Vaccine-based Therapy Directed against Carcinoembryonic Antigen Demonstrates Antitumor Activity on Spontaneous Intestinal Tumors in the Absence of Autoimmunity

John W. Greiner, Hasan Zeytin, Miriam R. Anver, and Jeffrey Schlolm

ABSTRACT

By virtue of its tissue-specific expression, carcinoembryonic antigen (CEA) is an important self, tumor-associated antigen, which is expressed by different human adenocarcinomas and also serves as a target for active-specific immunotherapy. Similar to humans, CEA expression in mice transgenic for the human CEA gene (CEA.Tg) occurs predominantly along the gastrointestinal tract. CEA.Tg mice were crossed with mice bearing a mutation in the Apc gene (MIN mice), and the CEA.Tg/MIN progeny developed multiple intestinal neoplasms, which overexpress CEA to levels that are reminiscent of those reported for tubulovillous intestinal adenomas from patients. CEA.Tg/MIN mice were vaccinated with an aggressive diversified prime/boost vaccine regimen: (a) a primary vaccine consisting of recombinant vaccinia virus-expressing CEA and a triad of costimulatory molecules (TRICOM); B7.1, ICAM-1, and LFA-3; (rV-CEA-TRICOM); and (b) a booster vaccine using CEA-TRICOM in a recombinant avipox virus (rF-CEA-TRICOM). Granulocyte/macrophage colony-stimulating factor was administered as a biological adjuvant with all vaccinations, either as a recombinant protein (with rV-CEA-TRICOM) or as a recombinant avipox virus (with rF-CEA-TRICOM). That vaccine regimen generated strong CEA-specific host immune responses in CEA.Tg/MIN mice, which resulted in (a) a delayed onset of adult anemia and weight loss, (b) a significant reduction in the number of intestinal tumors, and (c) improved overall survival. No evidence of autoimmunity directed against normal tissues expressing CEA was observed in mice in which the CEA-based vaccine significantly reduced intestinal tumor load. The CEA.Tg/MIN mice present a clinically relevant model in which different CEA-based vaccine strategies can be tested on the spontaneous onset of intestinal tumorigenesis.

INTRODUCTION

CEA, a M. 180,000–200,000 oncofetal antigen, is a member of the Ig superfamily and expressed on a high percentage of adenocarcinomas, particularly those of the colon, pancreas, breast, lung, rectum, and stomach (1, 2). Because of its limited normal tissue expression and its overexpression on carcinomas, CEA is also considered a self, tumor-associated antigen and a target for passive (3) and active immunotherapy (4–10). Recent clinical data have established that different vaccine strategies can generate human B and T cells that recognize CEA, providing additional evidence that CEA is a target for eliciting immune responses against a variety of cancer types (4–10).

Preclinical murine models expressing the complete human CEA gene as a transgene (11, 12) have been generated and CEA is expressed predominately along the GI tract, as in humans (13). In addition to CEA expression in normal tissues, CEA.Tg mice used in this study have high serum levels of CEA that presents additional peripheral tolerance to the host immune system (14). Yet, tolerance to CEA has been overcome by vaccinating CEA.Tg mice with recombinant orthopox or avipox-CEA viruses, murine fibroblasts expressing CEA, and an oral CEA-based DNA vaccine, as shown by the generation of anti-CEA Ig antibodies, Ig class switching, TH 1 type CEA-specific CD4+ responses, and CD8-dependent cytotoxicity (14–18). Besides generating CEA-specific host immunity, CEA-based vaccines have elicited antitumor immunity against CEA-expressing tumors (14–18). The use of transplantable CEA-expressing tumor cells in those studies presents some important limitations, including the retroviral insertion of CEA without associated regulatory elements into cells that normally do not express the gene and the growth of those tumors cells at ectopic sites (s.c., lung, liver) not authentic to colorectal cancer. From an immunological perspective, the rapid growth rate of the transplanted tumors not only fails to mimic the growth characteristics of carcinomas but also requires a shortened interval between cancer vaccine administrations, which probably does not permit optimal host immunity.

