Identification of HLA DR7-restricted Epitopes from Human Telomerase Reverse Transcriptase Recognized by CD4+ T-Helper Cells

Roland Schroers, Xue F. Huang, Juergen Hammer, Jingwu Zhang, and Si-Yi Chen

Center for Cell and Gene Therapy [R. S., X. F. H., S-Y. C.], and Departments of Molecular and Human Genetics [R. S., S-Y. C.], Pediatrics [X. F. H.], and Neurology [J. Z.], Baylor College of Medicine, Houston, Texas 77030, and Vaccinome, Kearny, New Jersey 07032 [J. H.]

ABSTRACT

CD4+ T cells play critical roles in initiating, regulating, and maintaining antitumor immune responses. One way to improve current tumor vaccines that mainly induce CTLs would be to activate antigen-specific CD4+ T cells that recognize MHC class II restricted tumor associated antigens. Human telomerase reverse transcriptase (hTRT) is preferentially expressed by various tumors and, therefore, could be a universal tumor antigen. In this study, we used a combined approach of using the prediction software TEPITOPE to select class II epitope candidates and in vitro T-cell biological analysis to identify class II-restricted epitope(s) in hTRT. We first identified several HLA-DR7-restricted class-II epitope candidates in hTRT by examining human T-cell responses to synthetic peptides. We then characterized these HLA-DR7-restricted class-II epitope candidates in hTRT by establishing and analyzing peptide-specific T-cell clones. It was demonstrated that CD4+ T cells specific for the HLA-DR7-restricted hTRT672 epitope (RPGLLGASVLGLDDI) can respond to naturally processed hTRT proteins. Furthermore, the hTRT672-specific T cells recognized hTRT antigen from various tumors, including prostate cancer, breast cancer, melanoma, and leukemia. Thus, the identification of the naturally processed HLA-DR7-restricted hTRT epitope, together with the previous finding of class I-restricted hTRT epitopes, provide a basis for the combined application of class I- and II-restricted hTRT epitopes to induce potent, long-term CD4+ and CD8+ T-cell responses against a broad spectrum of tumors.

INTRODUCTION

Human telomerase is a ribonucleoprotein that mediates RNA-dependent synthesis of telomeric DNA, the distal ends of eukaryotic chromosomes that stabilize the chromosomes during replication. Once activated, the telomerase synthesizes telomeric DNA and compensates for its loss with each cell division. Maintenance of a constant telomere length ensures chromosomal stability, prevents cells from aging, and confers immortality (1, 2). High hTRT activity was found in normal tissues show little or no telomerase activity (1, 4–6). Because of tumors of different histological origins and types (1, 3), whereas previous finding of class I-restricted hTRT epitopes, provide a basis for the identification of the naturally processed HLA-DR7-restricted hTRT epitope, together with the combination of using the prediction software TEPITOPE to select class II epitope candidates and in vitro T-cell biological analysis to identify class II-restricted epitope(s) in hTRT. We identified several DR7-restricted class-II epitope candidates in hTRT by examining human T-cell responses to synthetic peptides derived from predicted sequences. We additionally characterized the hTRT epitopes by establishing and examining peptide-specific T-cell clones. The results of this study demonstrate that the hTRT672-specific T cells can recognize hTRT antigen from tumors of different histological origins and types.

MATERIALS AND METHODS

Cell Lines, Blood Donors, Monoclonal Antibodies, and Cell Culture Medium. Prostate cancer cell line (LNCaP-FGC), breast cancer cell lines (BT-474 and MDA-MB231), melanoma cell lines (SK-MEL3 and NA-6-MEL), human leukemia cell lines (HL-60 and Jurkat), and the hTRT-negative cell line GM847 were from American Type Culture Collection and Dr. O. M. Pereira-Smith (Baylor College of Medicine). Peripheral bloods were obtained from adult healthy donors with their consent (donor B15: DRB1*07, 07; B24: DRB1*07, 07; B22: DRB1*07, 07; B03: DRB1*07, 15; and B05: DRB1*07, 04b). HLA typing of peripheral blood donors was performed by PCR-SSP DNA-based procedures in the HLA, Flow and Diagnostic Immunology Laboratory of the Methodist Hospital (Houston, TX). The study was approved by Baylor’s Institutional Review Board on Human Subjects Committee.

