Cancer Susceptibility of Mice with a Homozygous Deletion in the COOH-Terminal Domain of the Brca2 Gene

Kimberly A. McAllister, L. Michelle Bennett, Chris D. Houle, Toni Ward, Jason Malphurs, N. Keith Collins, Carol Cachafeiro, Joseph Haseman, Eugenia H. Goulding, Donna Bunch, E. Mitch Eddy, Barbara J. Davis, and Roger W. Wiseman

Abstract
Inherited mutations of the human BRCA2 gene confer increased risks for developing breast, ovarian, and several other cancers. Unlike previously described Brca2 knockout mice that display predominantly embryonic lethal phenotypes, we developed mice with a homozygous germ-line deletion of Brca2 exon 27 that exhibit a moderate decrease in perinatal viability and are fertile. We deleted this Brca2 COOH-terminal domain because it interacts directly with the Rad51 protein, contains a nuclear localization signal, and is required to maintain genomic stability in response to various types of DNA damage. These homozygous Brca2-mutant mice have a significantly increased overall tumor incidence and decreased survival compared with their heterozygous littersmates. Virgin female mice homozygous for this Brca2 mutation also display an inhibition of ductal side branching in the mammary gland at 6 months of age. Given their substantial viability and cancer predisposition, these mutant mice will be useful to further define the role of the COOH-terminal Brca2 domain in tumorigenesis both in vivo and in vitro.

Introduction
Women who inherit germ-line defects of the BRCA2 breast cancer susceptibility gene have up to an 85% risk of breast cancer development by 70 years of age (1, 2). BRCA2 mutation carriers also have increased risks for a variety of cancers including ovarian, pancreatic, colon, prostate, stomach, laryngeal, thyroid, male breast cancer, and ocular melanoma (3). Substantial evidence from studies of human and mouse cells indicates that the BRCA2 protein is an important component in DNA damage response pathways, and loss of this function is considered a major factor in cancer predisposition (4, 5). Brca2-mutant cells and embryos are hypersensitive to ionizing radiation and other DNA-damaging agents and develop numerous spontaneous chromosomal abnormalities (6–10). In addition, several domains of the BRCA2 protein appear to interact directly with RAD51, a protein having distinct roles in normal meiotic and mitotic recombination, DNA damage repair, and chromosome segregation. These BRCA2 domains include the BRCAno repeats in exon 11 and a highly conserved RAD51 binding domain in exon 27 (6, 7). Individuals to cancer development.

Functional studies of Brca2 in adult tissues have been hindered by

Received 10/25/01; accepted 1/2/02.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This research was funded in part by Department of Defense Breast Cancer Research Grant DAMD17-98-1-8131 (to K. M.).

To whom requests for reprints should be addressed, at Laboratory of Women’s Health, National Institute of Environmental Health Sciences, NIH, MD C4-06, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709. Phone: (919) 541-3229; Fax: (919) 541-3720; E-mail: mcallis2@niehs.nih.gov.

Materials and Methods
Targeting Construct Design. A targeting construct was generated that contained exon 27 of the Brca2 gene flanked by loxP sites (Fig. 1). The 5’ targeting fragment consisted of a 4-kb EcoRI fragment containing exons 25, 26, and 27, and this was subcloned from a genomic mouse bacterial artificial chromosome clone (18). Likewise, a 3-kb NsiI fragment distal to the 3’ untranslated region of Brca2 was also subcloned. Double-stranded loxP oligonucleotides flanked by appropriate restriction sites were inserted into a MunI site in intron 26 of the 5’ targeting fragment and a BamHI site of the 3’ NsiI targeting fragment. Both fragments were then inserted into a previously described pgkNeoTK targeting vector (17). After linearization with SstI, this targeting vector was introduced into 129/Ola-derived BK-4 ES3 cells by electroporation as described previously (17). Electroporated cells were subjected to positive and negative selection with genetin (250 μg/ml; Life Technologies, Inc., Rockville, MD) and gancyclovir (2 μM; Roche, Hertfordshire, United Kingdom). A properly targeted ES cell clone with the “floxed” Brca2 allele (Brca2fllox27) was identified by Southern analyses with unique probes outside the Brca2 targeting construct as well as PCR analyses using loxP-specific primers.

