p21^{Cip1} Nullizygosity Increases Tumor Metastasis in Irradiated Mice

Rosalind J. Jackson,² **Robert W. Engelman,**² **Domenico Coppola,** **Alan B. Cantor,** **Walker Wharton,** and **W. Jack Pledger**³

Molecular Oncology Program [R. J. J., W. W., W. J. P.], Pathology Service [D. C.], and Biostatistics and Informatics Core [A. B. C.], H. Lee Moffitt Cancer Center and Research Institute, and Departments of Interdisciplinary Oncology [R. J. J., D. C., W. W., W. J. P.], Pediatrics [R. W. E.], and Pathology and Laboratory Medicine [R. W. E.], University of South Florida College of Medicine, Tampa, Florida 33612

Abstract

p21^{Cip1} is a cyclin-dependent kinase inhibitor whose abundance increases in cells exposed to radiation or other DNA-damaging agents. Such increases activate a G1 checkpoint, which allows time for DNA repair before S phase entry. By inhibiting cell cycle progression, p21^{Cip1} potentially suppresses tumorigenesis, and in support, we show that p21^{Cip1} heterozygous and nullizygous mice develop more tumors than do wild-type mice when exposed to a single dose of γ-irradiation. Importantly, we also show that p21^{Cip1} nullizygosity increases the incidence of metastatic tumors in irradiated mice. We suggest that p21^{Cip1} is haploinsufficient for tumor suppression and functions as an antimesetastatic agent.

Introduction

Although the p21^{Cip1} gene is rarely mutated in human tumors (1), p21^{Cip1} is expressed at subnormal amounts or is dysfunctional in some human tumors. Cancer-related events that reduce p21^{Cip1} expression include the functional inactivation of the tumor suppressor and transcription factor p53, an event that occurs frequently in human tumors (2–4), and the hypermethylation and consequent silencing of the p21^{Cip1} promoter, which occurs in leukemic bone marrow cells (5). The Her-2/neu gene is often amplified in breast cancers (6), and expression of p21^{Cip1} is indicative of short survival times for patients with acute lymphoblastic leukemia or colorectal cancer (5, 8). Although p21^{Cip1} null mice do not spontaneously develop tumors, at least <15 years of age (9, 10), they are often more susceptible to tumor formation initiated by oncoproteins, carcinogens, or loss of tumor suppressors (11–14). However, the role of p21^{Cip1} in tumor suppression remains unclear (15–17), and our studies examined in detail the effects of p21^{Cip1} gene dosage on tumor formation in irradiated mice. We show that p21^{Cip1} heterozygosity and nullizygosity increase tumor incidence in irradiated mice, whereas p21^{Cip1} nullizygosity (but not heterozygosity) increases tumor metastasis.

Materials and Methods

Mice and Treatment. Mice with inactivating targeted mutations of both p21^{Cip1} alleles (obtained from Dr. Tyler Jacks, Massachusetts Institute of Technology; Ref. 18) were crossed with wild-type mice (The Jackson Laboratory, Bar Harbor, ME), which have a comparable mixed C57BL/6J background. p21^{Cip1} heterozygous and nullizygous mice develop more tumors than do wild-type mice when exposed to a single dose of γ-irradiation. We suggest that p21^{Cip1} is haploinsufficient for tumor suppression and functions as an antemesetastatic agent.

Received 2/11/03; accepted 4/28/03.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by the Cortner-Couch Endowed Chair for Cancer Research (to W. J. P.), NIH Grants CA78038 and CA67350 (to W. J. P.), and grants from the American Cancer Society (to R. J. J. and D. C.) and the Eleanor Naylor Dana Charitable Trust (to R. W. E.).

2 To whom requests for reprints should be addressed, at H. Lee Moffitt Cancer Center, 12002 Magnolia Drive, Tampa FL 33612. Phone: (813) 979-3887; Fax: (813) 979-3893; E-mail: pledgerw@moffitt.usf.edu.

3 To whom requests for reprints should be addressed, at H. Lee Moffitt Cancer Center, 12002 Magnolia Drive, Tampa FL 33612. Phone: (813) 979-3887; Fax: (813) 979-3893; E-mail: pledgerw@moffitt.usf.edu.