The monoclonal antibodies G46.6 (HLA-DR), G46–2.6 (HLA-ABC), SPVL3 (HLA-DQ), RPA-T4 (CD4), HIT3a (CD8), and S125C1 (CD19) were purchased from Boehringer Roche (Indianapolis, IN).

Peptide Synthesis and Recombinant Protein Production. TEPITOPE is a Windows application that enables the identification of HLA class II ligand binding epitopes (18–20). Peptides corresponding to the predicted HLA-DR7 binding sequences (1% threshold) were synthesized and purified in the MD Anderson Cancer Center Peptide Core (Houston, TX). The purity of the 15-mer peptides was >90% by high-performance liquid chromatography. Synthetic peptides were reconstituted in distilled water or DMSO at a concentration of 5 mg/ml. Peptides used in the study were hTRT672 (IHLWLMSSVY-VELLRS; aa545-aa559), hTRT713 (LFYRKSVWSKLSFE; aa573-aa587), hTRT672 (RPGLLGASVLGLDDI; aa672-aa686), hTRT880 (AKTFL-RTLVRGVPYEY; aa880-aa894), and hTRT916 (GTAFVQMPAHGLFPW; aa916-aa930) from hTRT (GenBank accession no. NM003219), and hTRTaa540–1003 from human Her-2 (GenBank accession no. NM003221), and Her-2aa540–1003 (IHLWLMSSVYVELLRS; aa545-aa559), hTRTaa713 (LFYRKSVWSKLSFE; aa573-aa587), hTRTaa672 (RPGLLGASVLGLDDI; aa672-aa686), hTRTaa880 (AKTFLRTLVRGVPYEY; aa880-aa894), and hTRTaa916 (GTAFVQMPAHGLFPW; aa916-aa930) from hTRT (GenBank accession no. NM003221).
Chemical Co.), and tested by Western blot analysis with anti-hTRT (Santa Cruz Biotechnology) or anti-Neu (Oncogene) antibodies, respectively.

Assay for Telomerase Activity by TRAP. A sensitive TRAP PCR ELISA kit (Roche Molecular Biochemicals, Indianapolis, IN) was used to analyze the functional telomerase activity in tumor cell lines and B lymphocytes. In brief, cells were counted, washed with PBS, and lysed (200 μl for 2 × 10^5 cells) on ice for 30 min. After pelleting of cellular debris by centrifugation, the supernatant was recovered and stored at −80°C until further use. For the TRAP reaction, 25 μl of reaction mixture were transferred into a PCR tube containing 2 μl of cell lysate in 23 μl DH2O. The mixture was incubated for 30 min at 25°C to allow primer elongation, and then heated to 94°C for 5 min for telomerase inactivation and subjected to 30 PCR thermocycles of 94°C for 30 s, 30°C for 30 s, and 72°C for 90 s. The amplification product was denatured, hybridized to a digoxigenin-labeled probe, and detected by an ELISA, as described in detail by the manufacturer.

Generation of T-Cell Lines and Clones with hTRT-derived Peptides. The PBMCs of the donor were plated in round-bottomed 96-well plates (Costar) at 200,000 cells/well in AIM-V medium. Peptides were added into each well at the concentration of 20 μg/ml. The total number of cells set up for each peptide was 48. After a week of incubation, the culture medium was removed, and cells were resuspended in AIM-V medium and tested for specific proliferative responses with corresponding peptides (20 μg/ml) in the presence of 10^8 autologous irradiated (6,000 rad) PBMCs as a source of APCs. Cell proliferation assays were incubated at 37°C in a 5% CO2 incubator for 72 h, and during the last 16 h, the cultures were pulsed with 1 μCi [3H]thymidine/well. The incorporation of radioactivity into DNA, which correlates with cell proliferation, was measured in a β scintillation counter (TopCount NXT; Packard) after automated cell harvesting (Packard).

