INTRODUCTION

HO\(^4\) catalyzes the rate-limiting step in the degradation of heme to produce biliverdin, CO, and free iron. Thus, Biliverdin formed is subsequently converted to bilirubin by cytosolic biliverdin reductase (1, 2). The constitutive isoform of HO (HO-2) is highly expressed in the testis and brain under physiological conditions (2). HO-1, an inducible isoform of HO, is found at low levels in most mammalian tissues but is highly expressed in liver and spleen (3). Expression of HO-1 is induced by a wide variety of stress-inducing stimuli, including heat shock (4), UV irradiation (5), hydrogen peroxide (5), and/or defense against oxidative stress and cellular stress. It is interesting to note that several tumors, including renal cell carcinoma (15) and prostate tumors (16) in humans, express a high level of HO-1. We also found high HO-1 expression in experimental solid tumors, i.e., the rat hepatoma AH136B (9) and the mouse sarcoma Sarcoma 180 (17). This level of HO-1 expression was comparable with that in the spleen and liver (9, 17). In these models, inducible NO synthase was also up-regulated, and thus, tumor tissues were exposed to oxidative stress related to NO and/or its reactive metabolites (18, 19). Administration of the HO inhibitor ZnPP via a tumor-feeding artery significantly suppressed the growth of AH136B tumors, which suggests a vital role of HO-1 in tumor growth (9). These findings also indicate a potential beneficial role of HO inhibitors as novel anticancer agents. However, the mechanism of *in vivo* antitumor activity of HO inhibitors developed thus far has not yet been fully proved.

Metalloporphyrins constitute a class of compounds in which the central iron of heme is replaced by various other metals such as cobalt, zinc, manganese, chromium, or tin (20). These metalloporphyrins function as competitive inhibitors of the HO reaction because of their insufficient binding to molecular oxygen, which prevents HO from degrading the metalloporphyrins (20). Although these metalloporphyrins may exhibit antitumor activity, as has been shown for ZnPP, their extremely low solubility in water limits additional investigation of these compounds *in vivo*. To overcome this limitation, we recently developed a water-soluble derivative of ZnPP by conjugating it with a water-soluble polymer, PEG (17). This polymer conjugate PEG-ZnPP was not only active as a HO inhibitor, similar to native ZnPP, but also behaved as a macromolecular agent because of its micelle forming (17). Furthermore, i.v. injection of PEG-ZnPP significantly reduced intratumor HO activity. In the present study, *in vivo* antitumor activity of PEG-ZnPP was demonstrated by using a murine solid tumor model. Pharmacokinetics and side effects of PEG-ZnPP treatment were also examined.
Antitumor Activity of PEGylated Zinc Protoporphyrin

Acetate (Perkin-Elmer Japan Co. Ltd., Yokohama, Japan) was used. Radiolabel six-well plates and were preincubated overnight, after which 2 3C12 DNA (nucleotides 79/11032 CAGGCAGAATGCTGAGTTC; and HO-1 sense GATGTTGAGCAGGAACGCGAT) transcription with random primers was amplified by PCR. The nucleotide method reported by Abraham (22). The cDNA product obtained by reverse synthesis of PEG-ZnPP was measured by PEG-ZnPP and native ZnPP. Free Zn in the preparations of PEG-ZnPP and native ZnPP was removed by gel chromatography with a Sephadex G-25 column (PD-10 col-

In brief, SW480 cells plated in 12-well plates (105 cells/well) were preincubated overnight. Then, cells were treated with PEG-ZnPP for 8 h. Then, 10 \textmu M DCDHF-diacetate was added, and the cells were cultured for an additional 30 min. The esterified form of DCDHF-diacetate can permeate cell membranes and then be deacetylated by intracellular esterases. The resultant compound, DCDHF, reacts with ROS to give a fluorescent compound, dichlorofluorescin, which remains in the cells (24). The amount of intracellular ROS was quantified as a function of fluorescence intensity measured by flow cytometry (BD FACS Calibur 3A; Becton Dickinson, San Jose, CA).

In vitro cytoxicity of PEG-ZnPP was determined by the MTT assay (25). Cells were seeded in 96-well plates (3000 cells/well), and after an overnight preincubation, cells were exposed to indicated concentrations of PEG-ZnPP for 48 h. The toxicity of PEG-ZnPP was expressed as the fraction of cells surviving relative to untreated controls.