Results and Discussion

Approximately 200 mice (p21^{+/−}, p21^{−/−}, and p21^{−/−} genotypes) received a 4-Gy dose of whole body γ-irradiation at 2 weeks of age. Irradiated mice were monitored daily after irradiation, and symptoms of disease were considered “symptom free” and necropsied 13.5 months after γ-irradiation. Necropsies were done on 31 p21^{+/−} mice, 105 p21^{−/−} mice, and 66 p21^{−/−} mice, and all organs were examined macroscopically and microscopically. p21^{Cip1} gene dosage had no significant effect on the symptom-free survival of γ-irradiated mice (data not shown). All mice were symptom free at 4 months of age, and 70% of all mice were symptom free at 14 months of age. However, as determined by necropsy and histological analysis, most mice were tumor bearing. The percentages of p21^{+/−}, p21^{−/−}, and p21^{−/−} mice with tumors were 68, 79, and 80%, respectively, and not
significantly different. On the other hand, p21+/− and p21−/− mice had significantly more tumors per mouse than did p21+/+ mice (P = 0.0277 in a three-way comparison; Table 1). Average numbers of tumors per mouse were 2.23 for p21+/− mice (P = 0.016) and 2.22 for p21−/− mice (P = 0.01), as compared with 1.1 for p21+/+ mice. Moreover, 52% of p21+/− mice (P = 0.0032) and 54% of p21−/− mice (P = 0.0045) had more than one tumor per mouse, as compared with only 23% of p21+/+ mice. Immunohistochemistry confirmed the

Table 1. Incidence and spectrum of tumor types in γ-irradiated p21+/+, p21+/−, and p21−/− mice

Shaded tumors are malignant. Asterisk (*) denotes tumors of mesenchymal origin. Because seven p21+/− and seven p21−/− mice were not necropsied because of advanced autolysis, the data shown may underestimate the number of tumors in the p21+/+ and p21−/− cohorts. The Ps comparing the number of tumors per mouse for p21+/− and p21−/− mice with those for p21+/+ mice were significant for the Harderian gland and ovary. Harderian gland: p21+/−, P = 0.0267; p21−/−, P = 0.0484. Ovary: p21+/−, P = 0.0077; p21−/−, P = 0.0052.

For the ovary, uterus, and vagina, tumors per mouse was determined by dividing tumor number by the number of female mice: 15, 48, and 32 for the p21+/+, p21+/−, and p21−/− cohorts, respectively.

For the prepucial gland, seminal vesicle, and testes, tumors per mouse was determined by dividing tumor number by the number of male mice: 16, 57, and 29 for the p21+/+, p21+/−, and p21−/− cohorts, respectively.

3022
presence of p21^{Cip1} in tumors of p21^{+/−} mice (Fig. 1). These findings suggest that the p21^{Cip1} gene is haploinsufficient for tumor suppression in γ-irradiated mice.

Tumors were classified as benign or malignant based on morphology. Tumors were considered benign if they contained fewer mitotic figures, lacked cellular pleomorphisms, were localized and well demarcated, and consisted of expansible masses of well-differentiated cells. Tumors were considered malignant if they had infiltrating advancing margins, large areas of necrosis, numerous and often atypical mitotic figures, and pleomorphic cells. p21^{+/−} and p21^{−−} mice developed 2.2-fold more benign tumors (P = 0.0299 in a three-way comparison) and 1.7-fold more malignant tumors per mouse than did p21^{+/−} mice (Table 1). The latter difference was not significant perhaps because of small sample numbers. However, p21^{+/−} mice (11%; P = 0.0934) and p21^{−−} mice (10%; P = 0.0687) developed multiple malignant tumors per mouse (in separate organ systems), whereas p21^{+/−} mice did not. These findings show that a greater incidence of benign and perhaps also malignant tumors accounts for the greater incidence of total tumors in p21^{Cip1} heterozygous and nullizygous mice, as compared with wild-type mice.

