Hypoxia-inducible Factors HIF-1\(\alpha\) and HIF-2\(\alpha\) in Head and Neck Cancer: Relationship to Tumor Biology and Treatment Outcome in Surgically Resected Patients

Nigel J. P. Beasley, Russell Leek, Mohammed Alam, Helen Turley, Graham J. Cox, Kevin Gatter, Peter Millard, Sue Fuggle, and Adrian L. Harris

Oxford Centre for Head and Neck Oncology, Radcliffe Infirmary, Oxford OX2 6HE [N. J. P. B., G. J. C.], and ICRF Molecular Oncology Group, Institute of Molecular Medicine [N. J. P. B., R. L., M. A., H. T., A. L. H.], Nuffield Department of Clinical Laboratory Sciences [K. G.], Department of Histopathology [P. M.], and Nuffield Department of Surgery, John Radcliffe Hospital, Oxford OX3 9DU [S. F.], United Kingdom

Abstract

Hypoxia within head and neck squamous cell carcinoma (HNSCC) predicts a poor response to radiotherapy and poor prognosis. Hypoxia-inducible factor (HIF)-1 and HIF-2 are nuclear transcription factors that regulate the cellular response to hypoxia and are important for solid tumor growth and survival. Overexpression of HIF-1\(\alpha\) and HIF-2\(\alpha\) was demonstrated in three HNSCC cell lines under hypoxia and tumor tissue versus normal tissue (\(n = 20\), HIF-1\(\alpha\), \(P = 0.023\); HIF-2\(\alpha\), \(P = 0.013\)). On immunostaining, HIF-1\(\alpha\) and HIF-2\(\alpha\) expression were localized to tumor nuclei; HIF-2\(\alpha\) expression was also seen in tumor-associated macrophages. Expression of HIF-1\(\alpha\) in surgically treated patients with HNSCC (\(n = 79\)) was associated with improved disease-free survival (\(P = 0.016\)) and overall survival (\(P = 0.027\)).

Introduction

A low intratumoral pO\(_2\) in HNSCC\(^2\) predicts a poor response to radiation and low overall survival (1). This is partly because of lack of fixation by oxygen of radiation-induced damage but may also be related to overexpression of hypoxia-inducible genes that promote cell survival (2). Two of the most important transcription factors mediating the cellular response to hypoxia are HIF-1\(\alpha\) and HIF-2\(\alpha\). These transactivate many target genes, including glucose transporters, glycolytic enzymes, and vascular endothelial growth factor (3). Induction of these genes is part of the cellular response to an adverse environment and may give cells a survival advantage by promoting glucose transport, anaerobic metabolism, and angiogenesis (2, 4). HIF-1\(\alpha\) and HIF-2\(\alpha\) are critical for solid tumor growth, survival, and promotion of aggressiveness (5, 6) with overexpression seen in many human tumors (7, 8). Overexpression of HIF-1\(\alpha\) has been linked to poor outcome in cervical and oropharyngeal carcinoma in patients treated with radiotherapy (9, 10). We sought to investigate the role of HIFs in the biology of HNSCC treated by a modality not dependent on hypoxia, i.e., surgery to determine whether the effect of HIF expression may be different in this context.

Materials and Methods

Cell Lines. Human head and neck squamous cell carcinoma cell lines UM-SCC22A, UM-SCC22B (courtesy of Dr. T. Carey, University of Michigan), SCC-25, and HeLa cells (American Type Culture Collection) were maintained in DMEM with 10% heat-inactivated FCS and 2 mM fresh glutamine. Cells were exposed to normoxia or hypoxia (94.9% N\(_2\), 5% CO\(_2\), and 0.1% O\(_2\)) for 16 h. Cells were harvested on ice and homogenized in lysis buffer (8 M urea, 10% glycerol, 10 mM Tris-HCl (pH 6.8), 1% SDS, 5 mM 3-phenylpropanol-ol, 1 \(\mu\)g/ml aprotinin, 10 \(\mu\)g/ml pepstatin, and 10 \(\mu\)g/ml leupeptin).

Fresh Tissue Samples. Twenty paired tumor and adjacent normal tissue samples from primary HNSCC were snap frozen, sectioned, and stained with H&E to ensure they contained representative tissue. Sections were sectioned on ice and homogenized in lysis buffer as above.

