Constitutively Active Forms of c-Jun NH$_2$-terminal Kinase Are Expressed in Primary Glial Tumors

Hiromasa Tsuiki,2 Mehdi Tnani,2 Isamu Okamoto, Lawrence C. Kenyon, David R. Emlet, Marina Holgado-Madruga, Irene S. Lanham, Christopher J. Joyner, Kim T. Vo, and Albert J. Wong3

ABSTRACT

The c-Jun NH$_2$-terminal kinases (JNKs) have a role both in promoting apoptosis and tumorigenesis. The JNKs are encoded by three separate genes (JNK1, 2, and 3), which are spliced alternatively to create 10 JNK isoforms that are either M$_{r}$ 55,000 or 46,000 in size. However, the functional significance and distinct role for each splice variant remains unclear. We have noted previously that 86% of primary human glial tumors show activation of almost exclusively the M$_{r}$ 55,000 isoforms of JNK. To further study which isoforms are involved, we constructed glutathione S-transferase fusion proteins for all 10 JNK isoforms and examined kinase activity with or without the activating upstream kinase. Surprisingly, five JNK isoforms demonstrate autophosphorylation activity, and in addition, all four JNK2 isoforms (either M$_{r}$ 55,000 or 46,000) show a high basal level of substrate kinase activity in the absence of the upstream kinase, especially a M$_{r}$ 55,000 JNK2 isoform. Examination revealed autophosphorylation activity at the T-P-Y motif, which is critical for JNK activation, because a mutant lacking the dual phosphorylation sites did not show autophosphorylation or basal kinase activity. Using green fluorescence protein-JNK expression vectors, transient transfection into U87MG cells demonstrates that although the JNK1 isoforms localize predominantly to the cytoplasm, the JNK2 isoforms localize to the nucleus and are phosphorylated, confirming the constitutive activation seen in vitro. We then examined which JNK isoforms are active in glial tumors by performing two-dimensional electrophoresis. This revealed that the M$_{r}$ 55,000 isoforms of JNK2 are the principal active JNK isoforms present in tumors. Collectively, these results suggest that these constitutively active JNK isoforms play a significant role in glial tumors. Aside from epidermal growth factor receptor vIII, this is the only other kinase that has been shown to be basally active in glioma. The presence of constitutively active JNK isoforms may have implications for the design of inhibitors of the JNK pathway.

INTRODUCTION

JNK,4 a member of the MAP kinase family, regulates gene expression through the phosphorylation of various transcription factors. It has an important role in regulating various cellular functions, including proliferation, apoptosis, and development (1–3). There are three separate genes (JNK1, JNK2, and JNK3), and these genes are spliced alternatively in the center (α versus β) or COOH terminus (1 versus 2) to create 10 JNK isoforms (JNK1α1, JNK1α2, JNK1β1, JNK1β2, JNK2α1, JNK2α2, JNK2β1, JNK2β2, JNK3α1, and JNK3α2; Ref. 4). The alternate splicing at the COOH terminus leads to proteins that are either M$_{r}$ 46,000 (JNK1α1, JNK1β1, JNK2α1, JNK2β1, and JNK3α1) or 55,000 (JNK1α2, JNK1β2, JNK2α2, JNK2β2, and JNK3α2) in size. Like all MAP kinase pathways, the JNK proteins require phosphorylation via an upstream kinase cascade to become active. The major MAPKKs have been shown to be MKK4 and M KK7, although other kinases can also phosphorylate the JNKs (1).

The role of the JNK pathway in mediating cellular responses to extracellular stimuli and the proapoptotic function of activated JNK have been studied extensively (1–3). For several cell lineages, various cytokines, cellular stresses, or trophic withdrawal can induce JNK activation with subsequent apoptosis. Indeed, inhibition of the JNK kinase cascade has been proposed as a therapeutic treatment for neuronal apoptosis caused by Alzheimer’s disease or trauma. There are also several lines of evidence that suggest the JNK pathway can play a significant role in cellular transformation and tumor cell growth. JNK activation is required for cellular transformation by certain oncoproteins, and inhibition of the JNK pathway can reverse a transformed phenotype (5–7). It has also been shown that the JNK pathway is constitutively activated in various tumor cell lines (8–10).