In this study, CEA.Tg mice were bred with ApcMIN (MIN) mice that are heterozygous for a mutant allele of the mouse homologue of the human APC gene (19). MIN is a fully penetrant, autosomal dominant, nonsense mutation (codon 850) believed to initiate tumorigenesis in utero and results in multiple spontaneous intestinal neoplasms in adult mice (19, 20). Mice (CEA.Tg/MIN) carrying both the MIN and human CEA genes develop numerous intestinal neoplasms with strong CEA expression in all tumor cells, as well as CEA expression in normal GI tissues (21, 22). An immunotherapeutic protocol, consisting of recombinant poxviruses expressing CEA and TRICOM (B7.1, ICAM-1, and LFA-3) (23), combined with GM-CSF, induced strong anti-CEA host immune responses that significantly suppressed intestinal tumor load and improved long-term survival of CEA.Tg/MIN mice. CEA.Tg/MIN mice can serve as an important preclinical model for the evaluation of cancer vaccines alone or in combination with other anticancer therapeutic modalities.
allele-specific PCR analysis of DNA isolated from the blood (24) identified the Apc mutation. Approximately 25% of the offspring were positive for CEA expression by PCR as well as for the presence of the MIN mutation, and those mice were designated CEA.Tg/MIN. Mice expressing MIN, but not CEA, were designated MIN and those expressing CEA, but not MIN mutation, were designated CEA.Tg. Mice that were negative for both CEA and MIN were designated C57BL/6. Genotypes of all mice were rechecked at the completion of the study.

Vaccines, Adjuvants, and Injection Schema. Details for the construction and production of the recombinant vaccinia (23) and avipox (fowlpox) viruses (23, 25) have been published. Vaccines are referred to as either CEA-based or non-CEA-based vaccines. The CEA-based vaccines were comprised of (a) a recombinant vaccinia virus or a (b) recombinant avipox (fowlpox) virus containing genes encoding human CEA and three murine costimulatory molecules B7.1, ICAM-1 and LFA-3 and designated either rV-CEA-TRICOM or rF-CEA-TRICOM. The non-CEA-based vaccines are the same recombinant vaccinia and avipox viruses expressing the TRICOM but not the human CEA gene (designated either rF-TRICOM or rF-TRICOM). A description of the construction of the recombinant avipox (fowlpox) virus expressing murine GM-CSF (rF-GM-CSF) has been reported (15). The parental virus for the generation of recombinant fowlpox-GM-CSF virus was plaque purified from a tissue culture-adapted vaccine strain of fowlpox virus. rF-GM-CSF was constructed via homologous recombination in vivo between the parental fowlpox DNA and a plasmid vector that contains the murine GM-CSF gene.

All vaccines were given s.c. in 100 μl of HBSS at the base of the tail. Recombinant vaccinia-based vaccines, rV-CEA-TRICOM or rV-TRICOM, were the primary vaccines and administered at a dose of 10⁷ pfu in combination with 20 μg of rGM-CSF (PeproTech, Inc., Rock Hill, NJ). Recombinant GM-CSF protein was then injected for an additional 3 consecutive days at the vaccination site. Booster vaccinations were also administered s.c. in 100 μl containing 10⁷ pfu of either rF-CEA-TRICOM or rF-TRICOM combined with 10⁷ pfu of rF-GM-CSF. A group of mice received injections of the vehicle (HBSS) alone and were designated vehicle control.

