Eradication of Glioblastoma, and Breast and Colon Carcinoma Xenografts by Hsp70 Depletion

Jesper Nylandsted, Wolfgang Wick, Ulrich A. Hirt, Karsten Brand, Mikkel Rohde, Marcel Leist, Michael Weller, and Marja Jäättelä

Apoptosis Laboratory, Institute for Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark [J. N., M. R., M. J.]; Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Tubingen, Medical School, D-72076 Tubingen, Germany [W. S., M. W.]; Faculty of Biology, University of Konstanz, D-78457 Konstanz, Germany [U. A. H.]; Max Delbrück Centre for Molecular Medicine, D-13122 Berlin-Buch, Germany [K. B.]; and H. Lundbeck A/S, DK-2500 Valby, Denmark [M. L.]

Abstract

Heat shock protein 70 (Hsp70) is an antiapoptotic chaperone protein highly expressed in human tumors. Here we demonstrate that locoregional application of adenovirus expressing antisense Hsp70 cDNA (Ad.aHS70) eradicates orthotopic xenografts of glioblastoma and breast carcinoma, as well as s.c. xenografts of colon carcinoma in immunodeficient mice. Ad.aHS70-treated tumors showed massive apoptosis-like cell death and recruitment of macrophages. Human monocye-derived macrophages effectively removed the corpses of Ad.aHS70-treated tumor cells in vitro. Interestingly, both tumor cell death and phagocytosis were caspase-independent. Thus, Hsp70 appears as a promising target for the treatment of cancers resistant to classic caspase-mediated apoptosis.

Introduction

The major stress-inducible Hsp701 (also known as Hsp72 or Hsps70) is an antiapoptotic chaperone protein expressed abundantly and preferentially in human tumors and tumor cell lines (1–3). The role of Hsp70 in tumorigenesis is supported by experimental data showing that it enhances the tumorigenic potential of rodent cells in vivo (4–7). Furthermore, its high expression in various human tumors correlates with therapy resistance and poor prognosis (1). The tumorigenic potential of Hsp70 has been suggested to depend on its ability to transform cells and/or its antiapoptotic function (4, 6). The latter hypothesis is supported by data showing that depletion of Hsp70 by antisense technology induces massive apoptosis-like death in tumorigenic cells but not in nontumorigenic epithelial cells or embryonic fibroblasts (8, 9). Despite the apoptosis-like morphology as judged by electron microscopy, the antisense Hsp70-induced death of breast cancer cells is independent of known caspases. Furthermore, Bcl-2 and Bcl-XL, which protect tumor cells from most forms of programmed cell death, fail to rescue cancer cells from death induced by Hsp70 depletion. Because Bcl-2/Bcl-XL expression as well as other alterations resulting in defective caspase activation are common in cancer cells and because many cancer cells can even survive the activation of caspases, Hsp70 depletion may provide a new option to combat tumors resistant to therapies dependent on classical mitochon-
in vivo treatment induced a dramatic reduction in tumor volumes in all of the glioblastoma inoculated into the striatum. Remarkably, Ad.asHsp70 mammary fat pad, s.c. LoVo-36 colon carcinoma, and U373MG immunodeficient mice: MDA-MB-468 breast carcinoma growing in vivo of Ad.asHsp70 on the growth of progressively growing tumors may have great clinical relevance. Therefore, we next tested the effect Ad.asHsp70-infected cells showed progressive tumor growth during aggressively growing tumors, none of the mice injected with breast cancers of mammary origin, we infected human cancer cell lines originating from glioblastoma (U373MG and LN-18), colon carcinoma (LoVo-36), prostate carcinoma (PC-3 and DU145), or hepatocellular carcinoma (HUH-7) with Ad.asHsp70 at a multiplicity of infection (250–1500) required to achieve a 100% infection. Akin to breast cancer cells, tumor cells of other origins also responded to Ad.asHsp70 treatment with reduction in Hsp70 protein level, shrinkage, detachment, and a loss of viability 3–5 days after the infection (Fig. 1; data not shown). Similar infections with control viruses resulted in some cases in a slight growth inhibition (maximum 20% over 4 days compared with noninfected logarithmically growing cells) but not in any detectable morphological changes or loss of viability. Importantly, Ad.asHsp70 had no effect on the survival of nontumorigenic breast- or prostate-derived epithelial cells (Fig. 1c).