Immunoblotting. Cell and tissue extracts were protein quantified using the Bio-Rad DC protein assay. Immunoblotting gels were made of 29 tumors was early stage (T1/T2), and 50 were late stage (T3/T4); 38 were N0 at presentation, and 41 had metastatic spread to the neck nodes (N\(+\)). All had surgery with pathologically clear resection margins as their first line of management; 28 received postoperative radiotherapy because of their advanced stage. Tumor grade, margin of invasion, inflammatory infiltrate, and percentage tumor necrosis were assessed.

Immunostaining. Tissue sections were cleared of paraffin, rehydrated, and blocked in hydrogen peroxide. Then they were pressure cooked for 3 min in Tris/EDTA lysis buffer (pH 9.0) before incubation with 1:20 MoAb ESEE 122 (anti-HIF-1\(\alpha\); Ref. 8) or neat MoAb EP190b (anti-HIF-2\(\alpha\); Ref. 8) with 5% normal human serum for 60 min or incubated with 1:100 MoAb Qbend 10 (anti-CD34; Dako) or 1:10 MoAb PGM1 (anti-CD68) in Tris-buffered saline (pH 7.2). Slides were counterstained with Hematoxylin.

HIF and Glut 1 Immunostaining. Slides were incubated with the following: CD34 and CD68 using the alkaline phosphatase antialkaline phosphatase system in Tris-buffered saline (pH 9.0) before incubation with 1:20 MoAb ESEE 122 (anti-HIF-1\(\alpha\); Ref. 8) or neat MoAb EP190b (anti-HIF-2\(\alpha\); Ref. 8) with 5% normal human serum for 60 min or incubated with 1:100 MoAb Qbend 10 (anti-CD34; Dako) or 1:10 MoAb PGM1 (anti-CD68) in Tris-buffered saline (pH 7.2) before incubation with the alkaline phosphatase antialkaline phosphatase system. Slides were counterstained with Hematoxylin.

Cell and tissue extracts were quantified using the Bio-Rad DC protein assay. Immunoblotting gels were made of 29 tumors was early stage (T1/T2), and 50 were late stage (T3/T4); 38 were N0 at presentation, and 41 had metastatic spread to the neck nodes (N\(+\)). All had surgery with pathologically clear resection margins as their first line of management; 28 received postoperative radiotherapy because of their advanced stage. Tumor grade, margin of invasion, inflammatory infiltrate, and percentage tumor necrosis were assessed.

Immunoblotting. Cell and tissue extracts were quantified using the Bio-Rad DC protein assay. Immunoblotting gels were made of 29 tumors was early stage (T1/T2), and 50 were late stage (T3/T4); 38 were N0 at presentation, and 41 had metastatic spread to the neck nodes (N\(+\)). All had surgery with pathologically clear resection margins as their first line of management; 28 received postoperative radiotherapy because of their advanced stage. Tumor grade, margin of invasion, inflammatory infiltrate, and percentage tumor necrosis were assessed.

Received 10/12/01; accepted 3/18/02.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom requests for reprints should be addressed, at ICRF Molecular Oncology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom. E-mail: abarrie.lab@icrf.icnet.uk.

2 The abbreviations used are: HNSCC, head and neck squamous cell carcinoma; Glut 1, glucose transporter 1; HIF, hypoxia-inducible factor; LDH, lactate dehydrogenase; MoAb, monoclonal antibody; NS, not significant; MVD, microvessel density; TAM, tumor-associated macrophage.
overexpression of HIF-1α and HIF-2α protein and normal kidney were used as positive and negative controls, respectively. MVD was determined in tumor microvessel hotspots using a Chalkley point counting.

Statistics. The difference between expression of HIF-1α, HIF-2α, and LDH in paired tumor and normal tissue was determined using the Wilcoxon signed rank test. Correlation between the level of HIF-1α/HIF-2α and LDH levels in fresh tissue or MVD in the corresponding paraffin sections was examined using Spearman’s correlation. The difference in age, percentage of tumor necrosis, and MVD were compared for the two different categories of HIF-1α (nuclear) or HIF-2α (nuclear or TAM) expression using the Mann-Whitney U test. The association between the patient’s sex, tumor stage (two categories: T1/2 or T3/4), nodal stage (N0 and N+), tumor grade, margin of invasion, and inflammatory infiltrate was compared for the negative and positive categories of HIF-1α or HIF-2α expression using Pearson’s χ² test. Multiple logistic regression, using a forward variable selection technique (entry P < 0.1, removal P > 0.2), was used to identify which of the above variables were significant in predicting HIF-1α and HIF-2α expression. Disease-free and overall survival were estimated using the Kaplan-Meier method and compared using the Log-rank test. Cox proportional hazards model, using a forward variable selection technique (entry P < 0.1, removal P > 0.2), was used to identify which of the above variables (including postoperative radiation) were of independent statistical significance in predicting disease-free and overall survival. All statistics were done using SPSS software v9.0.