Generation of Germ-Line Mutant Mice. A Cre expression plasmid (generously provided by Dr. Robert Sobol, National Institute of Environmental Health Sciences) was transiently electroporated into ES cells carrying a single floxed Brca2 allele. This Brca2 allele was successfully deleted in ~10% of the floxed ES cells as determined by PCR using primers that flanked the 5’ and 3’ loxP sites (Fig. 1). The Brca2fllox27 allele was amplified using the following PCR primers: B2F1, 5’-GGAGGAGGAGGATGTGTGA-3’ and B2R1, 5’-ATTCCTGGTCTCTCCACTCCA-3’, whereas the Brca2fllox27 allele was detected using primers B2F1 and B2R2, 5’-
CANCER SUSCEPTIBILITY IN HOMOZYGOUS MUTANT Brca2 MICE

Generation of Mice with a Homozygous Germ-Line Deletion of Brca2 Exon 27. ES cells carrying a targeted Brca2 allele with loxP sites flanking exon 27 were generated by homologous recombination (Fig. 1). After transient Cre expression in vitro, ES clones with a Brca2lox27 allele were identified. PCR products generated with the B2F1 and B2R2 primers that flank the 5′ and 3′ loxP sites (Fig. 1) were sequenced to confirm the expected exon 27 deletion. Germ-line transmission of the Brca2lox27 allele was identified by standard breeding techniques.

As expected, reverse transcriptase-PCR analysis with primers specific for exon 27 does not yield detectable messages in tested RNA from Brca2lox27/lox27 mice, although this reverse transcription-PCR product is easily detectable for Brca2lox27+ mice. Assuming a mutant transcript is expressed, it could give rise to a truncated protein product of 3142 amino acids compared with the wild-type murine Brca2 protein that contains 3329 amino acids. Unfortunately, we are unable to confirm the presence or relative levels of this putative mutant Brca2 protein because of the unavailability of specific antibodies directed against the murine gene product.

Viability of Brca2lox27/lox27 Mice. Although the Brca2lox27/lox27 animals are viable with previous Brca2 germ-line mutants, survival analysis indicates an overall decrease in viability of homozygous mutants compared with heterozygous and wild-type littermates:

First, cumulative genotyping at weaning from Brca2lox27+ intercrosses revealed a significant (P < 0.008) deficit of Brca2lox27/lox27 mice from the expected 1:2:1 Mendelian ratio. When both sexes are combined, only 47 of 278 animals analyzed at weaning were of the homozygous mutant genotype. Thus, there are ∼33% fewer Brca2lox27/lox27 mice than expected, and both male and female offspring were under represented. To further characterize the decreased overall viability of Brca2lox27/lox27 mice during development, we examined embryonic fibroblasts from Brca2lox27+ intercrosses at 13.5 days of gestation. Analysis of 39 such embryos shows that the genotypic distribution does not deviate from the expected Mendelian ratio. Thus,

<table>
<thead>
<tr>
<th>Group</th>
<th>Brca2lox27/lox27</th>
<th>Brca2lox27+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgin females</td>
<td>14/25 (56%) ab</td>
<td>9/30 (30%)</td>
</tr>
<tr>
<td></td>
<td>0/3 (0%)</td>
<td>3/11 (27%)</td>
</tr>
<tr>
<td>Multiparous females</td>
<td>5/7 (71%)</td>
<td>0/1 (0%)</td>
</tr>
<tr>
<td>Males</td>
<td>6/9 (67%) b</td>
<td>2/12 (17%)</td>
</tr>
<tr>
<td></td>
<td>0/4 (0%)</td>
<td>3/15 (20%)</td>
</tr>
<tr>
<td>Total</td>
<td>25/41 (61%) b</td>
<td>11/43 (26%)</td>
</tr>
</tbody>
</table>

a Number of tumor-bearing mice/number of mice at risk (% incidence).
b Significantly greater than Brca2lox27+ littermates (P = 0.05, Fisher’s exact test).
c Significantly greater than Brca2lox27+ littermates (P = 0.01, Fisher’s exact test).

Downloaded from cancerres.aacrjournals.org on April 19, 2017. © 2002 American Association for Cancer Research.
CANCER SUSCEPTIBILITY IN HOMOZYGOUS MUTANT Brca2 MICE