Ad.asHsp70 Treatment Induces Apoptosis-like Cell Death in Tumor Xenografts. To ensure that Hsp70 is not merely needed for tumor cell growth in culture conditions, we next investigated whether Hsp70 expression is also required for the in vivo growth of tumors. MDA-MB-468 breast carcinoma cells left untreated or infected with Ad.β-gal or Ad.asHsp70 were inoculated into the mammary fat pad of nude mice 24 h after the infection. Whereas all of the mice injected with noninfected cells or cells infected with Ad.β-gal developed aggressively growing tumors, none of the mice injected with Ad.asHsp70-infected cells showed progressive tumor growth during the observation period of 2 months (Fig. 2a).

The dramatic anticancer effects of Ad.asHsp70 observed in vitro may have great clinical relevance. Therefore, we next tested the effect of Ad.asHsp70 on the growth of progressively growing tumors in vivo. For this purpose we chose three tumor xenograft models in immunodeficient mice: MDA-MB-468 breast carcinoma growing in mammary fat pad, s.c. LoVo-36 colon carcinoma, and U373MG glioblastoma inoculated into the striatum. Remarkably, Ad.asHsp70 treatment induced a dramatic reduction in tumor volumes in all of the in vivo model systems (Fig. 2, b and c; Fig. 3a). Furthermore, 28 days after the inoculation of glioblastoma cells, 83% of control animals presented with neurological symptoms, whereas only 1 of 17 animals treated with Ad.asHsp70 showed mild symptoms (Fig. 3b). To additionally evaluate the clinical usefulness of Ad.asHsp70 treatment, we investigated the survival of glioblastoma-bearing mice. The median survival of mice treated with a single Ad.asHsp70 injection 1 week after the implantation of tumor cells was twice as long as that of mice treated with the vehicle alone or an empty control virus (Fig. 3c).

Next, we examined the Ad.asHsp70-induced reduction in the tumor volume in more detail. To this end, we treated the animals 5 days after the intracerebral implantation of U373MG cells, sacrificed them 2, 5, or 7 days later, and prepared cryostat sections for additional analysis. The treatment of tumors with a single injection of Ad.asHsp70 resulted in a significant reduction in the expression level of Hsp70, an increased number of cells with condensed nuclei, and massive DNA degradation (Fig. 3d). These changes were evident already 2 days after the treatment (data not shown) and peaked 5 days after treatment (Fig. 3d). One week after the treatment, an area of apoptotic/neecrotic tissue surrounded the injection site (data not shown), and the tumor volumes of the Ad.asHsp70-treated mice were significantly smaller than the tumors of the Ad.ΔE1-treated mice (2 mm³ versus 7 mm³).

To test whether Ad.asHsp70-treated glioblastomas were able to attract microglia, we stained the tumor samples with an anti-ED1 antibody recognizing cells of macrophage lineage. Ad.asHsp70-treated tumors (n = 3) contained 578 ± 81 ED1-positive cells/mm², whereas control tumors (n = 3) only had 179 ± 30 ED1 positive cells/mm² as analyzed on day 10 (Fig. 3d).

Phagocytosis of Ad.asHsp70-treated Tumor Cells by Macrophages Is Not Associated with Suppression of Inflammatory Response. Classic caspase-dependent apoptosis is associated with the triggering of an anti-inflammatory response in phagocytosing cells (Fig. 4a; Ref. 16) and a blunted immune attack toward tumor tissue (16). Therefore, we examined the effect of Ad.asHsp70-treated tumor cells on HMDM. Tumor cells dying after Ad.asHsp70 treatment were
Fig. 2. Ad.asHsp70-infected cells show decreased tumor growth in vivo. a. 1 × 10^7 MDA-MB-468 breast carcinoma cells left untreated or infected with indicated viruses were inoculated into the mammary fat pad of female SCID mice 24 h after the infection. b. progressively growing MDA-MB-468 breast tumors in the mammary fat pad of SCID mice were treated with intratumoral injections of Ad.β-gal, Ad.asHsp70, or PBS (vehicle) on days 7, 10, and 12 after inoculation of 1 × 10^7 MDA-MB-468 cells. c. progressively growing s.c. LoVo-36 colon carcinomas in nude mice were treated with intratumoral injections of Ad.β-gal, Ad.asHsp70, or vehicle on days 4 and 6 after inoculation of 3 × 10^6 LoVo-36 cells. a–c, tumor sizes were measured twice a week. All experiments were repeated with essentially similar results. P < 0.01 for Ad.asHsp70 versus Ad.β-gal in all tumor models. bars, ± SD.