Induction of Oxidative Stress by PEG-ZnPP. SW480 cells were seeded in 12-well plates (105 cells/well) and after an overnight preincubation, cells were treated with PEG-ZnPP for 24 or 48 h. After the cells were harvested by a rubber policeman, they were lyophilized to staining with the Annexin V-FTC kit and propidium iodide. The number of apoptotic cells was determined by flow cytometry (BD FACS Calibur 3A).

MTT Assay. In vitro cytoxicity of PEG-ZnPP was determined by the MTT assay (25). Cells were seeded in 96-well plates (3000 cells/well), and after an overnight preincubation, cells were exposed to indicated concentrations of PEG-ZnPP for 48 h. The toxicity of PEG-ZnPP was expressed as the fraction of cells surviving relative to untreated controls.

In Vivo Apoptosis Assay. Proapoptotic activity of PEG-ZnPP was determined by a flow cytometric assay with Annexin V-FTC (25), by using the Annexin V-FTC Apoptosis Detection kit (BD Pharmingen, San Diego, CA). This process was followed by reaction with a polyclonal antibody (OSA-150; Stressgen, Victoria, British Columbia, Canada). The protein band that reacted immunologically with the antibody was visualized by using the enhanced chemiluminescence system (Amersham International plc, Buckingham, United Kingdom), combined with chemiluminescence detection with Hyperfilm (Amersham).

Western Blot Analysis of HO-1 Expression. Western blot analysis of HO-1 was described as just described was used for analysis of HO-1 expression. Total protein (25 \textmu g in each sample) in tissue homogenates was separated by electrophoresis with 12% SDS-polyacrylamide gel and was transferred to Immobilon polyvinylidene difluoride membranes (Millipore Co., Ltd., Bedford, MA). This process was followed by reaction with a polyclonal antibody to HO-1 (OSA-150; Stressgen, Victoria, British Columbia, Canada). The protein band that reacted immunologically with the antibody was visualized by using the enhanced chemiluminescence system (Amersham International plc, Buckingham, United Kingdom), combined with chemiluminescence detection with Hyperfilm (Amersham).

Determination of Blood Count and Blood Chemistry. Mice bearing Sarcoma 180 tumors about 5–7 mm in diameter were used for this study. Twenty-four h after PEG-ZnPP treatment as described above, mice were killed by neck dislocation. Tissues were obtained from the inferior vena cava, RBC, WBC, BUN, creatinine, and bilirubin were determined by using a sequential multiple AutoAnalyzer system (Hitachi Ltd., Tokyo, Japan).

ELISA of TNF-\alpha in Mice Treated by PEG-ZnPP. At 24 h and 3 days after the above-mentioned 6-day PEG-ZnPP treatment, the TNF-\alpha levels in sera of mice were quantitated in vitro by use of a mouse TNF-\alpha ELISA kit (BioSource International, Inc., Camarillo, CA), according to the manufacture’s instruction.

Mice received i.v. injections of 65Zn-labeled PEG-ZnPP or native ZnPP via the tail vein (0.3 mM, 15,000 cpm (0.33 kBq/mouse, 0.1 ml/injection). After scheduled time, mice were killed, blood samples were drawn from the inferior vena cava, and mice were then subjected to reperfusion with 10 ml of saline containing heparin (5 units/ml) to remove blood components in the blood vessels of the tissues. Then, tumor tissues as well as normal tissues, including liver, spleen, kidney, intestine, heart, lung, brain, and muscle, were collected and weighed. Radioactivity of these tissues was measured by using a gamma counter (Wallac 1480 WIZARD 3rd; Pharmacia Biotech, Turku, Finland).
In Situ Apoptosis Detection. As described earlier, tumor, liver, and kidney were collected after reperfusion of the mice with 10 ml of physiological saline containing heparin (5 units/ml), and were used for the apoptosis assay and for the histological examination that is described below. *In vivo* induction of apoptosis by PEG-ZnPP treatment was determined by the TUNEL method (28), with an *in situ* apoptosis detection kit (TACS; Trevigen Inc., Gaithersburg, MD), according to the manufacturer’s instruction. Tissue specimens from the mice were embedded in an embedding dish (Greiner Bio-one Co., Ltd., Tokyo, Japan) by using Tissue-Tek OCT Compound (Sakura Finetechincal Co., Ltd., Tokyo, Japan) and were stored at −80°C before use. Cryosections (10-μm thick) were prepared for this assay. Serial sections were used for the TUNEL assay. TUNEL-positive cells were counted in four different fields per sample, and counts were expressed per mm² of tissue section.