Intestinal Extract Preparation and Solid-Phase RIAs. Three to five mice from each group listed in Table 1 were sacrificed at 150–160 days of age. The entire intestine was removed and its contents flushed with cold DPBS. For the CEA.Tg and C57BL/6 mice, 3–5-cm sections were isolated from the proximal/distal jejunum and ileum. For the CEA.Tg/MIN and MIN mice, neoplastic lesions (n = 20–30) were microisolated using a dissecting microscope from those same intestinal areas. Extracts were prepared and the protein concentrations determined as described previously (26). Forty μg of extract protein were dried to each well of a 96-well plate, and the binding of an antibody was assessed using wells of 96-well plates sensitized with 50 ng of CEA. The percentage of input radioactivity bound to the IgG. Immunoreactivity of 125I-COL-1 was assessed using wells of 96-well plates and allowed to incubate overnight at 4°C. The wells were washed with horseradish peroxidase-conjugated goat antimouse IgG (Kirkegaard & Perry Labs., Inc., Gaithersburg, MD) using an ELISA microplate autoreader at A492nm. Triplicates of positive and negative controls and serum samples were run for all assays.

Table 1 CEA expression levels in normal/neoplastic intestinal tissues and sera

<table>
<thead>
<tr>
<th>Genotype</th>
<th>GI tissue</th>
<th>RIA (cpm 125I-COL-1 bound/40 μg protein)</th>
<th>EIAa (μg CEA/mg protein)</th>
<th>IHCb</th>
<th>Serum CEAa (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA.Tg/MIN</td>
<td>Neoplastic</td>
<td>44,400 ± 2,150</td>
<td>3.27–4.45</td>
<td>++</td>
<td>42.2 ± 7.6</td>
</tr>
<tr>
<td>CEA.Tg</td>
<td>Normal</td>
<td>12,160 ± 990</td>
<td>1.35–1.80</td>
<td>+</td>
<td>60.8 ± 14.9</td>
</tr>
<tr>
<td>MIN</td>
<td>Neoplastic</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>Normal</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
</tr>
</tbody>
</table>

a Mice from each group (3–5/group) were sacrificed at 150 days of age, and normal and neoplastic intestinal tissues were removed and protein extracts prepared as outlined in “Materials and Methods.” Forty μg of extract protein were dried to each well of a 96-well plate, and the binding of 125I-COL-1 and an irrelevant, isotype-matched antibody, BL3, was performed as a solid-phase RIA. Data represent the mean ± SE of the total 125I-COL-1 (100 ng/ml) for each group of mice. NEG, <500 cpm 125I-COL-1 bound.

b CEA levels were measured in the same protein extracts (diluted to 1.0 mg protein/ml) using the anti-CEA ELISA kit (AMDL, Inc.) Data represent the range of CEA levels for 3–5 individual mice/group. NEG, <5 ng CEA/mg protein.

c IHC staining intensity of COL-1 in intestinal tumors of CEA.Tg/MIN and normal intestines of CEA.Tg mice. For each slide, 3–5 different fields were scored independently by a board-certified pathologist. Scoring was based on either the absence of staining, NEG, or relative staining intensities: ++, weak, pale brown; +++, strong, dark brown immunoprecipitate.

d Sera CEA levels were measured as described in the “Materials and Methods.” Data represent the mean ± SE of 5–8 mice/group. NEG, <5 ng CEA/ml serum.
CEA-BASED VACCINE SUPPRESSES TUMOR FORMATION IN MICE

RESULTS

CEA.Tg/MIN Experimental Model. Initial studies were designed to determine the approximate levels of CEA expression in normal versus neoplastic intestinal tissue. Normal intestinal tissue was isolated from CEA.Tg and C57BL/6 mice, whereas neoplastic intestinal tissue (predominately adenomas) was taken from CEA.Tg/MIN and C57BL/6 mice, whereas neoplastic intestinal tissue was also excised and similarly prepared. Using microdissecting scissors, each segment was opened longitudinally, and the mucosal surface was rinsed free of content with DPBS. Using a dissecting microscope (×10 magnification), each segment was scored (blinded to the scorer) for the presence of tumors. The smallest gross tumor scored was ~1 mm, and tumors were divided according to size <2 mm, 2–5 mm, and >5 mm. The sum of the number of intestinal and colonic tumors was the measure of total GI tumor burden.