Results and Discussion

Expression of HIF-1α, HIF-2α, and Glut 1 in HNSCC Cell Lines. HIF-1α and HIF-2α were overexpressed in all three head and neck cell lines under hypoxia with little or no expression in normoxia. Glut 1 was overexpressed in two of the three cell lines under the same conditions (Fig. 1a). These findings confirm that HIF-1α and HIF-2α are not overexpressed constitutively in these HNSCC cell lines because of genetic factors, such as mutation of the von Hippel Lindau gene, and that overexpression occurs in response to hypoxia. Overexpression of Glut 1 confirms the activity of these HIFs on downstream genes.

Expression of HIF-1α, HIF-2α, and LDH in HNSCC Tissue Samples. HIF-1α was expressed in all 20 HNSCC tumor samples with 15 of the 20 showing greater expression in tumor tissue compared with adjacent normal tissue (Fig. 1b). Using densitometry to measure the level of expression of HIF-1α on Western blotting, a significantly higher level of expression was observed in tumor tissue (n = 20, tumor median 114 units of density (50–219), normal median 69 units of density (19–163), P = 0.023, Wilcoxon’s rank-sum test; Fig. 1b). HIF-2α was expressed in 19 of the 20 HNSCC tumor samples with 14 of the 19 showing greater expression in tumor tissue compared with adjacent normal tissue (Fig. 1b). A significantly higher level of HIF-2α expression was observed in tumor tissue (n = 19, tumor median 54 units of density (27–267), normal median 32 units of density (17–97), P = 0.013, Wilcoxon’s rank-sum test; Fig. 1b). HIF-1α and HIF-2α expression were seen in some samples of adjacent normal tissue. Levels of LDH were significantly higher in the 16 of the 20 tumor samples when compared with adjacent normal tissue (n = 20, tumor median 161 units of density (41–450), normal median 76 units of density (20–211), P = 0.002, Wilcoxon’s rank-sum test; Fig. 1b).

Overexpression of HIF-1α and HIF-2α in tumor samples demonstrates that these hypoxia-inducible transcription factors are induced in HNSCC. Overexpression of the downstream target gene LDH in tumor tissue suggests they are transcriptionally active. This overexpression is most likely because of changes in the local environment, particularly hypoxia (1). Overexpression of the HIFs in adjacent normal tissue fits with their demonstration in normal epithelium, overlying the tumor on immunohistochemistry in this study (data not shown) and others (7, 8, 12). This overexpression may be because of local hypoxia in the tissues secondary to the increased interstitial pressure exerted by the tumor, shunting, or the accumulation of metabolic products that affect oxygen delivery and consumption by tissues proximal to the tumor (12).

Correlation between HIF-1α/HIF-2α Expression and LDH/ MVD. There was no significant correlation between HIF-1α/HIF-2α expression and LDH expression in frozen tumor tissue or MVD in corresponding paraffin-embedded tissue. This lack of direct correlation between the HIFs and LDH or MVD is not surprising, given the diversity of other biological processes involved in the expression of LDH and promotion of angiogenesis. Other studies have similarly found a lack of direct correlation between hypoxia and angiogenesis (10, 13).

Localization of HIF-1α and HIF-2α Expression on Immunostaining in HNSCC. HIF-1α expression was identified in 69 of 79 tumors on immunostaining; 10 cases were excluded (excessive background/poor staining). Expression was largely nuclear and was seen throughout the tumor area, including the perinecrotic region of the tumor and the tumor stromal interface (Fig. 2a). In positive areas, only a proportion of the nuclei stained positive. Nuclear localization of HIF-1α and the heterogeneous distribution of expression throughout the tumor area are consistent with other studies, where expression was often concentrated in the perinecrotic regions, and at the tumor/stroma interface (7, 8, 10, 12, 14). This heterogeneous expression pattern may be in part explained by the variable blood flow, high oxygen consumption, and longitudinal vascular oxygen gradients within the tu-
mors, resulting in zonal regional of hypoxia (15–17). Another factor may be the recently demonstrated improved survival of HIF-1α/HIF-2α cells distant from blood vessels in animal tumor models (18). HIF-1α is known to play a role in the promotion of apoptosis in tumor cells (19), and HIF-1α/HIF-2α cells may have a survival advantage being less dependent on vascular supply.