Histological Examination. Some tissue specimens collected as described above were fixed with 10% buffered neutral formalin solution and were then embedded in paraffin. Sections were stained with H&E.

Statistical Analysis. All of the data are expressed as means ± SE. Student’s *t* test was used to determine the significance between each experimental group. The difference was considered statistically significant when *P* < 0.05.

Fig. 1. *In vitro* cytotoxicity of PEG-ZnPP. A, RT-PCR detection of HO-1 mRNA expressed in SW480 cells. *M*, molecular size markers; SW480 RNA, total RNA extracted from SW480 cells. *B*, cytotoxicity of PEG-ZnPP. SW480 cells were exposed to increasing concentrations of PEG-ZnPP or PEG-PP for 48 h. Other SW480 cells were incubated with PEG-ZnPP in the presence of NAC (2 mM). Cell viability was then determined by the MTT assay. ●, PEG-ZnPP; ○, PEG-PP; ○, PEG-ZnPP plus NAC. Values are means (*n* = 6 wells); bars, ±SE.

Fig. 2. Induction of intracellular ROS production in SW480 cells by treatment with PEG-ZnPP. SW480 cells were treated with increasing concentrations of PEG-ZnPP or PEG-PP for 8 h. The amount of intracellular ROS was measured by flow cytometry. Values are means (*n* = 3 wells); *P* < 0.01, **P* < 0.005, ***P* < 0.002, PEG-ZnPP versus control; bars, ±SE.

Fig. 3. Induction of apoptosis in SW480 cells by PEG-ZnPP. Cells were treated with increasing concentrations of PEG-ZnPP for 24 h or 48 h (A) or with siRNA for 48 h (B). The number of apoptotic cells was determined by flow cytometry, and the percentage of apoptotic cells (per the total number of calculated cells) is shown. Values are means (*n* = 3 wells); bars, ±SE. In A, *P* < 0.05 and **P* < 0.0001 versus control. In B, vehicle indicates the result for cells treated with TransMessenger Transfection Reagent only (without siRNA); siRNA indicates the result for cells transfected with siRNA for HO-1 mRNA; ***P* < 0.0007 versus control (no treatment). The inset in B shows RT-PCR analyses for the HO-1 mRNA expression of the cells with or without siRNA (or vehicle) transfection.

RESULTS

In Vitro Cytotoxicity of PEG-ZnPP as Related to Increased Oxidative Stress. SW480 cells cultured *in vitro* did express HO-1 mRNA, as demonstrated by RT-PCR (Fig. 1A). As shown in Fig. 1B, PEG-ZnPP, at concentrations of 5.4–54.0 μM, exhibited a cytotoxic effect in a dose-dependent manner. This cytotoxic effect was largely reversed by addition of the oxidant, NAC (at 2 mM, NAC itself resulted in the cell viability of 105.8 ± 5.8% compared with untreated control), which suggests the involvement of increased oxidative stress in the cytotoxic action of PEG-ZnPP. In addition, PEG-PP, a metal-free analogue of PEG-ZnPP that does not inhibit HO, had no cytotoxic effect at the same concentration range (Fig. 1B).

To investigate whether PEG-ZnPP increases the intracellular production of ROS in SW480 cells, flow cytometry was performed with the use of the oxidant-sensitive fluorescence probe DCDHF (24). As shown in Fig. 2, PEG-ZnPP increased the fluorescence intensity of cells in a dose-dependent manner, whereas PEG-PP did not. These
findings suggest that the increased oxidative stress was because of inhibition of HO activity.