Thus, it has been proposed that JNK inhibition can also be used as an antitumor agent.

Several studies have demonstrated biological differences among the three JNK genes (11–16), e.g., the JNK2 gene may play a more significant role in cancer because antisense RNA against JNK2, but not JNK1, inhibited transformation of lung carcinoma and glioblastoma cells (12, 16). JNK2 knockout mice develop chemically induced papillomas at a much lower rate than wild-type or JNK1 knockout mice (13). Although some isoforms have been shown to have distinct substrate affinities, which suggests a selective role in different biological contexts (4), no functional significance or distinct role for a specific splice variant has been demonstrated.

We have found previously that 86% of primary glial tumors show activation of the M$_{r}$ 55,000 but not the M$_{r}$ 46,000 form of JNK (17), suggesting that these isoforms play a more critical role in tumors. In an attempt to understand these differences, we initiated studies on the properties of individual isoforms. Here, we report that several JNK isoforms have autophosphorylation activity. Interestingly, all four splice forms of JNK2 show autophosphorylation activity and also enhanced basal kinase activity in the absence of the upstream kinase. Using gene product-specific antibodies combined with two-dimensional electrophoresis, we show that the M$_{r}$ 55,000 form of JNK2 is expressed predominantly in primary glial tumors as compared with normal brain tissue. Moreover, the predominant phosphorylated form of JNK in tumors is composed of the M$_{r}$ 55,000 form of JNK2. Collectively, these results suggest that these JNK2 isoforms play a more significant role than other JNK isoforms in the progression of primary glial tumors. Aside from EGFRvIII (18), JNK2 is the only other kinase that has been shown to be basally active in these tumors and suggests that tumors can up-regulate the JNK pathway simply through the up-regulation of specific isoforms. Moreover, the presence of constitutively active JNK isoforms should be taken into consideration in the design of therapeutics aimed at disabling this pathway.

2 The abbreviations used are: JNK, c-Jun NH$_2$-terminal kinase; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GST, glutathione S-transferase; MAP, mitogen-activated protein; RTPCR, reverse transcription PCR; TBS, Tris-buffered saline; ATP, activating transcription factor; IEF, isoelectric focusing; ERK, extracellular signal-regulated kinase; MEKK, MKK, MAPKK, mitogen-activated protein kinase kinase.

Received 8/16/02; accepted 10/31/02.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

2 Supported by NIH Grants CA69495 and CA96539.

2 H. T. and M. T. contributed equally to this work.

2 Hiromasa Tsuiki, 2 Mehdi Tnani, 2 Isamu Okamoto, Lawrence C. Kenyon, David R. Emlet, Marina Holgado-Madruga, Irene S. Lanham, Christopher J. Joyner, Kim T. Vo, and Albert J. Wong.

2 The abbreviations used are: JNK, c-Jun NH$_2$-terminal kinase; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GST, glutathione S-transferase; MAP, mitogen-activated protein; RTPCR, reverse transcription PCR; TBS, Tris-buffered saline; ATP, activating transcription factor; IEF, isoelectric focusing; ERK, extracellular signal-regulated kinase; MEKK, MKK, MAPKK, mitogen-activated protein kinase kinase.

2 The abbreviations used are: JNK, c-Jun NH$_2$-terminal kinase; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GST, glutathione S-transferase; MAP, mitogen-activated protein; RTPCR, reverse transcription PCR; TBS, Tris-buffered saline; ATP, activating transcription factor; IEF, isoelectric focusing; ERK, extracellular signal-regulated kinase; MEKK, MKK, MAPKK, mitogen-activated protein kinase kinase.