For histopathological examination, intestine and colon tissues were fixed in 10% neutral buffered formalin, embedded in paraffin blocks, and processed by routine histological methods for H&E staining. The largest and smallest tumors from each gut segment were examined microscopically. Proliferative epithelial lesions had microscopic morphology typical of that described for MIN mice (20, 30). Lesions were classified as intestinal intraepithelial neoplasms (dysplasia, carcinoma in situ) if they did not involve the full thickness of the mucosa and did not compress adjacent tissue. Adenomas involved the full thickness of the mucosa and compressed adjacent tissue and adenocarcinomas invaded the muscularis mucosae. The majority of gross lesions were either intraepithelial neoplasms or adenomas. For IHC staining, sections were dried overnight in a 45°C oven before staining. Staining for CEA was performed on 4-μm tissue sections and air-dried on Superfrost Plus slides. The Vector M.O.M. Kit (Vector Laboratories, Burlingame, CA), a modification of the avidin-biotin complex method for localizing mouse monoclonal antibodies on mouse tissue was used in conjugation with a murine anti-CEA monoclonal antibody, COL-1 (dilution 1:1000; Ref. 27). COL-1 was incubated on the slides for 30 min at room temperature. An isotype-matched monoclonal antibody with irrelevant antigen specificity was used as a negative control. Positive and negative controls for CEA expression were CEA-expressing MC-38 cells, designated MC-38-CEA-2, and the CEA-negative parental MC-38 tumor cell line (29).

Determination of Anti-DNA and ANA Serum Levels. Both anti-DNA and ANA serum titers were measured by Analytix, Inc. (Gaithersburg, MD). Anti-DNA titers were measured using sodium sulfate precipitates of undiluted serum samples in a RIA. Titters > 2.5 IU/ml were considered positive. An ELISA test was used to measure ANA using two pools of nuclear antigens: pool A consisted of single-stranded DNA, SSA, SSB, and Jo-1; pool B consisted of double-stranded DNA, ribonucleoprotein, histones, samarium, and scl-70. Results were scored as to the overall reactivity: 0, negative; 1–4, weakly, moderately, strongly, very strongly reactive.

Long-Term Survival Studies. CEA.Tg/MIN mice were divided into three treatment groups: CEA-based vaccine (n = 14); non-CEA-based vaccine (n = 10); and vehicle control (n = 12). Also included were MIN mice (n = 5) that were given the CEA-based vaccine. Mice were genotyped immediately after weaning and given the appropriate vaccine or vehicle control by 30 days of age, and booster vaccines were given monthly for the duration of the study. Any mouse whose weight fell for 4 consecutive weeks and whose hematocrit level was ≤25 was sacrificed, age recorded, and the GI tract examined for tumor burden.

Statistical Analysis. Statistical significance for differences in body weights, hematocrit, and number of intestinal tumors was based on Student’s two-tailed t test. Significance differences in overall survival were evaluated using the Kaplan-Meier test. All P values reported are two-sided and have not been adjusted for the multiplicity of evaluation performed on the data. P < 0.05 was considered significant.

Fig. 1. Number of tumors along the GI tract of MIN mice that were either CEA.Tg (■) or CEA negative (□). Data are the mean ± SE, 5 mice/group.
proliferative responses (Fig. 2B). Furthermore, CD8 T-cell responses after vaccination using the CEA-based vaccines were also present as indicated by CEA-peptide-specific IFN-γ production (Fig. 2C) and lysis of peptide-pulsed targets (Fig. 2D). No measurable CEA-specific immune responses were detected in CEA.Tg/MIN that were vaccinated with the non-CEA-based vaccine or those that received vehicle control. CEA-specific humoral, CD4 and CD8 cellular responses were also found in MIN that were vaccinated with the CEA-based vaccine (data not shown).