A T-cell line was considered to be reactive to hTRT-derived peptide if the cpm was >1000 and exceeded the reference cpm (in the absence of peptides) by at least three times. The frequency of peptide-specific T cells was determined by dividing the number of positive wells divided by the total number of PBMCs seeded in the initial culture (21, 22). hTRT-specific T-cell lines were cloned by limiting dilution at 5 cells/well in the presence of 10^5 irradiated allogeneic PBMCs as accessory cells and 5 μg/ml of phytohemagglutinin protein (Sigma Chemical Co.). Cultures were refed with fresh RPMI 1640 containing 10 IU/ml of rhIL-2 every 3–4 days. After approximately 12–14 days, growth-positive wells became visible and were tested for specific responses to hTRT peptides in a proliferation assay as described above.

PBMC-derived DC Culture. Human DCs were prepared as described recently (23). Briefly, PBMCs were isolated by Ficoll-Hypaque gradient centrifugation (Pharmacia), washed in PBS, and resuspended in serum-free DC medium (CellGenix). After adherence to plastic for 2 h, the adherent cell fraction was cultured in serum-free DC medium with 1000 IU/ml recombinant human GM-CSF (R&D Systems) and 1000 IU/ml rhIL-4 (R&D Systems). On day 5, DCs were matured by stimulating with a cytokine mixture consisting of recombinant human tumor necrosis factor α (10 ng/ml, R&D Systems), rhIL-1β (1000 ng/ml; R&D Systems), rhIL-6 (10 ng/ml; R&D Systems), and prostaglandin E2 (1 μg/ml; Sigma Chemical Co.) as described previously (24).

Antigen-specific T-Cell Clones. T cells (2–3 × 10^4 cells/well) were cocultured with irradiated (4000 rad) DCs (1–1.5 × 10^5 cells/well) in complete RPMI 1640 in the presence of various concentrations of antigen (peptides and recombinant protein) in round-bottomed 96-well plates. In some cases, recombinant protein (10 μg/ml) or tumor cell lysates (see below) were pulsed on DCs at day 4 during DC culture 24 h before the addition of the DC maturation mixture.

To identify the MHC molecules involved in antigen presentation, inhibition of antigen-induced T-cell proliferation was analyzed by the addition of various antibodies against MHC class I and MHC class II molecules at a final concentration of 20 μg/ml. Antigen-specific T-cell responses were measured by [3H]thymidine incorporation during the last 16 h of 72 h culture. In some instances, culture supernatants were collected before the addition of [3H]thymidine for the determination of cytokine production using ELISA kits (PharMingen, San Diego, CA).

Tumor cell lysates were prepared by five freeze-thaw cycles of 5 × 10^5 tumor cells resuspended in 2 ml of serum-free DC medium. The cells were sonicated for 10 min and then centrifuged at 15,000 × g for 30 min (4°C). Supernatant was recovered, aliquoted, and stored at −80°C until later use. The supernatant (20 μl) was added to a total of 5 × 10^5 DC in 500 μl DC culture medium.

Analysis of T-Cell Responses to in Vitro-activated Normal B Lymphocytes. B lymphocytes were purified from PBMCs by CD19+ selection with a MACS B-cell isolation kit (Miltenyi Biotec, Auburn, CA). Purified B cells (5 × 10^5/well, round-bottomed 96-well plates) were in vitro-stimulated by culture in complete RPMI 1640 supplemented with SAC (1:10,000 dilution; Roche Molecular Biochemicals, Indianapolis, IN) for 3 days (25). Telomerase activity was determined in nonactivated and SAC activated purified B lymphocytes by TRAP, as described above. Before cocultivation with autologous T cells, the surface expression of CD19 and HLA-DR on activated B cells was analyzed by fluorescence-activated cell sorter. T cells (3 × 10^4 cells/well) were cocultured with irradiated (4000 rad) B lymphocytes (3 × 10^5 cells/well) in complete RPMI 1640 in round-bottomed 96-well plates. Cell proliferation was determined by [3H]thymidine incorporation assay 72 h later.