Page dimensions: 603.0x801.0

2 The abbreviations used are: JNK, c-Jun NH$_2$-terminal kinase; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GST, glutathione S-transferase; MAP, mitogen-activated protein; RTPCR, reverse transcription PCR; TBS, Tris-buffered saline; ATP, activating transcription factor; IEF, isoelectric focusing; ERK, extracellular signal-regulated kinase; MEKK, MKK, MAPKK, mitogen-activated protein kinase kinase.

2 The abbreviations used are: JNK, c-Jun NH$_2$-terminal kinase; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GST, glutathione S-transferase; MAP, mitogen-activated protein; RTPCR, reverse transcription PCR; TBS, Tris-buffered saline; ATP, activating transcription factor; IEF, isoelectric focusing; ERK, extracellular signal-regulated kinase; MEKK, MKK, MAPKK, mitogen-activated protein kinase kinase.
MATERIALS AND METHODS

Culture Cells and Chemicals. U87MG, a human glioblastoma cell line, was obtained from the American Type Culture Collection and maintained as recommended. Anti-JNK1 antibody (C-17), anti-JNK2 antibody (D-2), and anti-GST antibody were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-JNK3 antibody and recombinant GST-ATF2 protein were purchased from Upstate Biotechnology (Lake Placid, NY). Anti-phospho-stress-activated protein kinase/JNK antibody, which recognizes the active form of JNK, was purchased from Cell Signaling Technology (Beverly, MA). Additional materials and chemicals were obtained from Fisher Scientific (Fair Lawn, NJ) unless indicated.

Plasmids and Recombinant Protein Purifications. All JNKα isoforms cDNA were amplified by RT-PCR and cloned into pET42 (Novagen, Madison, WI). The JNKα1, JNKα2, JNKα2a, and JNKα2o isoforms were cloned as a fusion protein with GFP into pEGFP-C1 (Clontech, Palo Alto, CA). Mutations of the T-P-Y motif (T183A and Y185F of JNK2) were amplified using the Quick Change Site-directed Mutagenesis Kit (Stratagene, La Jolla, CA). Sequencing confirmed that each construct matched that found in the GenBank Database. For the JNK2 isoform, the sequence from RT-PCR products was different from that of accession no. L31951 at the 152th nucleotide (G versus A resulting in Ser to Asn) but completely matched that of accession no. U09759. Moreover, we screened genomic DNA from 50 normal subjects, and all sequences matched with that of ours.

GST fusion proteins were purified as described previously (19). GST fusion proteins were expressed in Escherichia coli and purified using immobilized glutathione beads (Pierce, Rockford, IL) using manufacturer’s protocols. The upstream MAPKs, MKK4, and MKK7 and a synthetic constitutively active MAPKK kinase MEKK1 (ΔMEKK1) were amplified by RT-PCR and cloned into Pet 9a (Novagen). The expressed proteins were purified using the TALON purification kit (Clontech). The quality and quantity of purified recombinant proteins were confirmed by SDS-PAGE and Coomassie staining.

In Vitro Kinase Assay. For the autophosphorylation assay, 1 μg of GST-JNK isoform protein was incubated in 40 μl of kinase reaction buffer [25 mM HEPES (pH 7.4), 25 mM MgCl2, 2 mM DTT, 0.1 mM NaVO3, and 25 mM β-glycerophosphate] containing 10 μCi of [γ-32P]ATP and 20 μM cold ATP at 30°C for 30 min. For the substrate kinase assay, 300 ng of GST-ATF2 or GST-c-jun were added in the kinase buffer mixture as the substrate. Reactions were terminated with Laemmli sample buffer and boiled for 5 min. Proteins were resolved by SDS-PAGE and transferred to nitrocellulose membranes, and the phosphorylated proteins were detected by autoradiography.

