Development of Rhabdomyosarcoma in HER-2/neu Transgenic p53 Mutant Mice

Patrizia Nanni, Giordano Nicoletti, Carla De Giovanni, Stefania Croci, Annalisa Astolfi, Lorena Landuzzi, Emma Di Carlo, Manuela Iezzi, Piero Musiani, and Pier-Luigi Lollini

Cancer Research Section, Department of Experimental Pathology, University of Bologna, I-40126 Bologna [P. N., G. N., C. D. G., S. C. A., L. L., P.-L. L.]; Istituto Ortopedici Rizzoli, I-40136 Bologna [G. N., L. L.]; and Department of Oncology and Neurosciences, G. D’Annunzio University, I-66013 Chieti [E. D. C., M. I., P. M.], Italy

Abstract

Rhabdomyosarcomas derive from the skeletal muscle lineage and harbor a variety of genetic and molecular lesions. However, it is not clear which molecular alterations have a pathogenetic role. We show that activation of the HER-2/neu oncogene coupled with inactivation of the oncosuppressor gene p53 causes rhabdomyosarcoma in mice. At the age of 11–21 weeks, all male mice carrying both genetic lesions developed embryonal rhabdomyosarcomas expressing desmin, myosin, and insulin-like growth factor-II, in the genitourinary tract. Our findings led to the hypothesis that the interaction between HER family genes and the p53 pathway might be involved in the origin of human rhabdomyosarcoma.

Introduction

Rhabdomyosarcoma, the most common soft-tissue sarcoma of childhood, results from the neoplastic transformation of cells of the skeletal muscle lineage (1). Rhabdomyosarcomas harbor a variety of genetic and molecular lesions that frequently include autocrine growth factor circuits along with alterations of oncosuppressor genes. However, the actual causes of rhabdomyosarcoma are still unknown, nor is it clear which molecular alterations have a role in its etiology and progression. Genetically modified mice carrying individual genes derived from human studies either were not tumor-prone (2) or showed a stochastic development of rhabdomyosarcoma at low incidence (1), suggesting that additional hits are required to generate such tumors. Involvement of the oncosuppressor gene p53 in rhabdomyosarcoma is suggested by the presence of p53 mutations in a proportion of human tumors and by the occurrence of rhabdomyosarcomas in human families and in knockout mice carrying a germ-line mutation in one p53 allele (1). The low incidence of rhabdomyosarcoma in individuals carrying p53 alterations indicates that additional genetic lesions are required to cause this tumor. Human rhabdomyosarcoma can express receptor tyrosine kinases of the HER/ErbB family, which can play different roles in the malignant phenotype: HER-1/EGF-R sustains rhabdomyosarcoma cell growth whereas HER-3 induces myogenic differentiation in vitro (3); and both HER-1 and HER-3 heterodimerize with HER-2. Activation of HER-2 can lead to transformation in vitro and in vivo in many cell types and is required for myoblast cell survival (4). HER-2 is expressed in approximately one-half of human rhabdomyosarcomas3; however, its role in the genesis of rhabdomyosarcoma is unknown. Here we show that p53 inactivation coupled with HER-2/neu activation produces rhabdomyosarcomas in mice.

Materials and Methods

Mice. BALB/c p53+/− mice (BALB/c-Tyr53fs Tyr53fs) were purchased from The Jackson Laboratory, Bar Harbor, MI. BALB/c HER-2/neu transgenic mice (referred to as BALB-NeuT) carrying a mutant rat neu oncogene under control of a MMTV-LTR4 were bred in our animal facilities as described previously (5). In BALB-NeuT mice, HER-2/neu is expressed in several tissues including skeletal muscle because MMTV-LTR promoter is active in many organs and tissues apart from mammary gland (6). BALB/c p53+/− mice were crossed with BALB-NeuT mice and bearing the p53+/−/neu+/− genotype were selected by PCR analysis.