RESULTS

T-Cell Responses to Predicted Peptides Derived from hTRT. To evaluate hTRT as a potential MHC class II-restricted TAA, we first used TEPITOPE, a T-cell epitope prediction program (20), to analyze the
hTRT protein sequence. At a prediction threshold of 1% (the highest stringency), five sequence motifs in hTRT were predicted to bind to HLA-DR7. Accordingly, five 15-mer peptides corresponding to the predicted sequences (hTRT_{545}: LHWLMSVYVVELLRS; hTRT_{573}: LFFYKRVSWVWLQLI; hTRT_{672}: RPQLGASVVLGLDDI; hTRT_{880}: AKTFLRTLVQVPEY; and hTRT_{916}: GATVQMPAHGLFPW) were synthesized and purified. To primarily test if the peptides are recognized by human CD4+ T cells, PBMCs from several HLA-DR7+ healthy donors were stimulated with each peptide in 96-well plates for 7 days. T-cell responses were assessed by measuring [³H]thymidine incorporation after restimulation with the corresponding peptides and autologous PBMCs as APCs. As shown in Fig. 1, four peptides (hTRT_{573}, hTRT_{672}, hTRT_{880}, and hTRT_{916}) elicited proliferative T-cell responses from the donor T cells and, therefore, were considered as MHC class II-restricted epitope candidates. None of the T cells from the tested donors responded to hTRT_{545} (data not shown).

Specificity and MHC Restriction of hTRT Peptide-reactive T-Cell Clones. To additionally characterize these epitopes, we set out to generate peptide-specific T-cell clones from each of these epitopes. Individual peptide-reactive T-cell clones were generated from hTRT_{916}-reactive T-cell lines and from hTRT_{672}-reactive T-cell lines by limiting dilution (22). However, T cells specific for the peptides hTRT_{573} and hTRT_{880} failed to grow up for additional analysis despite repeated attempts in different donors. Most established T-cell clones strongly responded to autologous PBMCs in the presence of hTRT_{916} or hTRT_{672}; with stimulation indexes ranging from 9 to 120 (data not shown).

As depicted in Fig. 2, A and B, the specificity and MHC restriction of hTRT_{672} and hTRT_{916} T-cell clones was additionally assessed. The responses of hTRT_{672} T cells to their corresponding peptide were inhibited by an anti-HLA-DR antibody but not by anti-HLA-ABC and anti-HLA-DQ antibodies indicating that the observed response was HLA-DR-restricted (Fig. 2A). The hTRT_{672} T-cell response was specific, because the T cells did not respond to stimulation with irrelevant 15-mer peptides derived from HER-2 or with other hTRT peptides. As shown in Fig. 2B, the specificity and MHC class II restriction of hTRT_{916} T-cell clones were also demonstrated.

Avidity of CD4+ T-Cell Clones. We additionally examined if the peptide-reactive cells were CD4+ T cells. The T-cell responses to hTRT_{672} or hTRT_{916} were inhibited by anti-CD4 antibodies, but not by anti-CD8 antibodies, indicating that the observed responses were CD4-restricted (data not shown). Moreover, we used flow cytometric analysis to verify the phenotype of the T-cell clones. As shown in Fig. 3, the T-cell clones were exclusively CD4-positive but CD8-negative. To evaluate the avidity of hTRT_{916} and hTRT_{672} T-cell clones for their ligands, peptide titration curves were generated with autologous DCs. The half maximal cell proliferation of the hTRT_{916} T-cell clone from donor B24 was obtained between hTRT_{916} peptide concentrations of 6.67 and 0.67 μM, compared with peptide concentrations of 0.67 and 0.067 μM for the hTRT_{672} T-cell clone from the same donor B24 (Fig. 4). T-cell clones specific for the peptides hTRT_{916} and hTRT_{672} were also generated from donor B15. The T-cell clones from donor B15 showed similar responses to peptides. Thus, it is evident that the T-cell receptor of the hTRT_{672} T-cells exhibited higher avidity than the hTRT_{916} T cells.