Western Blotting. Human glial tumor tissues and corresponding normal brain tissues were obtained under Institutional Review Board-approved protocols, and the diagnoses were confirmed by histological analysis as described previously (20). Tissue specimens were lysed with PBS/TDS buffer as described (17) and centrifuged at 14,000 × g to remove insoluble material. Equal amounts of protein were electrophoresed on 4–20% SDS-PAGE gels and transferred to nitrocellulose membranes. The membranes were blocked with 5% skim milk in TBS or PBS and then incubated with primary antibody overnight at 4°C. The membranes were washed three times with PBS containing 0.3% Tween 20 or T-TBS and then incubated for 1 h with matched secondary antibodies. The membranes were detected using an enhanced chemiluminescence system (Amersham Biosciences, Piscataway, NJ). The scanned films were quantified by NIH Image software.

Immunofluorescence Microscopic Analysis. Immunofluorescence microscopic analysis was performed as described previously (19, 21). U87MG cells grown on coverslips were transfected with pEGFP-JNK isoform expression vectors using the Effectene reagent (Qiagen, Valencia, CA). After overnight incubation, the growing media were changed to serum-free DMEM and incubated for an additional 24 h. The cells were then fixed in 4% paraformaldehyde for 10 min, followed by 0.2% Triton X-100 for 5 min. For visualization of the nuclei, 4',6-diamidino-2-phenylindole staining was used. After washing with PBS, the coverslips were mounted with antifade reagent and visualized with an immunofluorescence microscope.

Two-dimensional Electrophoresis. Tissue lysates were prepared with the PlusOne two-dimensional cleanup kit (Amersham Biosciences) to remove materials that interfere with IEF. The prepared proteins were resolubilized with 8 M urea and 1% Triton-X and then mixed with 2 × IEF sample buffer (Invitrogen, Carlsbad, CA). Protein samples (20 μg) were electrophoresed on an IEF gel (pH 3–7) for 2.5 h according to the manufacturer’s instructions, and the gel was then incubated with fixing solution (0.14 M sulfosalicylic acid and 0.7 M trichloroacetic acid). After washing with 20% ethanol, the IEF gel was trimmed into strips, equilibrated with 2 × Laemmli sample buffer, and placed in a 4–20% SDS-PAGE gel. Western blotting was performed according to standard procedure as described above.

RESULTS

Several JNK Isoforms Have Autophosphorylation Activity Resulting in Constitutive Activation. We have noted previously that glial tumors frequently show activation of the M5, 55,000 isoform of JNK but not the M5, 46,000 isoform (17). To understand the differences between each JNK isoform, we constructed GST fusion proteins for each JNK isoform and examined their activity using in vitro kinase assays. All JNK isoforms are capable of phosphorylating GST-c-Jun in the presence of the MAPKK, either MKK4 or MKK7, and a recombinant active MAPKβK, ΔMEKK1, showing that we were able to reconstitute the kinase cascade in vitro (Fig. 1a). Surprisingly, several JNK isoforms showed kinase activity in the absence of any
activating upstream kinase, including JNK2α1, JNK2α2, JNK2β2, and JNK3α2, although the activity of the latter was very weak. Because it is thought that MAP kinases require phosphorylation to become active, we asked if these enzymes showed any evidence of autophosphorylation activity or were instead unique in possessing endogenous activity without modification. GST-JNK fusion proteins were incubated in kinase buffer in the absence of any other protein. This revealed that all JNK2 isoforms, including JNK2β1, and JNK3α2 were indeed capable of autophosphorylation activity (Fig. 1b). JNK2α2 showed the highest autophosphorylation activity, followed by JNK2β2, JNK2α1, JNK2β1, and JNK3α2. Next, we examined any relative differences in substrate activity. GST-JNK fusion proteins were incubated with either GST-ATF2 or GST-c-jun in kinase buffer. This revealed that JNK2α2 showed the highest kinase activity toward both substrates and then in order JNK2α1, JNK2β2, and JNK2β1 (Fig. 1c). Interestingly, JNK2α1 showed higher kinase activity than JNK2β2, although its autophosphorylation activity appeared lower, suggesting that it has a higher specific activity for these substrates. JNK2β1, which only shows weak activity toward c-jun, shows more substantial phosphorylation of ATF-2. All JNK1 and JNK3 isoforms, including JNK3α2, which did show autophosphorylation activity, did not show any substrate kinase activity in this assay. Overall, these results demonstrate that the JNK2 gene products, especially JNK2α2, have a high basal kinase activity that does not require phosphorylation by an upstream kinase.