All three groups of irradiated mice developed tumors in several organs, most notably the Harderian gland, lung, ovary, and small intestine (Table 1). p21^{+/−} and p21^{−−} mice developed significantly more Harderian gland and ovarian tumors per mouse than did p21^{+/−} mice (see Ps in the legend to Table 1). Moreover, the spectrum of tumor types was broader in p21^{+/−} and p21^{−−} mice than in p21^{+/−} mice. Tumor types present in p21^{+/−} and p21^{−−} mice but not in p21^{+/−} mice include adrenal gland pheochromocytomas, Harderian gland adenocarcinomas, hepatocellular carcinomas, and ovarian tubulolobstromal adenomas and granulosa cell tumors. Other than thymic lymphomas, which were present in all three cohorts, p21^{+/−} mice did not develop tumors of mesenchymal cell origin. In contrast, p21^{+/−} and p21^{−−} mice developed a variety of mesenchymal tumors, including hemangiomas, hemangiosarcomas, and leiomyosarcomas. Thus, loss of one or both copies of the p21^{Cip1} gene increases the incidence of Harderian gland and ovarian tumors and the diversity of benign and malignant tumors in irradiated mice.

Despite similar numbers of malignant tumors per mouse, p21^{Cip1} nullizygous mice developed 2.7-fold more metastatic tumors per mouse than did p21^{Cip1} heterozygous mice (Fig. 2A and Table 2, P = 0.018). Numbers of metastatic tumors per mouse were 0.1, 0.09, and 0.24 for p21^{+/+}, p21^{+/−}, and p21^{−−} mice, respectively (P = 0.0366 in a three-way comparison). Thymic lymphomas, which invariably were disseminated, accounted for all of the metastatic tumors in p21^{+/+} mice and 50% of the metastatic tumors in p21^{+/−} mice. On the other hand, 70% of the metastatic tumors in p21^{−−} mice arose from organs other than the thymus; e.g., the Harderian gland, ovary, and spleen. Examples of distant metastases in p21^{Cip1}-null mice are shown in Fig. 2B–D. When thymic lymphomas were excluded from the analysis, the numbers of metastatic tumors per mouse were 0.18 for p21^{−−} mice, as compared with zero for p21^{+/+} mice (P = 0.0078) and 0.04 for p21^{+/−} mice (P = 0.0147; P = 0.0035 in a three-way comparison). Moreover, 26% of nonlymphoma malignant tumors in p21^{−−} mice metastasized as compared with 0% in p21^{+/+} mice and 6% in p21^{+/−} mice (P = 0.0086 in a three-way comparison). These findings clearly show that deletion of both copies of the p21^{Cip1} gene promotes tumor metastasis in γ-irradiated mice.

Our study provides the most in-depth analysis to date of the combined effects of p21^{Cip1} gene dosage and radiation on whole animals. We show that p21^{+/−} and p21^{−−} mice develop more tumors when irradiated than do p21^{+/+} mice. A greater incidence of Harderian gland and ovarian tumors and a wider spectrum of tumor types contributed to the overall increase in tumor incidence in p21^{+/−} and p21^{−−} mice, as compared with p21^{+/+} mice. Because p21^{Cip1} was expressed in a large sampling of tumors from p21^{−−} mice, we suggest that the p21^{Cip1} gene is haploinsufficient for tumor suppression in irradiated mice. Our results are in accordance with previous reports showing enhanced susceptibility of p21^{Cip1}-null mice to chemically induced carcinogenesis (11, 12) and haploinsufficient tumor suppression by p21^{Cip1} in mice expressing a mutant allele of the APC tumor suppressor gene (14) or the v-Ras oncoprotein (13). Our results

Fig. 1. Immunohistochemical verification of p21^{Cip1} expression in malignant tumors of irradiated p21^{+/−} mice. A, a Harderian gland adenocarcinoma. Magnification, ×40. B, an intestinal adenocarcinoma. Magnification, ×40. C, a bronchioloalveolar carcinoma. Magnification, ×40. Brown staining, presence of p21^{Cip1}.
differ, however, from those of Martin-Caballero et al. (16), who observed a protective effect of p21 Cip1 nullizygosity on the survival of γ-rays-irradiated mice. In the study of Martin-Caballero et al. (16), 35 mice received a 1.75-Gy dose of radiation once a week for 4 weeks. As a result, all of the wild-type mice developed T-cell lymphomas and did not survive >10 months. In contrast, in our study, ~200 mice received a single 4-Gy dose of radiation, and most mice were lymphoma free and viable at 14 months. Thus, our study allowed us to detect a