Recognition of Natively Processed Epitopes by CD4+ T-Cell Clones. One essential feature of functional CD4+ T cells is their ability to recognize naturally processed antigens. Thus, we tested whether the T cells from different HLA-DR+ donors could recognize and respond to naturally processed and presented epitopes of hTRT. A recombinant hTRT protein (aa540–1003) that contains all sequences of the predicted peptides tested and an irrelevant Neu-Fc protein were produced and used to pulse PBMC-derived DCs. As shown in Fig. 5,

Fig. 2. Specificity of T-cell responses. Individual T-cell clones were established from hTRT_{672} and hTRT_{916} reactive T-cell lines from DR7+ donor B24 (DRB1*07*04) by limiting dilution culture. The hTRT_{672} T-cell clone B24–43.2 and the hTRT_{916} T-cell clone B24–48.5 (3 × 10⁴ cells/well) were restimulated with autologous PBMC-derived DCs (1.5 × 10⁵/well) pulsed with the same concentration (10 μg/ml) of hTRT_{672} and hTRT_{916}, respectively, or an irrelevant peptide derived from HER-2 in the presence of anti-HLA-DR, anti-HLA-ABC, or anti-HLA-DQ monoclonal antibodies (20 μg/ml). GM-CSF release and [³H]thymidine incorporation of the hTRT_{672} T cells (A) and hTRT_{916} T cells (B) were measured 48–72 h later. Values represent the means of duplicate wells. Bars, ±SD. The representative result of one of three repeated experiments is shown.
CD4+ T-Cell Response against Various Tumors. CD4+ T cells react with APCs that take up and process the tumor antigen protein from apoptotic and dead tumor cells. Thus, we tested the capacity of the hTRT_672-reactive CD4+ T-cell clones to become activated when cocultured with APCs pulsed with lysates from different tumor types. The functional telomerase activity in eight tumor lines from different tissues and organs, including prostate cancer, breast cancer, melanoma, leukemia, and lymphoma, was determined by TRAP, a two-step PCR-based primer extension assay (1). All of these tumor lines, except the GM847 cell line, were tested positive for hTRT. We then examined if the hTRT_672 T-cell clone responded to autologous DCs pulsed with these tumor lysates. As shown in Fig. 6, the T cells proliferated and secreted GM-CSF after stimulation with each of

![Image](https://cancerres.aacrjournals.org/content/65/16/6656/F5.large.jpg)
hTRT+ tumors of different tissues and organs, including prostate cancer (LNCaP-FGC), breast cancer (BT-474 and MDA-MB231), and melanoma cell lines (SK-MEL37 and NA-6-MEL), but not to the stimulation with the hTRT-negative cells (GM847). This result indicates that the hTRT₆₇₂ T cells broadly recognize the hTRT epitope derived from tumors of different tissues and organs.

Because hTRT is also expressed in certain types of normal cells, such as activated human peripheral blood B-lymphocytes that are also MHC class II-positive (7–9), we tested whether hTRT₆₇₂-reactive CD4⁺ T cells can recognize their antigen on autologous telomerase-positive B cells. B lymphocytes were purified from PBMCs by selection of CD19⁺ cells and were activated by SAC (1:10,000). Surface expression of CD19 and HLA-DR on the isolated and activated B cells was confirmed by flow cytometric analysis (data not shown). As published recently (25), the enzymatic activity of telomerase, which correlates with hTRT gene expression, was significantly up-regulated in PBMC-derived B lymphocytes after SAC treatment, as examined by TRAP (data not shown). However, the functional telomerase activity in activated B cells was significantly lower than that in tumor cells. After autologous irradiated B cells (nonactivated or activated) were cocultured with the hTRT₆₇₂ T cells, the hTRT₆₇₂ T cells failed to proliferate (Fig. 7), indicating that the hTRT₆₇₂ T cells do not respond to normal hTRT-expressing B lymphocytes. This result is in accordance with previous observations that hTRT-specific CTLs did not lyse hTRT-positive CD34⁺ cells, probably because of the low quantity of hTRT peptides presented with MHC molecules under physiological conditions (7–9).