PCR. All of the mice used in this study were genotyped by PCR both for the presence of rat HER-2/neu transgene and for the status of p53 by a multiplex PCR (The Jackson Laboratory). To study gene expression, we performed total RNA extraction, retrotranscription, and semiquantitative RT-PCR as described previously (3) with specific primer pairs for GAPDH (Clontech, Palo Alto, CA), rat HER-2/neu (5′-AGGGCACCATTGGGACCT-TACCTACG-3′ and 5′-GGGTTCCTGCTGGGTTGGA-3′), IGF-II (7) and IGF-I-R (5′-AATACGGTCGCAAGTCGAG-3′ and 5′-TCTGTCCATGCACCCATCCC-3′), and IGF-II-R (5′-TCAGACGGAGTCCGCT-3′ and 5′-ACAGCCCGAAGCTTCTC-3′), GR, and AR (8). The mouse mammary carcinoma cell line TSA was used as a control.

Immunohistochemistry and Immunofluorescence. Histological and immunohistochemical evaluations were performed as reported previously (5). Anti-desmin monoclonal antibody DE-B-5 (Boehringer Mannheim, Milan, Italy) and anti-embryonic myosin monoclonal antibody BF-G6 were used (3). Membrane expression of p185 neu was studied by flow cytometry with monoclonal antibodies recognizing rat Her-2/neu (7.16.4; Oncogene Research Products, Cambridge, MA) or human HER-2 (MGR-3) as reported previously (3).

Results

Development of Rhabdomyosarcoma in p53+/−/neu+/− Mice. To investigate whether p53 and HER-2/neu genetic defects might cooperate in the genesis of rhabdomyosarcoma, we crossed p53 knockout mice (9) with mice carrying an activated HER-2/neu transgene (5) to obtain p53+/−/neu+/− mice on BALB/c inbred background, indicated here as BALB-p53neu. A very high spontaneous incidence of rhabdomyosarcoma was observed in male BALB-p53neu mice, but not in parental mice carrying one of the genetic lesions (Fig. 1A), which, as expected, developed a variety of other tumor histotypes (10) several months later (data not shown). Male and female BALB-p53neu mice also developed salivary gland tumors, as reported for another line of p53+/−/neu+/− mice (11).

All of the rhabdomyosarcomas arose around 11–21 weeks of age in the genitourinary tract (Fig. 1B) from the sphenoid of small striated muscle fibers present from the base of the verumontanum to the prostate apex (Fig. 1C). Tumors were composed of undifferentiated cells with scant cytoplasm and round-to-spindled centrally placed nuclei, and differentiating cells with tapering bipolar cytoplasm showing cross-striations and multiple nuclei (Fig. 1D). The morphology

1 Supported by grants from Associazione Italiana Ricerca sul Cancro (AIRC), Ministero dell’Istruzione, dell’Università e della Ricerca, and the University of Bologna. S. C. and A. A. are recipients of fellowships from Fondazione Italiana Ricerca Cancro (FIRC), Milan, Italy.

2 To whom requests for reprints should be addressed, at Cancer Research Section, Department of Experimental Pathology, viale Filopanti 22, I-40126 Bologna, Italy. Phone: 39-051-241110; Fax: 39-051-242169; E-mail: pierluigi@lollini dsnet.it.

3 Our unpublished observations.

4 The abbreviations used are: MMTV-LTR, mouse mammary tumor virus 3′ long terminal repeat; AR, androgen receptor; GR, glucocorticoid receptor; IGFI, insulin-like growth factor(s); GAPDH, glyceraldehyde 3-phosphate dehydrogenase; RT-PCR, reverse transcription-PCR; IGFI-R, IGFI receptor; IGFII-R, IGFI receptor.

2728
was highly reminiscent of human embryonal rhabdomyosarcoma. Morphological diagnosis was confirmed by the expression of desmin in all of the tumor cells and of striated muscle myosin in a much lower proportion of elements (Fig. 1, E and F). This indicates a defect of myogenic differentiation at the level of myosin, similar to the arrest of differentiation of most human rhabdomyosarcomas (1).

Establishment of Rhabdomyosarcoma Cell Cultures. To obtain pure populations of tumor cells for additional studies, we cultured in vitro cells disaggregated from primary rhabdomyosarcomas of BALB-p53neu mice. In vitro cultures were established quickly and grew rapidly. Like human rhabdomyosarcoma cells lines, mouse cultures contained small mononuclear proliferating rhabdomyoblasts (arrowheads) with multiple nuclei and eosinophilic cytoplasm (H&E; ×400). E, expression of desmin throughout the tumor, in particular by spindle cells with cytoplasmic cross-striations. F, expression of embryonic myosin.