Table 2 Metastatic tumors in γ-irradiated p21+/+, p21−/−, and p21−/− mice

<table>
<thead>
<tr>
<th>Primary organ</th>
<th>Tumor type</th>
<th>Sites of metastasis</th>
<th>Number of metastatic tumors (Tumors per mouse)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>p21+/+</td>
</tr>
<tr>
<td>Adrenal gland</td>
<td>Phaeochromocytoma</td>
<td>Liver, lung</td>
<td>0</td>
</tr>
<tr>
<td>Adrenocarcinoma</td>
<td>Adenocarcinoma</td>
<td>Lung</td>
<td>0</td>
</tr>
<tr>
<td>Liver</td>
<td>Hepatoblastoma</td>
<td>Intrahepatic</td>
<td>0</td>
</tr>
<tr>
<td>Histocytoma</td>
<td></td>
<td>Pancreas, testes</td>
<td>0</td>
</tr>
<tr>
<td>Lung</td>
<td>Hemangiosarcoma</td>
<td>Brain</td>
<td>0</td>
</tr>
<tr>
<td>Ovary*</td>
<td>Granulosa cell tumor</td>
<td>Lung</td>
<td>0</td>
</tr>
<tr>
<td>Small intestine</td>
<td>Adenocarcinoma</td>
<td>Liver, Lung</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Leiomyosarcoma</td>
<td>Liver</td>
<td>0</td>
</tr>
<tr>
<td>Spleen</td>
<td>Hemangiosarcoma</td>
<td>Liver, uterus</td>
<td>0</td>
</tr>
<tr>
<td>Undetermined</td>
<td></td>
<td>Liver, lung</td>
<td>0</td>
</tr>
<tr>
<td>Thymus</td>
<td>Lymphoma</td>
<td>Kidney, liver, spleen</td>
<td>3 (0.097)</td>
</tr>
</tbody>
</table>

| Metastatic tumors per mouse excluding lymphomas | 0.1 | 0.09 | 0.24 |
| Metastatic tumors per mouse excluding lymphomas | 0.04 | 0.10 |

*For metastatic tumors originating in the ovary, the number of tumors per mouse is based on the number of p21−/− female mice.

*The percentage of intestinal adenocarcinomas that metastasized was significantly greater in p21−/− mice than in p21+/+ mice (P = 0.041).
wide variety of tumor types in irradiated p21\(^{+/+}\), p21\(^{+/−}\), and p21\(^{−/−}\) mice and to accurately assess tumor burden.

The most intriguing finding of our study is the increased tendency of p21\(^{−/−}\) tumors to metastasize, as compared with p21\(^{+/+}\) and p21\(^{+/−}\) tumors. Invasive, malignant tumors give rise to metastatic tumors by a multistep process in which tumor subclones detach from the primary tumor, invade surrounding tissue, disseminate through the bloodstream to distant organs, and grow and vascularize in new locations (19, 20). The inability of irradiated p21\(^{Cip1}\)-null cells to arrest in G1 and the consequent replication of damaged DNA may result in the aberrant expression of gene products that induce or inhibit metastasis. Alternatively, loss of p21\(^{Cip1}\) and consequent dysregulated cyclin-dependent kinase activity and cell cycle progression may directly facilitate the growth of new tumors at sites of metastasis. Determination of how p21\(^{Cip1}\) suppresses metastasis represents an exciting challenge and may facilitate the design of efficacious anticancer strategies.

Acknowledgments

We thank Sandra Livingston for assistance with histopathology, Nancy Olashaw for manuscript preparation, and Anita Parker and Janelle Simon of the Vivarium Core Facility at the Moffitt Cancer Center. We also thank the helpful service of the Molecular Imaging Core at the Moffitt Cancer Center.

References

p21 Cip1 Nullizygosity Increases Tumor Metastasis in Irradiated Mice

Rosalind J. Jackson, Robert W. Engelman, Domenico Coppola, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/12/3021

Cited articles
This article cites 18 articles, 7 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/12/3021.full.html#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
/content/63/12/3021.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.