The T-P-Y Motif Is Important for Autophosphorylation and Kinase Activity. The activation of MAP kinase family members requires the phosphorylation of a threonine and tyrosine residue located in a Thr-Xaa-Tyr motif (where Xaa is Pro in the case of JNK) found in the activation loop. We examined the requirement for autophosphorylation of this motif by the constitutively active JNK isoforms. We generated JNK2α2 constructs containing mutations of threonine to alanine and tyrosine to phenylalanine (JNK2α2APF). This mutant recombinant protein lacking dual phosphorylation sites did not show either autophosphorylation activity or substrate kinase activity (Fig. 2). These results indicate that the constitutive active isoform of JNK does indeed autophosphorylate on these sites in the activation loop and that these sites alone are required for this constitutive activation. Furthermore, it appears that autophosphorylation is required for activation.

JNK2 Isoforms Are Predominantly Localized in the Nucleus and Are Phosphorylated in Vivo. It has been shown that after activation, MAP kinases subsequently translocate from the cytoplasm to the nucleus. We wished to establish that JNK2 isoforms are constitutively active within cells and to rule out any artifacts from using bacterially expressed proteins. We examined the subcellular localization of JNK1 and JNK2 isoforms in the human glioblastoma cell line, U87MG. We generated GFP-JNK isoform expression vectors and transiently transfected these constructs into U87MG. Under serum depletion culture conditions, JNK1α1 and JNK1α2 showed a predominantly cytoplasmic localization, whereas all JNK2 isoforms showed a predominantly nuclear localization (Fig. 3a). We also examined subcellular localization of these JNK isoforms under normal culture conditions (with 10% serum) and after transfection into normal human astrocytes, and the results were identical (data not shown).

To further test constitutive activation of these isoforms in cells, we examined whether these GFP-tagged JNK1 and JNK2 proteins are phosphorylated using Western blotting with antiphospho-JNK antibody (Fig. 3b). All JNK2 isoforms showed evidence of activation, but the two JNK1 isoforms did not show any phosphorylation. Collectively, these results are consistent with the in vitro kinase assays and demonstrate that the JNK2 isoforms are indeed constitutively active in vivo and localize to the nucleus.

The M, 55,000 Form of JNK2 Is Predominantly Expressed in Primary Glial Tumors. As we have demonstrated, the JNK2α2 and JNK2β2 isoforms have the highest autophosphorylation activity. In combination with our previous observation that the M, 55,000 form is preferentially phosphorylated in glial tumors, we speculated that these specific isoforms of JNK are the prevalent forms found in primary tumors. Accordingly, we examined the level of expression of each JNK isoform in glioblastoma and astrocytoma specimens.

First, we evaluated the isoform specificity of commercially available antibodies using the 10 recombinant proteins for each JNK isoform (Fig. 4a). JNK2-specific antibodies were found to be specific for all four JNK2 isoforms with no cross-reactivity toward JNK1 or JNK3. JNK1-specific antibodies were relatively specific for the four JNK1 isoforms but did show some cross-reactivity with the two JNK3 proteins. The anti-JNK3 antibody could recognize all isoforms, but because the JNK2 reactivity was preabsorbed by the manufacturer, its reactivity toward this isoform is relatively lower. However, this antibody recognized the JNK3 isoform to the same extent as JNK3.