Vaccine Effects on Tumor Formation and Overall Survival.
Total number of GI tumors in CEA.Tg/MIN mice that were vaccinated with the CEA-based vaccine, non-CEA-based vaccine, or the vehicle control were determined at ~150 days of age (Fig. 3). The average number of tumors found in either CEA.Tg/MIN mice treated with the vehicle control or the non-CEA-based vaccine was 36.7 ± 6.2 and 46.8 ± 6.2, respectively. There was a significant reduction in the average number of tumors (22.4 ± 6.8) found in CEA.Tg/MIN mice that received the CEA-based vaccine when compared with either control group (Fig. 3).

In a separate long-term survival study (Fig. 4), CEA.Tg/MIN mice were vaccinated with the CEA-based vaccine, non-CEA-based vaccine, or the vehicle control, whereas a group of MIN mice (CEA-negative littermates) received the CEA-based vaccine. All mice in the three control groups, CEA.Tg/MIN mice given either the non-CEA-

Table 2. Effect of CEA-based vaccine on weight gain and hematocrit levels

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Vaccine</th>
<th>No. of mice</th>
<th>Δ Body weight (g)</th>
<th>Hematocrit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 days</td>
<td>120 days</td>
</tr>
<tr>
<td>CEA.Tg/MIN</td>
<td>CEA-based</td>
<td>12</td>
<td>10.1 ± 1.6b</td>
<td>46.9 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>Non-CEA-based</td>
<td>10</td>
<td>6.0 ± 1.1</td>
<td>39.7 ± 5.9</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>12</td>
<td>5.8 ± 0.9</td>
<td>42.9 ± 2.8</td>
</tr>
<tr>
<td>MIN</td>
<td>CEA-based</td>
<td>13</td>
<td>5.5 ± 0.7</td>
<td>43.3 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>12</td>
<td>5.1 ± 0.4</td>
<td>44.1 ± 2.7</td>
</tr>
</tbody>
</table>

* Maximum amount of gram body weight gained. Mean ± SE.

* P < 0.05 (versus CEA.Tg/MIN mice given either the non-CEA-based vaccine or the vehicle control, and MIN mice that received either the CEA-based vaccine or the vehicle control).
based vaccine or vehicle control, and the MIN mice vaccinated with the CEA-based vaccine, were sacrificed by 25–27 weeks because of progressive weight loss and anemia. For comparison, at 27 weeks of age, 80% of the CEA.Tg/MIN mice that received the CEA-based vaccine were alive with stable body weights and normal hematocrits. At 40 weeks, 50% of those mice remained alive; however, by week 49, all mice were anemic with progressive weight loss that required sacrifice. Macroscopic examination revealed numerous neoplastic lesions.

Histopathology, Hematology, and IHC. Spleen, pancreas, lung, liver, and kidneys from individual CEA.Tg/MIN mice that received either the CEA-based vaccine, non-CEA-based vaccine, or the vehicle control were examined for gross and microscopic lesions (Table 3). In all three groups, spleens were enlarged and most other organs were pale when taken from mice that had multiple intestinal proliferative lesions. Histopathological analyses revealed that the enlarged spleens were attributable to increased extramedullary hematopoiesis, and the paleness of other organs seemed associated with severe anemia because no other pathology was found (Table 3). Sporadic hydronephrosis was found in all three groups of mice. Serum samples from individual mice were analyzed for the presence of anti-DNA and ANA titers, and no changes were observed in any of the three groups of CEA.Tg/MIN mice (Table 3).

Intestinal tissues from CEA.Tg/MIN mice treated with the CEA-

Table 3: Histopathology and serum anti-DNA and ANA titers of CEA.Tg/MIN mice

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Mouse no.</th>
<th>Vaccine (n)</th>
<th>Histopathology</th>
<th>Serum analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>CEA-based</td>
<td>1</td>
<td>5 EH</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5 N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5 N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5 EH</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5 EH</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Non-CEA-based</td>
<td>1</td>
<td>5 EH</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5 EH</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5 EH</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5 EH</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Untreated</td>
<td>1</td>
<td>none</td>
<td>EH</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>none</td>
<td>EH</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>none</td>
<td>EH</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>none</td>
<td>EH</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>none</td>
<td>EH</td>
<td>N</td>
</tr>
</tbody>
</table>