Molecular Analysis of p53 and HER-2/neu in Rhabdomyosarcomas. Both BALB-p53neu rhabdomyosarcomas and cultured cells were consistently p53 null because of the loss of the remaining p53 allele (Fig. 3A). Expression of HER-2/neu mRNA was found in all of the tumors examined and in the cultured cells (Fig. 3B). Preneclastic retrovesical tissue of 7-week-old male mice already showed HER-2 expression. p185 neu, the product of the HER-2/neu gene, was expressed on the surface of murine rhabdomyosarcoma cells (Fig. 3, C and D) at a level similar to the levels found in human rhabdomyosarcoma cells (Fig. 3, E and F). The intensity of p185 in murine and human rhabdomyosarcomas is about 10 times lower than that of murine and human mammary carcinomas (5, 12), thus suggesting a tissue-specific regulation of HER-2/neu oncogenesis in this mesenchymal tumor.

Molecular Features of BALB-p53neu Rhabdomyosarcomas. A hallmark of human embryonal rhabdomyosarcoma is the presence of autocrine loops involving IGF-II and the IGF-I-R, which contribute to opposed to female mice, in which tumors grew slowly and with a longer latency (Fig. 2D).
We found a copious expression of IGF-II, IGF-I-R, and IGF-II-R both in tumors and in cultured cells (Fig. 4A), revealing a further parallel with human rhabdomyosarcomas. Both p53 and HER-2/neu are known to cause multiple tumors of different histological origin (11). Cooperation of the two genetic lesions was required to produce rhabdomyosarcomas, which were not found either in p53-H11001/H11002 mice or in HER-2/neu-H11001/H11002 transgenic mice (Fig. 1A). Male and female BALB-p53neu mice developed salivary gland carcinomas, but rhabdomyosarcomas arose only in the genitourinary tract of male mice, suggesting the involvement of additional sex-related causative factor(s). In BALB-p53neu mice HER-2/neu expression was driven by MMTV-LTR, which is known to be responsive to steroid hormones, particularly androgens and glucocorticoids (14). All of the BALB-p53neu rhabdomyosarcomas expressed AR as well as GR (Fig. 4B), which could explain the specific origin from the genitourinary tract of male mice.

Discussion

Our results demonstrate for the first time that the combination of p53 inactivation and HER-2/neu activation could lead to the onset of rhabdomyosarcoma and raises the possibility that similar genetic lesions could be involved also in the genesis of human rhabdomyosarcoma. Starting from the results shown here, the analysis of genes

Fig. 2. In vitro (A–C) and in vivo (D) properties of cell lines derived from BALB-p53neu rhabdomyosarcomas. Cell culture morphology (A), expression of desmin (B) and embryonic myosin (C), and tumorigenic ability (D) in syngeneic immunocompetent male and female mice after the s.c. injection of 10⁷ cells.

Fig. 3. HER-2/neu and p53 in tumors and cell lines. A, loss of p53 allele in rhabdomyosarcoma detected by multiplex PCR with primers for p53 and for the knockout allele (neo cassette). Lanes 1–3, rhabdomyosarcoma DNA from two in vitro cultures and one tumor mass; Lanes 4–6, somatic (tail) DNA from BALB-p53neu mice in which tumors shown in Lanes 1–3 arose; Lane 7, p53^{+/−} mouse tail DNA; Lane 8, p53^{−/−} mouse tail DNA; Lane 9, negative control (water). B, expression of the HER-2/neu transgene (30 cycles of amplification) in BALB-p53neu rhabdomyosarcomas by RT-PCR. Lanes 1–3, premalignant retrovesical tissue from 7-week-old mice (Lane 1, p53^{−/−}; Lane 2, BALB-neuT; Lane 3, BALB-p53neu); Lanes 4–7, rhabdomyosarcoma tumor samples deriving from four different mice; Lanes 8–9, two in vitro cultured rhabdomyosarcoma cell lines; Lane 10: HER-2/neu-negative mouse mammary adenocarcinoma TS/A; Lane 11, negative control (water). GAPDH housekeeping gene expression at 20 cycles of amplification is shown for comparison. C–D, membrane expression of HER-2/neu in mouse rhabdomyosarcoma cell lines derived from independent tumors analyzed by flow cytometry. E and F, expression of HER-2 in two human embryonal rhabdomyosarcoma cell lines is shown for comparison (3).
involved in the genesis of the corresponding human tumors should be extended also to other members of the HER family of receptor tyrosine kinases, which are known to be expressed by human rhabdomyosarcomas (3), as well as to various genes of the p53 pathway. According to some studies the prevalence of p53 inactivation is lower in rhabdomyosarcomas as compared with other human neoplasms (15), but in human tumors, p53 function is hampered also by other mechanisms, for example by the inactivation of key regulators of its pathway like p21WAF1, which is strongly methylated and consequently hypoexpressed in up to 50% of rhabdomyosarcoma tumor samples (16).