Taking into account these cross-reactivities, we examined the isoform expression of JNK in 25 primary glial tumors (19 glioblastoma, 2 anaplastic astrocytoma, 3 low-grade astrocytoma, and 1 pilocytic astrocytoma) and five normal brain tissues. Each JNK gene product (either JNK1, 2, or 3) was detected at various levels of expression. There was preferential expression of the M, 46,000 JNK1 isoforms, JNK1α/β1, over the M, 55,000 isoforms, JNK1α/β1, in 64% of tumor specimens (16 of 25) and all five normal brain tissue specimens, revealing no statistically significant difference (P > 0.1). Fig. 4b shows 15 representative tumor cases and three normal specimens. On the other hand, JNK2 expression revealed a very different expression pattern between normal brain and glial tumors. The JNK2α/β1 (M, 46,000) form is predominantly expressed in all five normal brain tissues, whereas the JNK2α/β2 (M, 55,000) is predominantly expressed in all 25 tumor samples. Statistically, there is a highly significant difference with respect to M, 46,000 versus M, 55,000 JNK2 expression between glial tumor tissue and normal brain tissue (P < 0.05). The JNK3 expression pattern varied between normal brain and tumor, where some cases preferentially expressed the M, 46,000 form (2 of normal brain and 9 of the tumor samples) and others expressed M, 55,000 forms (3 of normal brain and 16 of the tumor samples).

For these specimens, we also examined the pattern of expression with antiphospho-JNK antibody, which recognizes the active form of JNK (Fig. 4b). The M, 55,000 isoform of JNK isoform appeared to be constitutively active within cells and to rule out any artifacts from using bacterially expressed proteins. We examined the subcellular localization of JNK1 and JNK2 isoforms in the human glioblastoma cell line, U87MG. We generated GFP-JNK isoform expression vectors and transiently transfected these constructs into U87MG. Under serum depletion culture conditions, JNK1α1 and JNK1α2 showed a predominantly cytoplasmic localization, whereas all JNK2 isoforms showed a predominantly nuclear localization (Fig. 3a). We also examined subcellular localization of these JNK isoforms under normal culture conditions (with 10% serum) and after transfection into normal human astrocytes, and the results were identical (data not shown).
the major active form present in primary glial tumor tissues, which is in agreement with our previous study (17). Interestingly, this expression pattern resembled that seen for JNK2. The Mr 46,000 form was the predominant phosphorylated form found in normal brain tissue, which correlates with previous findings that JNK is active in neurons (9). Overall, these results suggest that tumors specifically up-regulate the constitutively active Mr 55,000 form of JNK2.

The JNK2α/β2 Form Is the Primary Phosphorylated Form Found in Glial Tumors. To directly address which isoform was phosphorylated in glial tumor tissue, we applied two-dimensional electrophoresis to analyze the relative amounts of active JNK isoforms in these specimens. These blots have the advantage of separating according to phosphorylation status and isoform type, as well as requiring less lystate than immunoprecipitation-based methods. The antiphospho-JNK antibody revealed only a Mr 46,000 spot in all three normal brain tissues, much as was found by standard Western blots (Fig. 5a). In glial tumors, the phospho-JNK antibody detected a relatively strong Mr 55,000 spot toward the anode side that was only found in tumor samples. A total of five glial tumor samples was examined. This Mr 55,000 spot was observed in all these samples, and its position was highly reproducible. Quantitation showed that this anode Mr 55,000 spot was 98.2% of the total phospho-JNK signal in case 2159, 96.2% in case 1729, 91.8% in case 1043, 77.2% in case 1133, and 40.3% in case 2082 (Fig. 5a), indicating that this spot is the major active isoform present. Next, we asked which isoform corresponded to this phospho-JNK spot. Duplicate two-dimensional gels were blotted with antibodies that recognized each JNK gene product (Fig. 5b). This revealed that this spot completely coincided with JNK2. On the other hand, all JNK1 and the majority of the JNK3 isoforms migrated near the cathode side, with only a faint spot for JNK3 that migrated in the same position detected by the phospho-JNK, which is most likely because of cross-reactivity of this antibody with JNK2. These results demonstrate that the Mr 55,000 form of JNK2, JNK2α/β2, is the primary phosphorylated form found in primary glial tumors.