* Mice were sacrificed between 150–175 days of age.
* Tissues examined for histopathology: S, spleen; P, pancreas; LU, lungs; L, liver; K, kidneys.
* Anti-DNA titers were measured using sodium sulfate precipitates of undiluted serum samples in a RIA. Titers > 2.5 IU/ml were considered positive.
* An ELISA test was used to measure antinuclear antibody using two pools of nuclear antigens: pool A consisted of single-stranded DNA, SSA, SSB, and Jo-1; pool B consisted of double-stranded DNA, ribonucleoprotein, histones, samarium, and scl-70. Results were scored as to the overall reactivity: 0, negative; 1–4, weakly, moderately, strong, very strongly reactive.
* Histopathological findings: N, normal; EH, extramedullary hematopoiesis; HN, hydronephrosis.

Fig. 5. H&E (A, C, E, and G) and COL-1 immunohistochemical staining (B, D, F, and H) of intestinal tissues from CEA.Tg/MIN mice that received the CEA-based vaccine. A and C are examples of adenomas in the small intestine (jejunum) from CEA.Tg/MIN mice in which the CEA-based vaccine did not reduce adenoma formation. A and C, adenoma (arrows) with compression of adjacent villi (v; ×10X). B, CEA expression in the adenoma illustrated in A (×10). D, strong CEA expression in adenoma illustrated in C (×10). E, cells in the adenoma illustrated in C are basophilic with hyperchromatic, piled-up nuclei with scattered mitotic figures (arrows; ×20). F, strong CEA expression in tumor cells (×20). G, normal gut architecture in a CEA.Tg/MIN mice in which the CEA-based vaccine prevented tumor formation (×25). H, crypts in the normal intestine shown in G express CEA (arrow; ×40).
based vaccine were analyzed histopathologically (H&E staining) and by IHC for CEA expression by using anti-CEA monoclonal antibody COL-1 (Fig. 5). H&E staining revealed typical intestinal adenomas (Fig. 5, A and C) from CEA.Tg/MIN mice in which the CEA-based vaccines did not reduce tumor load. Fig. 5E illustrates basophilic cells with hyperchromatic, piled-up nuclei and the presence of mitotic figures within an adenoma. Overexpression of CEA as evidenced by relative COL-1 staining intensity was found in adenomas (Figs. 5, B and D) when compared with adjacent normal epithelial. Fig. 5F is a higher magnification of CEA expression in an intestinal adenoma from a CEA.Tg/MIN mouse in which the CEA-based vaccine did not suppress adenoma formation. Histopathological analyses of the intestines from CEA.Tg/MIN mice in which the CEA-based vaccine suppressed adenoma formation revealed normal intestinal architecture (Fig. 5G) and CEA expression in intestinal crypts (Fig. 5H).

DISCUSSION

MIN mice carry a germ-line mutation of the murine Apc gene, which results in the formation of multiple intestinal adenomas (19, 20). In humans, a homologous germ-line mutation in the tumor suppressor gene, adenomatous polyposis coli (APC), predisposes individuals to an inherited form of colon cancer, familial adenomatous polyposis, characterized by the early development of multiple colorectal adenomas, some of which can subsequently form carcinomas (31). Somatic mutations of the APC gene are found in the early stages of ~85–90% of sporadic colorectal cancers (31, 32). In this study, MIN mice bred with mice carrying the human CEA gene result in offspring that spontaneously develop multiple intestinal tumors that overexpress CEA. Previous reports from this laboratory have shown the ability to generate (a) host immune responses to CEA, a self, tumor antigen, and (b) antitumor immunity against transplantable CEA-expressing tumors in the CEA.Tg mice vaccinated with different vaccine regimens (14, 15). Introduction of the MIN genotype presents an experimental murine model that (a) develops spontaneous intestinal neoplasms expressing CEA in an authentic tissue site and (b) provides a 4–5 month life span during which cancer vaccines can be administered at intervals that better mimic those being used in clinical studies.

