Animals. Lig4−/− p53−/− mice were obtained by intercrossing of Lig4−/− p53−/− or Lig4−/− p53−/− animals. Lig4 mutant animals used in this study have been described previously (8, 18). All animals were housed in an American Association of Laboratory Animal Care-accredited facility and were maintained in accordance with the NIH Guide for the Care and Use of Laboratory Animals. The institutional animal care and use committee at St. Jude Children’s Research Hospital approved all procedures for animal use.

Histology and Immunohistochemistry. Tissue samples from animals of various ages were collected after transcardial perfusion with 4% paraformaldehyde. Fixed tissues were cryoprotected in 25% buffered sucrose solution and cryosectioned (10 μm), or brain tissues were fixed in 10% buffered formalin, embedded in paraffin, and sectioned (5 μm). These sections were stained with H&E according to standard procedures. Immunohistochemical analyses of tissue were performed using the following antibodies: anti-GFAP (1:400; Sigma); anti-neurofilament 200 (1:500; Sigma); anti-synaptophysin (1:200; Chemicon); anti-MAP2 (1:200; Sigma); anti-β-tubulin III (TuJ1; 1:500; Babco); anti-active caspase 3 (CM1; 0.66 mg/ml; IDUN); and rat anti-CD45RB220 (1:25; BD Pharmingen). Antigen retrieval was used for all antibodies except CD45RB220. Sections were incubated with antibodies overnight after quenching endogenous peroxidase using 0.6% hydrogen peroxide, and immunoreactivity was visualized with the VIP substrate kit (Vector Laboratories) according to the manufacturer’s directions after the tissues were treated with biotinylated secondary antibody and avidin D-biotinylated horseradish peroxidase-H complex (Vectorstain Elite Kit, Vector Laboratories). Sections were counterstained with 0.1% methyl green, dehydrated, and mounted in Permount. For fluorescence signals, FITC, indocarbocyanine (Cy3) or aminomethylcoumarin was used. Apoptosis was measured using Apoptag (Intergen).

Real-time PCR. Total RNA from each tissue sample was extracted using Trizol (Invitrogen) according to the manufacturer’s instructions. Real-time PCR was performed using a 7900HT Sequence Detection System (ABI) and the TaqMan One Step PCR Reagent (ABI). RT-PCR was done with following oligonucleotide primer/TaqMan probe sets: (a) Math1 forward (ATGGCAGGGGCTGAAAAC), Math1 reverse (TCGGTGGAGAAGGCCGAGATGTA), and Math1 TaqMan probe (CCTGGACAGCTGGCGAACG); (b) Gli1 forward (GCTTTGAGAACAGCTTGGT), Gli1 reverse (GCCTGATCACTGTTAGTG), Gli1 TaqMan probe (CCTGCCTTACGCTTCCG); (c) Gli3 forward (CTGATCCATTAGCCAATCT), Gli3 reverse (AATGGCGAGCCCTAAGGTTTC), and Gli3 TaqMan probe (TCTCCTAATGATCAGCCG). The PCR reactions were analyzed using SDS v2.0 software (ABI). Total RNA from the cerebral cortex of neonatal wild-type animals was used to generate standard curves for relative quantitation. 18S rRNA was used as an endogenous control.

Results and Discussion

We rescued the embryonic lethality associated with Lig4 deficiency (8, 18) by additional inactivation of p53 to generate Lig4−/− p53−/− mice. Previous work has shown that Lig4−/− p53−/− animals develop pro B-cell lymphoma at a high frequency (11). However, this earlier study did not address the consequence of chronic genotoxic stress toward nervous system function. Analysis of the Lig4−/− p53−/− brain revealed that at 9 weeks of age, all animals (n = 23) had developed medulloblastoma (Fig. 1). As will be detailed below, these medulloblastomas arose independently of pro-B-cell lymphoma.
tumors (Fig. 1d). The Lig4−/−p53−/− animals did not survive past 9 weeks of age (n = 75) and succumbed to tumor burden from lymphoma, medulloblastoma, or both (Fig. 1e). To determine latency of the medulloblastoma, we examined animals at younger ages. Although the incidence of medulloblastoma increased with age until 9 weeks, approximately 50% of Lig4−/−p53−/− mice showed initiating foci of medulloblastoma as early as 3 weeks of age, and most mice had sizable medulloblastoma by 6 weeks of age (Fig. 1f).