Fig. 3. JNK2 isoforms are constitutively activated in vivo. a, subcellular localization of JNK isoforms. Plasmid constructs were generated that fused GFP to various JNK isoforms (from top: JNK1α1, JNK1α2, JNK2α1, JNK2α2, JNK2β1, and JNK2β2) and then transfected into U87MG cells on coverslips. After serum depletion, the cells were fixed with paraformaldehyde. Staining with 4′,6-diamidino-2-phenylindole was used to visualize the nuclei (right panels). Pictures are representative of three separate experiments with >100 transfected cells examined. b, JNK2 isoforms are phosphorylated in vivo. Cells transfected with the same constructs were prepared for Western blotting with antiphospho-JNK antibody or anti-GFP antibody to demonstrate expression of constructs. Black arrow, the Mr 81,000 form of GFP fusion JNK protein; white arrow, the Mr 72,000 form, respectively.

Fig. 4. Expression pattern analysis of JNK isoforms in tumors using gene product-specific JNK antibodies. a, assessment of specificity for each JNK gene product-specific antibody. Purified recombinant GST-JNK isoform proteins were separated by SDS-PAGE, transferred to nitrocellulose membrane, and immunoblotted with anti-JNK1, anti-JNK2, and anti-JNK3 as indicated. For loading controls, a blot using anti-GST antibody is shown in the bottom panel. b, expression patterns of Mr 55,000 versus 46,000 JNK isoforms. Tissue lysates (128, 129, and 132: normal brain tissue; 187 and 382: low-grade astrocytoma Grade II; 1249: anaplastic astrocytoma Grade III; all others: glioblastoma Grade IV) were separated by SDS-PAGE, transferred to nitrocellulose membrane, and immunoblotted with each anti-JNK antibody as indicated or antiphospho-JNK antibody (α-pJNK). Black and white arrows, Mr 55,000 and 46,000 forms of JNK, respectively. The corresponding anti-actin blot is shown as a loading control (bottom panel).
DISCUSSION

The MAP kinase family, which includes ERK, JNK, and p38, are known as major effectors for growth factor receptors in normal and transformed cells. Elevated ERK activation has been associated with several human cancers (22, 23). However, some tumors may not rely on the ERK pathway for tumorigenesis. Astrocytic tumors of various histological grades have been shown to have elevated levels of phosphorylated ERK, but these levels varied significantly (24), and enhanced ERK activation occurs at a lower frequency in brain tumors than in other types of cancers (25). Our previous studies have shown that ERK activation was seen in only 38% of astrocytic tumors. In contrast, JNK activation was seen in 86% of primary glioblastoma (17).

Several lines of evidence indicate that the JNK pathway plays a role in cellular transformation and tumor cell growth. JNK activation is required for cellular transformation by certain oncoproteins, such as Met, human T-cell lymphotrophic virus, type I, and Bcr-Abl (5–7). The inhibition of the JNK pathway can reverse a transformed phenotype (5, 8), and it has also been shown that JNK is constitutively active in a variety of tumor cell lines (8, 9). Human brain tumors frequently show increased expression of the normal EGFR receptor and the mutant EGFR receptor, EGFRvIII, but not significantly elevated ERK activity (26). Instead, the activated form of JNK is highly prevalent in brain tumors, and JNK is constitutively activated by EGFR vIII (10, 17). Therefore, understanding JNK signal transduction will provide new insights into tumor formation and therapy.