Table 2. Spectrum of spontaneous tumor development in Brca2-deficient mice

<table>
<thead>
<tr>
<th></th>
<th>Brca2<sup>Δ27/Δ27</sup></th>
<th>Brca2<sup>Δ27/+</sup></th>
<th>Brca2<sup>+/+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgin females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammary adenosquamous carcinoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric squamous cell carcinoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrial carcinoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/B lung carcinoma</td>
<td>1 (63 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pituitary adenoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/B lung adenoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian cystadenoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenal cortical adenoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammary adenomyoepithelioma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histiocytic sarcoma</td>
<td>3 (65 weeks)</td>
<td>2 (64 weeks)</td>
<td></td>
</tr>
<tr>
<td>Hemangiosarcoma</td>
<td>1 (62 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediastinal lymphoma</td>
<td>5 (50 weeks)</td>
<td>1 (50 weeks)</td>
<td></td>
</tr>
<tr>
<td>Nodal lymphoma</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17 tumors/14 mice</td>
<td>9 tumors/9 mice</td>
<td>4 tumors/3 mice</td>
</tr>
<tr>
<td>Multiparous females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric squamous cell carcinoma</td>
<td>2 (69 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric adenocarcinoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediastinal lymphoma</td>
<td>2 (70 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5 tumors/5 mice</td>
<td>0 tumors/1 mouse</td>
<td>0 tumors/0 mice</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinomas</td>
<td>2 (70, 71 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/B lung carcinoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenal cortical adenomas</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic adenoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarcomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediastinal lymphoma</td>
<td>1 (68 weeks)</td>
<td>1 (68 weeks)</td>
<td></td>
</tr>
<tr>
<td>Nodal lymphoma</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8 tumors/6 mice</td>
<td>2 tumors/2 mice</td>
<td>0 tumors/4 mice</td>
</tr>
</tbody>
</table>

* Tumor latency (weeks) for mice sacrificed because of morbidity prior to terminal sacrificies between 73 weeks (17 months) and 86 weeks (19 months) of age.

Table 2. Spectrum of spontaneous tumor development in Brca2-deficient mice

Virgin females
- Mammary adenosquamous carcinoma: 1 case
- Gastric adenocarcinoma: 1 case
- Gastric squamous cell carcinoma: 1 case
- Endometrial carcinoma: 1 case
- A/B lung carcinoma: 1 case (63 weeks)

Adenomas
- Pituitary adenoma: 1 case
- A/B lung adenoma: 1 case
- Ovarian cystadenoma: 1 case
- Adrenal cortical adenoma: 1 case
- Mammary adenomyoepithelioma: 1 case

Sarcomas
- Histiocytic sarcoma: 3 cases (65 weeks)
- Hemangiosarcoma: 1 case (62 weeks)

Lymphomas
- Mediastinal lymphoma: 5 cases (50 weeks)
- Nodal lymphoma: 1 case

Total: 17 tumors in 14 mice

Multiparous females
- Carcinomas
 - Gastric squamous cell carcinoma: 2 cases (69 weeks)

- Adenomas
 - Adrenal cortical adenomas: 2 cases
 - Hepatic adenoma: 1 case

- Sarcomas
 - Leiomyosarcoma: 1 case

- Lymphomas
 - Mediastinal lymphoma: 1 case (68 weeks)

Total: 2 tumors in 5 mice

Males
- Carcinomas
 - Squamous cell carcinomas: 2 cases (70, 71 weeks)
- A/B lung carcinoma: 1 case

- Adenomas
 - Adrenal cortical adenomas: 2 cases
 - Hepatic adenoma: 1 case

- Sarcomas
 - Leiomyosarcoma: 1 case

- Lymphomas
 - Mediastinal lymphoma: 1 case (68 weeks)

Total: 8 tumors in 6 mice

A subset of Brca2^{Δ27/Δ27} offspring appear to either die during late gestation or shortly after birth, suggesting that loss of Brca2 function impacts overall viability.

Secondly, the overall survival of Brca2^{Δ27/Δ27} compared with Brca2^{Δ27/+} virgin female mice is significantly decreased (P < 0.05) by a life table test, providing additional support that lifetime survival is affected by this Brca2 mutation. Interestingly, test matings of both Brca2^{Δ27/Δ27} and Brca2^{Δ27/+} females were determined using whole-mount analysis. At 6 months of age, mammary tissue from three Brca2^{Δ27/Δ27} mice exhibited a dramatic lack of side branching and a much lower density of ductules compared with that observed for three heterozygous and wild-type littermates, which were indistinguishable (Fig. 2). Although the ducts reached the limits of the mammary fat pad in the homozygous mutant animals, a substantial lack of side branching was observed in these Brca2^{Δ27/Δ27} females. These observations were confirmed by examining histological sections from these mice. This general trend of inhibited side branching observed in Brca2^{Δ27/Δ27} females was maintained in the nine animals of all three genotypic classes that were examined subsequently at 9 months of age.

Predisposition of Brca2^{Δ27/Δ27} Mice to Spontaneous Tumor Development. Brca2^{Δ27/Δ27} mice display an increased incidence of a wide variety of solid tumors compared with their Brca2^{Δ27/+} and Brca2^{+/+} littermates (Tables 1 and 2). We observed untreated animals on a mixed 129 × C57BL/6N genetic background for tumor development or signs of morbidity. Prior to 17 months, 9 spontaneous tumors were detected in Brca2^{Δ27/Δ27} mice, whereas only a single tumor was observed in the Brca2^{Δ27/+} animals, and no tumors were observed in Brca2^{+/+} animals during this time period (Table 2).