Besides its restricted expression in normal tissues, overexpression of CEA in neoplastic tissues is regarded as an important property that allows CEA to be a target for immunotherapy (1, 2). CEA expression levels have been reported to be ~2–6-fold higher in tubulovillous adenomas of patients when compared in protein extracts from histologically normal mucosa from healthy donors (33). In agreement with previous studies (21, 22), CEA expression was ~3-fold higher in the intestinal tumors of CEA.Tg/MIN mice when compared with normal intestinal samples from CEA.Tg mice. Not only does this overexpression of CEA offer an opportunity to be exploited by the host immune system, the similarities between humans and the CEA.Tg/MIN mice provides additional evidence for the use of this experimental model in preclinical cancer vaccine studies.

Recombinant orthopox vectors, both vaccinia and avipox, have been preferred candidates for cancer vaccines because numerous genes can be inserted and the vector-driven immunogen elicits strong immune responses against weak immunogens such as CEA (34, 35). Diversified prime/boost vaccine regimen in this study used two vectors: (a) a replication competent, recombinant vaccinia-CEA-TRICOM virus that elicits a strong immune response to CEA but whose repeated use is limited because of antivaccinia host immunity; and (b) a nonreplicating, recombinant avipox-CEA-TRICOM virus that can be administered multiple times as a boost. The diversified prime/boost vaccine protocol has been shown to be superior to administering multiple injections of the same recombinant vaccine (36). Insertion of TRICOM into both the recombinant vaccinia and avipox vaccines results in a more vigorous anti-CEA immune response as well as antitumor immunity (23, 25). GM-CSF was included as a biological adjuvant because of its ability to increase antigen-presenting cell infiltration at the vaccination site (37) and regional lymph nodes (15), resulting in a more vigorous T-cell response to CEA (15). Moreover, recent evidence demonstrates that GM-CSF elicits optimal adjuvant effects when delivered as a recombinant avipox virus.4