The Lig4−/−p53−/− medulloblastomas have the typical histology and characteristics of human medulloblastoma (Fig. 2). Tumor foci within the cerebellar external granule layer were found as early as 3 weeks of age and originated at the margin of the external granule layer (Fig. 2, a and b), consistent with a granule cell origin of this tumor (19). All Lig4−/−p53−/− medulloblastomas examined (n = 9) were immunopositive for neural markers including synaptophysin, MAP2, Tuj1, and GFAP (Fig. 2, d, e, and g–i). However, mature neuronal markers such as neurofilament (NF200), which is strongly expressed in differentiated Purkinje and granule cells (Fig. 2f, dashed line and arrow), were absent in the tumor (Fig. 2f, asterisk). Even though the medulloblastoma showed positive immunoreactivity for a variety of neuronal markers, we considered the possibility that lymphoma metastasis may contribute to the medulloblastoma because pro-B-cell lymphoma is a characteristic of Lig4−/−p53−/− mice (11). However, immunohistochemistry using lymphocyte markers such as B220 and CD45 was negative for the medulloblastoma (Fig. 2e) yet strongly positive for the Lig4−/−p53−/− lymphoma (Fig. 2e’). In one case of a 9-week-old Lig4−/−p53−/− mouse that developed both medulloblastoma and lymphoma, we identified infiltrating lymphoma cells that stained strongly for B220 around the meningeal surface of the brain, including a margin around the medulloblastoma (data not shown). However, although we detected strong B220 immunoreactivity in this particular situation, no B220-positive cells were found within the medulloblastoma, nor was this infiltrating lymphoma positive for neural markers. The Lig4−/−p53−/− medulloblastomas were also negative for MAC-1 immunoreactivity (a marker for macrophages), and, conversely, the lymphomas were negative for neuronal markers such as MAP2 and Tuj1 (data not shown). Finally, whereas medulloblastomas are present as early as 3 weeks of age before lymphoma onset, a number of older animals were identified that had no discernable lymphoma but had developed medulloblastoma. The Lig4−/−p53−/− medulloblastomas also show high proliferative and apoptotic indices typical of human medulloblastoma (17) as determined by Ki67 and terminal deoxynucleotidyl transferase-mediated nick end labeling staining, respectively (Fig. 2, j and k). Higher magnification of the medulloblastoma also shows the small round blue cells characteristic of medulloblastoma (Fig. 2l).

We did not observe medulloblastoma (or lymphoma) in Lig4−/−p53−/+ mice (which are also viable), indicating that complete loss of p53 function is required for early tumor formation. Whereas the Lig4−/−p53−/− medulloblastomas recapitulate many features of the human tumors, p53 mutations have not been considered as a prominent feature of medulloblastoma. However, recent data show that alterations in p53 or the p53 pathway are relatively common in medulloblastoma (20, 21). Lig4 mutations have not been reported in medulloblastoma, although it is likely not many investigators have focused their studies on this gene. Interestingly, mutations in Lig4 are associated with immune dysfunction and developmental abnormalities in a human radiosensitivity syndrome (22), and mutations in Lig4 have been reported in human leukemia (23). However, it is probable that events associated with a lack of DNA repair rather than Lig4 deficiency per se result in genomic instability that subsequently leads to medulloblastoma.

The granule cell is the probable cell of origin for medulloblastoma,
and therefore we examined the expression of a known germinal granule cell marker Math1 (the mouse homologue of Drosophila Atonal1). In Math1-null embryos, the external germinal layer of the cerebellum is missing, implying that Math1 expression is required to support granule cell genesis (24). Analysis of a number of Lig4−/−\ p53−/− medulloblastomas showed a high level of Math1 expression compared with either wild-type age-matched control or developing postnatal day 5 (P5) cerebellum as determined using real-time PCR (Fig. 3a). Furthermore, because the sonic hedgehog pathway is perturbed in some human medulloblastomas (19), we also examined Gli1, an important sonic hedgehog target gene. A high level of Gli1 expression (but not Gli3) was seen in a number of Lig4−/−\ p53−/− medulloblastomas compared with wild-type controls (Fig. 3, b and c). Notably, for both Math1 and Gli1, there was a striking difference between the expression profile of medulloblastomas and lymphomas isolated from the same animal, further underscoring the distinct origin of each tumor type.

Because only medulloblastoma is found in the Lig4−/−\ p53−/− nervous system and not other neural tumor types, the cerebellum is particularly sensitive to the effects of genotoxic stress arising from Lig4 deficiency. The cerebellar granule cell population is the most abundant neuronal population in the nervous system (25); perhaps this
large target population makes the cerebellum more likely to manifest lesions arising from DNA damage. Supporting this assertion, during early development only a proportion of postmitotic neural cells in the subventricular zone from Lig4−/− or Xrcc4−/− embryos undergo apoptosis, suggesting that the lesions are stochastic in nature. It will now be of interest to determine whether medulloblastoma occurs in other mouse models where NHEJ or HR components have been inactivated; the similar neural phenotype of the Xrcc4- and Xrcc2-null mice (9, 26) to Lig4 deficiency suggests that this will probably be the case on a p53-null background. Furthermore, because Ku80 functions in the nervous system (6), and Ku80−/− p53−/− mice develop pro-B-cell lymphoma (14, 15), medulloblastoma may also be a feature of these mice.

Ptc1−/− mutant mice, in a manner similar to humans with Ptc1 haploinsufficiency, are strongly predisposed to medulloblastoma (19). Notably, Ptc1 haploinsufficiency leads to radiosensitivity in Ptc1−/− mice (27, 28). This radiosensitivity may be due to disruption of appropriate interaction of Ptc1 with phosphorylated cyclin B1 that is required for a DNA damage-induced G2-M checkpoint (29). Thus, the high incidence of medulloblastoma in the Lig4−/− p53−/− mice and the relationship between Ptc1 haploinsufficiency and radiosensitivity suggest that inappropriate responses to genotoxic stress may contribute to some human medulloblastoma.

Acknowledgments

We thank Tomas Lindahl and Deborah Barnes for reagents and advice and Tom Curran and Suzanne Baker for comments on the manuscript.

References

DNA Ligase IV Suppresses Medulloblastoma Formation

Youngsoo Lee and Peter J. McKinnon

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/62/22/6395

Cited articles This article cites 28 articles, 8 of which you can access for free at: http://cancerres.aacrjournals.org/content/62/22/6395.full#ref-list-1

Citing articles This article has been cited by 31 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/62/22/6395.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/62/22/6395. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.