HIF-2α expression was identified in 70 of 79 tumors; 9 were excluded (excessive background/poor staining). Staining was identified throughout the tumor in some of the nuclei without any particular predilection for perinecrotic tissues or the tumor/stroma interface (Fig. 2b), but marked overexpression of HIF-2α was identified in tumor-associated macrophages either in close proximity to the tumor or infiltrating the tumor stroma. These were confirmed as macrophages by examining serial sections stained for HIF-2α and CD68, a cell surface antigen specific to macrophages (Fig. 2, c–f). CD 68-positive macrophages identified distant from the tumor in a sample of normal tonsil were negative for HIF-2α (Fig. 2, g and h). This may be because of macrophages hypoxia from high metabolic activity and low perfusion or other local stimuli.

HIF-1α/HIF-2α Expression and Tumor Necrosis and Other Tumor Variables. A higher percentage of tumor necrosis was the only variable associated with HIF-1α (nuclear) expression ($n = 69$, $P = 0.035$, Mann-Whitney) on univariate analysis; this significance was lost with the introduction of T stage into the multiple logistic regression model (Table 1). None of the variables were associated with HIF-2α (nuclear) expression ($n = 70$, $P = 0.001$, Mann-Whitney) on univariate analysis. In the multiple logistic regression model, necrosis remained significantly predictive of HIF-2α (TAM) expression [$P = 0.001$, odds ratio 9.61 (2.76–31.52)]. Nodal stage was the only other variable introduced, using the forward selection criteria described, but it was NS

Fig. 2. Expression of HIF-1α and HIF-2α on immunostaining in HNSCC. a, nuclear expression of HIF-1α ($\times 400$). Arrows, positive nuclei. b, nuclear expression of HIF-2α ($\times 400$). Arrows, positive nuclei. c and e, expression of HIF-2α in TAMs ($\times 250$). d and f, serial section of c and e showing CD 68-positive macrophages ($\times 250$). g, lack of expression of HIF-2α in normal tonsil tissue ($\times 250$). h, serial section of g showing normal CD68 macrophages present in the tonsil tissue.
HYPOXIA-INDUCIBLE FACTORS IN HNSCC

There is hope that the HIFs may be suitable targets for future therapy, but caution should be exercised, as the specificity of interactions with this system, its specificity to areas of tumor rather than physiological hypoxia, and the overall effect of inhibiting the HIF system are unclear but could have significant implications for its potential clinical use (4).

Table 1: Association between HIF-1α or HIF-2α expression in HNSCC on immunostaining and patient and tumor variables

<table>
<thead>
<tr>
<th>Continuous variables</th>
<th>HIF-1α (nuclear)</th>
<th>HIF-2α (nuclear)</th>
<th>HIF-2α (TAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>62 (17–92)</td>
<td>60 (27–79)</td>
<td></td>
</tr>
<tr>
<td>Necrosis (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>0 (0–50)</td>
<td>5 (0–75)</td>
<td></td>
</tr>
<tr>
<td>MVD</td>
<td>67</td>
<td>5.67 (1.33–9.00)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categorical variables</th>
<th>HIF-1α (nuclear)</th>
<th>HIF-2α (nuclear)</th>
<th>HIF-2α (TAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16</td>
<td>32</td>
<td>7</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>T stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1/T2</td>
<td>9</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>T3/T4</td>
<td>16</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>N stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>13</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>N+</td>
<td>12</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>Tumor grade (differentiation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poorly</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Moderate</td>
<td>19</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>Well</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Tumor margin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pushing</td>
<td>6</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Invasive</td>
<td>17</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Inflammatory infiltrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scanty or none</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Patchy</td>
<td>15</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>Confluent</td>
<td>8</td>
<td>19</td>
<td>3</td>
</tr>
</tbody>
</table>

a number of patients.

b As a percentage of the total tumor area.
References

Hypoxia-inducible Factors HIF-1α and HIF-2α in Head and Neck Cancer: Relationship to Tumor Biology and Treatment Outcome in Surgically Resected Patients

Nigel J. P. Beasley, Russell Leek, Mohammed Alam, et al.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/62/9/2493

Cited articles

This article cites 19 articles, 11 of which you can access for free at:
http://cancerres.aacrjournals.org/content/62/9/2493.full#ref-list-1

Citing articles

This article has been cited by 25 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/62/9/2493.full#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.