CEA.Tg/MIN mice present a formidable challenge for the immune system to generate not only anti-CEA host immunity but also to affect intestinal tumor formation. From the MIN standpoint, tumorigenesis is believed to initiate in utero (38), followed by aberrant crypt foci formation (ACF Min, 38) at 2 weeks of age, and the large tumor burden as a result of numerous intestinal tumors. CEA expression in normal tissues and its presence in circulating serum also presents a considerable degree of peripheral tolerance for the immune system to overcome. Therefore, an aggressive vaccination schema, primary vaccination by ages 30–35 days with monthly booster vaccinations, was adopted. The first indications that the CEA-based vaccine was eliciting favorable results was the health status of the CEA.Tg/MIN mice. CEA.Tg/MIN mice, like MIN mice, develop adult-onset anemia (hematocrit values < 35) commensurate with progressive weight loss. Anemia and progressive weight loss typically appeared before 120 days of age in the CEA.Tg/MIN that were treated with the vehicle control or vaccinated with the non-CEA-based vaccine. Overall weight gain in those mice as well as MIN mice rarely exceeded 5–6 g, whereas CEA.Tg/MIN mice vaccinated with the CEA-based vaccine maintained normal hematocrit levels and often gained >10 grams of body weight. When analyzed at necropsy, those CEA.Tg/MIN mice that received the CEA-based vaccine had a significant reduction in the number of intestinal tumors when compared with CEA.Tg/MIN mice that received the non-CEA-based vaccine (P < 0.01) or vehicle control (P < 0.05). Of the 13 CEA.Tg/MIN mice that received the CEA-based vaccine, 5 had dramatic responses (0–3 tumors), 4 had partial responses (4–25 tumors), and the remaining 4 had no response. The administration of the vaccine devoid of the CEA transgene did not suppress tumor formation, thus providing a compelling argument that the generation of anti-CEA host immunity was, indeed, involved in tumor formation. Additional study is needed to elucidate the exact mechanism as well as those events that result in incomplete suppression of tumor formation and/or escape from immune regulation. The absence of any antitumor effects in some mice could be attributable to the inability of the vaccine to induce sufficient antitumor immunity and/or the development of tumor escape mechanisms. Tumor escape can occur because of tumor-related events (i.e., loss/reduction of expression of major histocompatibility antigens, transforming growth factor β production, Fas-FasL interactions) and/or changes within the immune system (i.e., down-regulation of T cell ζ-chain, generation of T suppressor cells). The present findings argue that CEA loss variants do not explain why some CEA.Tg/MIN mice were unresponsive to the CEA-based vaccine, 5 had dramatic responses (0–3 tumors), 4 had partial responses (4–25 tumors), and the remaining 4 had no response. The administration of the vaccine devoid of the CEA transgene did not suppress tumor formation, thus providing a compelling argument that the generation of anti-CEA host immunity was, indeed, involved in tumor formation. Additional study is needed to elucidate the exact mechanism as well as those events that result in incomplete suppression of tumor formation and/or escape from immune regulation. The absence of any antitumor effects in some mice could be attributable to the inability of the vaccine to induce sufficient antitumor immunity and/or the development of tumor escape mechanisms. Tumor escape can occur because of tumor-related events (i.e., loss/reduction of expression of major histocompatibility antigens, transforming growth factor β production, Fas-FasL interactions) and/or changes within the immune system (i.e., down-regulation of T cell ζ-chain, generation of T suppressor cells). The present findings argue that CEA loss variants do not explain why some CEA.Tg/MIN mice were unresponsive to the CEA-based vaccine, 5 had dramatic responses (0–3 tumors), 4 had partial responses (4–25 tumors), and the remaining 4 had no response. The administration of the vaccine devoid of the CEA transgene did not suppress tumor formation, thus providing a compelling argument that the generation of anti-CEA host immunity was, indeed, involved in tumor formation. Additional study is needed to elucidate the exact mechanism as well as those events that result in incomplete suppression of tumor formation and/or escape from immune regulation. The absence of any antitumor effects in some mice could be attributable to the inability of the vaccine to induce sufficient antitumor immunity and/or the development of tumor escape mechanisms. Tumor escape can occur because of tumor-related events (i.e., loss/reduction of expression of major histocompatibility antigens, transforming growth factor β production, Fas-FasL interactions) and/or changes within the immune system (i.e., down-regulation of T cell ζ-chain, generation of T suppressor cells). The present findings argue that CEA loss variants do not explain why some CEA.Tg/MIN mice were unresponsive to the CEA-based vaccine, 5 had dramatic responses (0–3 tumors), 4 had partial responses (4–25 tumors), and the remaining 4 had no response. The administration of the vaccine devoid of the CEA transgene did not suppress tumor formation, thus providing a compelling argument that the generation of anti-CEA host immunity was, indeed, involved in tumor formation. Additional study is needed to elucidate the exact mechanism as well as those events that result in incomplete suppression of tumor formation and/or escape from immune regulation. The absence of any antitumor effects in some mice could be attributable to the inability of the vaccine to induce sufficient antitumor immunity

34. Smith, G. L., and Moss, B. Infectious poxvirus vectors have capacity for at least 25,000 base pairs of foreign DNA. Gene (Amst.), 25: 21–28, 1983.
Vaccine-based Therapy Directed against Carcinoembryonic Antigen Demonstrates Antitumor Activity on Spontaneous Intestinal Tumors in the Absence of Autoimmunity

John W. Greiner, Hasan Zeytin, Miriam R. Anver, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/62/23/6944

Cited articles This article cites 44 articles, 31 of which you can access for free at:
http://cancerres.aacrjournals.org/content/62/23/6944.full#ref-list-1

Citing articles This article has been cited by 16 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/62/23/6944.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.