Terminal sacrifices of the remaining animals were performed between 17 and 19 months of age. This enabled us to develop a comprehensive tumor spectrum for mice from each genotype (Table 2). With the combined data from all of the moribund and terminal sacrifices, the Brca2^{Δ27/Δ27} mice exhibited a ~2-fold increase in overall tumor incidence compared with their Brca2^{Δ27/+} and Brca2^{+/+} littermates. In 41 Brca2^{Δ27/Δ27} mice, 30 tumors were observed, compared with only 11 tumors in 43 Brca2^{Δ27/+} animals and 4 tumors in 15 Brca2^{+/+} animals. Overall, 25 tumor-bearing animals were observed among 41 Brca2^{Δ27/Δ27} mice for a tumor incidence of 61% (Table 1). In contrast, only 11 of 43 Brca2^{Δ27/+} animals were tumor-bearing (26% incidence), and 3 of 15 animals (20% incidence) were tumor-bearing in the Brca2^{+/+} littermates (Table 1). These data from all mice combined show a highly significant difference (P < 0.01) in the overall tumor rates between the Brca2^{Δ27/Δ27} and Brca2^{Δ27/+} mice. These results were also analyzed separately for virgin females alone, virgin plus multiparous females, and males only. The tumor response patterns and incidences for each of these smaller subgroups are similar to the tumor response of all animals combined. Statistically significant differences (P < 0.05) in tumor incidences between the Brca2^{Δ27/Δ27} and Brca2^{Δ27/+} animals are observed when the data for each subgroup is considered independently. Because a smaller number of Brca2^{Δ27/+} mice were examined, there was not enough statistical power to distinguish tumor rates between the wild-
type and other genotypic classes. We also did not observe a significant difference in overall tumor incidence between males and females for the Brca2\(^{\Delta 27/\Delta 27}\) genotype with a 67% (6 of 9) incidence observed in males compared with a 59% (19 of 32) incidence observed for virgin and multiparous females combined (Table 1).

The tumor spectrum is diverse and includes carcinomas, adenomas, lymphomas, and sarcomas (Table 2). Of particular interest is the exclusive appearance of various types of carcinomas in the Brca2\(^{\Delta 27/\Delta 27}\) mice. These include one mammary adenosquamous carcinoma (Fig. 3), five squamous cell carcinomas (three of gastric origin), two gastric adenocarcinomas, one endometrial carcinoma, and two A/B lung carcinomas. Fig. 3 illustrates representative histological sections for the two types of gastric tumors that were observed. Interestingly, a single mammary adenomyoepithelioma was detected in one Brca2\(^{\Delta 27/\Delta 27}\) mouse. The carcinoma also appears to be increased in the Brca2\(^{\Delta 27/\Delta 27}\) mice compared with their littermates. Three histiocytic sarcomas, along with a hemangiosarcoma and a leiomysarcoma, arose in Brca2\(^{\Delta 27/\Delta 27}\) mice, whereas only two hystiocytic sarcomas were identified in their Brca2\(^{\Delta 27/\Delta 27}\) and Brca2\(^{+/-}\) littermates. We found a wide variety of tumor types in the Brca2\(^{\Delta 27/\Delta 27}\) mice that were sacrificed before 17 months of age because of morbidity (Table 2). Therefore, no obvious differences in latency between distinct tumor types were observed.

Discussion

Here we describe germ-line Brca2 mutant mice with a predisposition for tumor development. In contrast to previous reports of mice with homozygous germ-line mutations in the Brca2 gene (6–8, 15–17), the Brca2\(^{\Delta 27/\Delta 27}\) mice exhibit only a 33% decrease in expected viability during perinatal development. Brca2\(^{\Delta 27/\Delta 27}\) mice of both sexes are fertile and lack gross developmental abnormalities. Mice harboring this germ-line mutation in the COOH-terminal domain of Brca2 have an increased susceptibility for a wide spectrum of solid tumors. The fact that 9 of 10 spontaneous tumors that developed prior to 17 months arose in Brca2\(^{\Delta 27/\Delta 27}\) mice indicates that not just the incidence but also the survival, because of tumor development, is significantly affected by the presence of this Brca2 mutation. Overall, the tumor spectrum we observed is similar to that reported for knockout mice eliminating the COOH-terminal region of the Brca1 gene, where an increased incidence of a wide variety of carcinomas, sarcomas, and lymphomas was found (24). One unique finding of our study is the exclusive presence of carcinomas in Brca2\(^{\Delta 27/\Delta 27}\) mice and specifically a substantial number of stomach cancers, both adenocarcinomas and squamous cell carcinomas. We have shown previously that Brca2 expression in adult mouse tissues correlates with cell proliferation and is relatively high in the glandular mucosa of the stomach (25). Interestingly, stomach cancers are among the various tumor types that have been associated with BRCA2 mutations in humans, with a 2.59 relative risk (3).