In this study, we have shown that several of the JNK isoforms, particularly the JNK2 isoforms, have autophosphorylation activity and constitutive substrate kinase activity in the absence of upstream kinase. There is the possibility that these observations may result from some contaminant in the prokaryotic expression system used for some assays. However, this possibility is unlikely for several reasons. First, each isoform shows intrinsic differences with respect to autophosphorylation and substrate kinase activity, whereas all JNK1 isoforms showed no such activity. Next, GFP-tagged JNK2 proteins expressed in mammalian cells are constitutively localized to the nucleus, whereas JNK1 isoforms are not, reflecting endogenous activation of the JNK protein. Finally, JNK2 isoforms expressed in cells also showed constitutive phosphorylation. Collectively, this is the first demonstration that specific JNK isoforms, especially the M, 55,000 isoforms of JNK2, have constitutive activation in the absence of the upstream kinase. These results are supported by a recent study where insect cells were transfected with several JNK isoforms. Although no direct comparison among the isoforms was made, the basal activity of recombinant JNK2α2 appeared to be ~10 times higher than JNK1α1 or JNK3α2 (27).

Interestingly, previous work among the JNK genes has demonstrated a specific role for JNK2 in tumorigenesis. It has been reported that specifically disabling JNK2 isoforms using antisense reagents, but not JNK1 isoforms, impairs the EGF-stimulated growth of A549 cells (8). Moreover, inhibition of JNK2 enhances apoptosis and impairs cell cycle progression in glial tumor cell lines (16). The induction of papillomas by 12-O-tetradecanoylphorbol-13-acetate is greatly impaired in JNK2−/− mice but not in JNK1−/− mice (13). We speculate that the JNK2 isoforms are favored for tumorigenesis because of their constitutive activation properties. However, specific differences among isoforms, especially between the M, 46,000 and the M, 55,000 isoforms, have not been reported.

We have found that the M, 55,000 JNK2 isoforms have the highest activity in vitro, and this may also have an important correlation with expression in tumors. We have shown previously that the M, 55,000 form, but not the M, 46,000 form, of JNK is activated in primary brain tumors (17), suggesting that these specific isoforms of JNK play a critical role in these tumors. Therefore, we examined the expression level of each JNK isoform and found that although the JNK2αβ1 (M, 46,000) form is predominantly expressed in all five normal brain tissue samples examined, the JNK2αβ2 (M, 55,000) is predominantly expressed in all 25 tumor samples examined. Our in vitro kinase assay results show that the M, 55,000 isoforms have greater autophosphorylation, and this provides a tantalizing explanation for the prevalence of the JNK2αβ2 form in primary tumors. Intriguingly, a recent study has suggested that the distribution of active forms of JNK may result from differential expression of JNK isoforms within cells and tissues as opposed to a selective activation of isoforms (28).

It is worth noting that normal brain tissue showed detectable expression of the M, 55,000 forms of JNK2 but did not show signif-
Constitutively Active Forms of JNK

Constitutively active forms of JNK have several implications for the study of normal physiological processes and the design of therapeutics. Because up-regulation of certain isoforms can activate the JNK pathway, our results show that JNK isoform expression must be taken into account when studying JNK activation in tissues or cells. As certain isoforms are constitutively active, any decreased activation of these particular isoforms in vivo suggests that the role of phosphatases must also be considered. Certain JNK pathway inhibitors are currently in clinical trials, such as CEP-1347, for the treatment of neurodegenerative disorders, including Alzheimer’s or Parkinson’s disease. Because these drugs principally target upstream kinases in the JNK cascade, our results suggest that these drugs may not be of benefit if constitutively active JNK isoforms are expressed. In general, the greatest therapeutic benefit would result from the inhibition of JNKs directly.

REFERENCES

Constitutively Active Forms of c-Jun NH2-terminal Kinase Are Expressed in Primary Glial Tumors

Hiromasa Tsuiki, Mehdi Tnani, Isamu Okamoto, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/63/1/250

Cited articles This article cites 31 articles, 13 of which you can access for free at: http://cancerres.aacrjournals.org/content/63/1/250.full.html#ref-list-1

Citing articles This article has been cited by 25 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/63/1/250.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.