CD4⁺ T cells play an important role in antitumor responses through several different mechanisms. They provide crucial help in the induction and maintenance of CTL responses. They produce lymphokines that may have a direct effect on tumor cells. Experiments in animal models have demonstrated the importance of antigen-specific CD4⁺ T cells in the elimination of tumors (10, 13, 14). Peptide vaccination to elicit antitumor immunity remains an attractive means to treat cancer patients. Because the main focus of current tumor vaccination effort has been to induce CTL responses (10, 11), a logical way to enhance the potency of these tumor vaccines would be to include CD4⁺ T-cell epitopes for the same tumor antigen.

Because telomerase is preferentially expressed by tumors of different histological origins and types (1, 3), it may serve as a universal tumor antigen. CD4⁺ T cells do not become activated in vivo, and subsequently provide "help" to CTLs and perform other functions unless their epitopes are expressed on MHC class II-positive tumor cells or on APCs that have captured and processed the tumor antigen. Thus, it is important to establish that class II epitopes represented by the corresponding peptides are naturally processed through the MHC class II pathway. Our results show that the class II epitope hTRT₆₇₂ is presented on APCs, in the context of the HLA-DR7 allele, that have processed hTRT protein or dead tumor cells/lysates. The capacity of the peptide-reactive CD4⁺ T cells to recognize APCs that have processed antigens derived from tumor cells demonstrates that the epitope represented by the corresponding peptide is naturally processed through the MHC class II pathway. Thus, these results suggest that the identification of MHC class II-restricted hTRT epitopes may
lead to the development of effective subunit therapeutic vaccines that induce both hTRT-specific CTL (7–9) and T-helper responses against a broad spectrum of tumors. Because hTRT is a self-antigen, and expressed in stem cells and mature hematopoietic cells (26, 27), hTRT vaccination could result in autoimmunity and destruction of normal cells. However, it was reported that the hTRT-specific CTLs did not lyse CD34+ cells (7, 9). The result of this study showed that hTRT-specific CD4+ T cells did not respond to autologous hTRT-positive B cells, probably because the quantity of hTRT peptides generated under physiological condition is insufficient to stimulate CD4+ T cells. From numerous tumor vaccination trials with tumor antigens shared by normal tissues, no apparent autoimmunity was observed (28–30). These data suggest that hTRT-based vaccination might be safe in cancer patients.

hTRT contributes to cell transformation and is preferentially expressed in ~85% of tumors of different tissues and organs (1, 4–6, 31, 32). Several groups postulated that hTRT may be a TAA because of its preferential expression by tumors and subsequently showed that CTL responses could be induced against hTRT (7–9), although it has been questioned whether the identified CTL epitope hTRTS40 is a naturally processed epitope (33). Here, we identified several class II-restricted epitopes in hTRT, including a naturally processed epitope. This study also demonstrated that hTRT-specific CD4+ T cells can be readily activated with proper stimulation. The identification of class II-restricted epitopes in hTRT and the ability to induce hTRT-specific CD4+ Th responses, together with previous reports of hTRT-specific CTLs (7–9, 34), provide a rationale for combined stimulation of class I- and II-restricted hTRT epitopes to stimulate potent and long-term CD4+ Th and CD8+ CTL responses against various tumors. Moreover, the broad expression of hTRT in most tumors (1, 5, 6) raises the possibility of using class II-restricted hTRT epitopes as adjuvants to provide cognate T-cell help to CTLs that recognize other TAAs.

ACKNOWLEDGMENTS

We thank Wenhong Ren, Lisa Rollins, and Lei Shen for technical assistance, and volunteers for donating peripheral blood samples.

REFERENCES

2605
Identification of HLA DR7-restricted Epitopes from Human Telomerase Reverse Transcriptase Recognized by CD4+ T-Helper Cells

Roland Schroers, Xue F. Huang, Juergen Hammer, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/62/9/2600

Cited articles
This article cites 33 articles, 17 of which you can access for free at:
http://cancerres.aacrjournals.org/content/62/9/2600.full.html#ref-list-1

Citing articles
This article has been cited by 16 HighWire-hosted articles. Access the articles at:
/content/62/9/2600.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.