This report supports a strong correlation between the Brca2 mutation position and the resulting Brca2 mouse knockout phenotype. We and other laboratories have shown previously that mice homozygous for targeted Brca2 mutations' 5' of the BRCA repeats in exon 11 exhibit early embryonic lethal phenotypes (6–8, 15–17). These BRCA repeats interact with Rad51 (12, 13) and have been highly conserved in evolution (18, 26), which suggests that they are important functional domains of the Brca2 protein. A few viable Brca2-mutant mice have been generated that retain at least some of these BRCA repeats, and these animals display multiple severe developmental abnormalities, infertility, and early thymic lymphoma development (7, 8). The Brca2\(^{\Delta 27/\Delta 27}\) mice lack only the COOH-terminal domain and could produce a truncated Brca2 gene product that preserves all eight BRCA repeats. In contrast to all other Brca2-null mice reported to date, these Brca2\(^{\Delta 27/\Delta 27}\) mice display a modest loss of viability and have no gross developmental abnormalities or obvious infertility. Thus, full retention of the BRCA repeats and other functional domains may direct a genotype-phenotype correlation.
This study extends previous findings by several laboratories that have demonstrated the functional significance of the COOH-terminal domain of both human and rodent Brca2. Morimatsu et al. (10) demonstrated that mouse ES cells and embryonic fibroblasts lacking exon 27 are hypersensitive to γ-radiation and undergo premature senescence. Recent reports indicate that the COOH-terminus of Brca2 is required for error-free, homology-directed repair of DNA double strand breaks and the ability to facilitate the induction of Rad51 nuclear foci after ionizing radiation (20, 21). Thus, disruption of the exon 27 Brca2-Rad51 interaction appears to lead to defective repair of DNA damage and generalized chromosomal instability with a subsequent increased risk of neoplastic progression in Brca2-deficient cells (4, 5). The human COOH-terminal region of Brca2 also appears to be critical because a truncating mutation (9808delCC) at position 3195, which occurs just upstream of the predicted Rad51-interacting domain in human Brca2 exon 27, is associated with an elevated breast cancer risk (27).

Despite the increased susceptibility of Brca2Δ27/Δ27 mice to tumorigenesis, these animals are not highly susceptible to mammary tumorigenesis. Several factors may account for this observation, but the most likely reason is the fact that the Brca2Δ27 mutation was examined on a mixed C57BL/6N and 129 genetic background. C57BL/6N and 129/SvEvB6 mice are both extremely resistant to spontaneous as well as radiation-induced mammary carcinogenesis (4). Thus, we are currently using microsatellite marker-assisted breeding techniques to transfer this Brca2Δ27 mutation onto inbred strains such as BALB/cJ that are susceptible to mammary carcinogenesis.

The reduced ductal branching phenotype seen in Brca2Δ27/Δ27 virgin female mice may be associated with increased mammary tumor risk in combination with other environmental or genetic factors. We cannot exclude the possibility that the subtle mammary gland phenotype we have observed may be attributable to hormonal differences in the Brca2Δ27/Δ27 mice compared with their littermates rather than a more direct Brca2 effect. However, Deng and Brodie (14) and Xu et al. (28) described a blunted ductal branching phenotype in the mammary glands of mice with a mammary-specific targeted Brca1 mutation that was associated with subsequent tumor development after a long latency. In addition, a high incidence of mammary adenocarcinomas was reported recently in mice carrying a mammary tissue-specific mutation that completely disrupts the Brca2 gene (29). Given their substantial viability and a cancer predisposition, Brca2Δ27/Δ27 mice and cells derived from them will be useful to further define the role of Brca2 in tumorigenesis.

Acknowledgments

Cancer Susceptibility of Mice with a Homozygous Deletion in the COOH-Terminal Domain of the Brca2 Gene

Kimberly A. McAllister, L. Michelle Bennett, Chris D. Houle, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/62/4/990

Cited articles
This article cites 26 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/62/4/990.full.html#ref-list-1

Citing articles
This article has been cited by 17 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/62/4/990.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.