In the BALB-p53neu model, rhabdomyosarcomas arose as a consequence of the combined HER-2/neu activation and p53 inactivation. The only other mouse model of rhabdomyosarcoma, recently described, shows that the concomitant inactivation of INK4a/ARF and the aberrant signaling through c-Met leads to rhabdomyosarcoma development (17). In both model systems, p53 function impairment was crucial for the development of tumors, because p14ARF acts via mechanisms, for example by the inactivation of key regulators of its pathway like p21WAF1, which is strongly methylated and consequently hypoexpressed in up to 50% of rhabdomyosarcoma tumor samples (16).

Occurrence of rhabdomyosarcoma was not described for a different line of p53+/−/neu−/− mice on FVB background (11) that develop salivary tumors like the mice described here. Parental HER-2/neu transgenic mice used in our study showed a more efficient and pregnancy-independent mammary carcinogenesis (5) than those used by Brodie et al. (11). Differences in expression of the HER-2/neu transgene or in the genetic background could account for the different tumor patterns.

A convergence of HER-2/neu and p53 in oncogenesis has been found in several murine models leading to the onset of tumors of diverse histological origin. It is likely that in diverse cell types, HER family and p53 pathway alterations converge in mediating carcinogenesis through tissue-specific mechanisms. In myoblasts, from which rhabdomyosarcoma derives, HER-2/neu is required for cell survival, and its absence in knockout mice leads to apoptotic cell death (4), whereas wild-type p53 triggers myogenic differentiation (18). Probably the combined genetic events involving HER-2/neu and p53 in BALB-p53neu mice contribute to the survival and differentiation arrest in rhabdomyosarcoma cells.

A distinctive feature of embryonal rhabdomyosarcoma is the activation of IGF-II (13). Forced expression of wild-type p53 in human rhabdomyosarcoma inhibits IGF-II through the binding of specific promoter elements (19), thus contributing to the explanation for the overexpression of HER-2/neu in tumors.

In BALB-p53neu mice, rhabdomyosarcoma arose only in the genitourinary tract of male mice, suggesting the involvement of additional sex-related causative factors. BALB-p53neu also develop other tumor types, mainly salivary gland carcinomas, which were found in both males and females, thus excluding any global sex specificity of transgene expression. The best candidate for additional studies on this aspect seems to be HER-2/neu, which, in this system, was driven by MMTV-LTR. This sequence is known to be responsive to various classes of steroid hormones, including androgens (14). It has been recently reported that in transgenic rats harboring a MMTV-HER-2/neu construct similar to the one used here, mammary carcinomas developed exclusively in males (20), and that castration prevented carcinogenesis, thus confirming a role of male hormones. In mouse rhabdomyosarcoma cells, we found abundant expression of AR, which could be implicated in the sex-specificity of tumor onset.

The BALB-p53neu animal model, displaying a high incidence of rhabdomyosarcoma caused by genes involved in the corresponding human neoplasia, will be a useful tool to investigate the natural history of this malignant tumor, and to devise therapeutic approaches directed to specific molecular targets.

Acknowledgments

We thank Gabriella Madrigali for her invaluable assistance.

References

Development of Rhabdomyosarcoma in HER-2/neu Transgenic p53 Mutant Mice

Patrizia Nanni, Giordano Nicoletti, Carla De Giovanni, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/11/2728

Cited articles
This article cites 18 articles, 9 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/11/2728.full.html#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/63/11/2728.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.