Fig. 3. Ad.asHsp70-induced apoptosis-like cell death reduces tumor volumes and clinical symptoms, and prolongs survival of glioblastoma-bearing immunodeficient mice. Five × 10^4 U373MG human glioblastoma cells were implanted stereotactically into the striatum of nude mice as detailed in “Materials and Methods.” a–c, at day 7 indicated amounts of Ad-asHsp70 or Ad.ΔE1, or 8 μl vehicle were administered intratrasionally. a, one group of animals was sacrificed on day 30 for the evaluation of tumor volumes (a, P < 0.01 for Ad.asHsp70-treated groups versus all control groups), whereas in an independent set of experiments the animals were observed at regular intervals until death and Kaplan-Meier curves were drawn to demonstrate the survival in the different groups (c). Mice from both experiments were carefully evaluated for clinical symptoms (levels of alertness, behavior and weight, and the appearance of focal neurological deficits, e.g., epileptic fits or pareses) every day. A compound score of all categories formed on day 28 is presented in b. d, in an independent set of experiments the treatment was carried out with the indicated viruses at day 5 after tumor implantation and at day 10 the animals (n = 3/group) were sacrificed and the brains fixed, cut, and analyzed for Hsp70 expression, DNA strand breaks (TUNEL), and presence of ED1-positive microglia. Representative slides are demonstrated; bars, ± SD.
Autoradiograms of the supernatant were determined 5 h later by ELISA. LoVo-36 cells were infected with Ad.asHsp70 or Ad. β-gal for 48 h or deprived for serum for 24 h (Apo). After 2 h HMDM were stimulated by either PBS (vehicle) or 100 ng/ml LPS. TNF concentrations in the supernatant were determined 5 h later by ELISA. LoVo-36 cells were infected with Ad.asHsp70 or Ad. β-gal and incubated in the presence or absence of indicated concentrations of zVAD-fmk. After 72 h (MCF-7) or 48 h (LoVo-36), cells were added to HMDM and 2 h later the phagocytic index was scored microscopically. All data are means from three independent experiments, each based on triplicate determinations. NEO and CASP3 refer to MCF-7 cells transfected with an empty vector and caspase-3, respectively (17). bars, ± SD.

effectively phagocyted by HMDM. The significant phagocytic uptake of cell corpses as well as tumor cell death appeared to be independent of caspases, because it was neither affected by zVAD-fmk nor by forced overexpression of caspase-3 in MCF-CASP3 cells (Fig. 4, b and c; data not shown). It should be noted that contrary to parental or vector-transfected MCF-7 cells, Ad.asHsp70 triggered caspase activation in MCF-CASP3 cells. However, the overexpression of caspase-3 had no significant effect on the susceptibility of MCF-7 cells to Ad.asHsp70-induced death (data not shown). Most importantly, cells killed by Ad.asHsp70 did not reduce the LPS-induced activation of macrophages as analyzed by the ability of macrophages to produce TNF (Fig. 4a). In fact Ad.asHsp70-treated tumor cells had some stimulatory effect on macrophages even in the absence of LPS (Fig. 4a). In this respect, the Ad.asHsp70-treated cells differed from classic apoptotic cells, which effectively suppressed the proinflammatory macrophage response (Fig. 4a).

Discussion

The data presented above suggest that the depletion of Hsp70 may offer an effective means to combat cancer. In vitro treatment with Ad.asHsp70 was cytotoxic to all of the tumorigenic cell lines tested, pending that they could be effectively infected by adenovirus. More importantly, Ad.asHsp70 treatment resulted in a remarkable reduction in tumor volumes in human brain, breast, and colon cancer xenografts in mice without causing any detectable side effects. Furthermore, Hsp70 depletion resulted in the recruitment of macrophages into the tumor site and caspase-independent engulfment of dying cells. Because Hsp70-depleted cells did not inhibit the activation of macrophages in a way apoptotic cells do, the infiltrating macrophages may enhance the therapeutic effect of Ad.asHsp70 by inciting an inflammatory response and secretion of cytotoxic cytokines such as TNF.

The ineffective delivery of adenoviral vectors into the tumor site appears to be the major limitation for the usage of the Ad.asHsp70 therapy in the treatment of human cancer, which is often a systemic disease. Thus, clinical applications of this approach require additional development of the delivery systems or other means to neutralize the antiapoptotic effect of Hsp70. In the case of tumors that kill their host as a result of local tissue infiltration and invasion, but not distant metastasis, e.g., glioblastoma, locoregional treatment with Ad.asHsp70 may be particularly useful.

Acknowledgments

We thank Ingrid Fossar Larsen, Birgit Poulsen, Gabriele von Kührty, and Torill Rignes for excellent technical assistance.

References

Eradication of Glioblastoma, and Breast and Colon Carcinoma Xenografts by Hsp70 Depletion


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/62/24/7139

Cited articles
This article cites 17 articles, 7 of which you can access for free at:
http://cancerres.aacrjournals.org/content/62/24/7139.full#ref-list-1

Citing articles
This article has been cited by 18 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/62/24/7139.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.