PEG-ZnP-induced Apoptosis in SW480 Cells. To investigate whether apoptosis is involved in the cytotoxic action of PEG-ZnP, a fluorescein-labeled Annexin V assay was performed to detect apoptotic SW480 cells after PEG-ZnP treatment. PEG-ZnP induced apoptosis in these cells in a concentration-dependent manner (Fig. 3A). This result correlated well with the increase in formation of intracellular oxidant as shown in Fig. 2B. More important, very little necrosis was found on this treatment. In 24-h treatment, necrosis were found to be <1% of total counted cells in all of the groups; the necrosis observed in 48-h treatment were 0.18%, 0.32%, 1.1%, and 1.76% of total counted cells for the control, PEG-ZnP 20 μM, 40 μM, and 60 μM groups, respectively. These results suggest that the cytotoxicity of PEG-ZnP is mostly because of induction of apoptosis.

Targeted knockdown of HO-1 expression was achieved by transfection of siRNA, which, thus, induced apoptosis of cultured SW480 cells (Fig. 3B). Suppression of HO-1 levels after siRNA treatment was confirmed by RT-PCR analysis for HO-1 mRNA of the cells as shown in the inset of Fig. 3B. This finding indicates that HO-1 plays an important role in preventing apoptosis of SW480 cells under the study conditions. Thus, PEG-ZnP-induced inhibition of HO activity results in apoptosis through a mechanism involving the increased oxidative stress.
Pharmacokinetics of PEG-ZnPP after i.v. Injection. As shown in Fig. 4A, nonpegylated native ZnPP rapidly disappeared from the blood circulation after i.v. injection; the AUC was 2,505 ± 396 (cpm/h/ml). In contrast, PEG-ZnPP showed a significantly longer circulation time. An AUC value that was 40 times higher [10,290 ± 11,649 (cpm/h/ml)] was achieved by PEG-ZnPP. It is important to note that in tumor tissue PEG-ZnPP accumulated in a time-dependent manner, with a maximum increase at 48 h, whereas native ZnPP reached a maximum accumulation at 8 h after administration and then gradually disappeared (Fig. 4B).

Body distribution analysis showed a PEG-ZnPP buildup in the liver and the spleen, both of which have an active RES (29). This observation suggests that PEG-ZnPP after systemic administration is trapped by the RES. Besides the liver and spleen, tumor tissue showed a PEG-ZnPP accumulation greater than that in other normal tissues (Fig. 4C), which suggests a preferential concentration of PEG-ZnPP in tumor.

In Vivo Antitumor Activity of PEG-ZnPP. As shown in Fig. 5, tumor growth was significantly suppressed in mice receiving PEG-ZnPP treatment. With the dose of 5 mg/kg, tumor growth was continuously suppressed until at least 36 days after tumor implantation, which was 24 days after the last administration of PEG-ZnPP. Complete regression of tumor growth was observed in two of eight tumors after treatment with PEG-ZnPP (5 mg/kg). In contrast, in mice treated with PEG-PP, tumor growth was not delayed. In addition, the effect of native ZnPP was not examined in this in vivo antitumor study, because it is not soluble in water at the dose mentioned above, which is not suitable for systemic administration. The average tumor weights on the 36th day after tumor implantation for the groups treated with the high dose of PEG-ZnPP (5 mg/kg), the low dose of PEG-ZnPP (1.5 mg/kg), or PEG-PP and for the untreated control group were 1.43 ± 0.36, 2.17 ± 0.39, 7.04 ± 0.98, and 6.14 ± 1.03 g, respectively.

Fig. 7. Induction of apoptosis in Sarcoma 180 solid tumors by PEG-ZnPP. Each specimen was collected and examined 24 h after treatment. The treatment protocol was the same as that described for Fig. 5. A, TUNEL staining for each group: a, d, g, tumor; b, e, h, spleen; c, f, i, liver. a, b, c, untreated controls; d, e, f, PEG-PP; g, h, i, PEG-ZnPP. Apoptosis exhibits a dark blue staining. Morphometric analyses of the number of TUNEL-positive cells in each specimen are shown in B. TUNEL-positive cells were counted in four different fields per sample, and counts were calculated as the number of positive cells per mm². Data are means (n = 3 for each group); bars, ±SE. *P < 0.005, PEG-ZnPP group versus control and PEG-PP groups.
Body Weight Changes after PEG-ZnPP Treatment. Fig. 6 shows body weight changes of mice receiving different treatments. Early in the observation period, no group showed a loss of body weight. However, during the later stage of investigation, a significant difference in body weight was observed in the groups treated with PEG-ZnPP compared with the nontreated control group and the PEG-PP-treated group. This body weight change is attributed primarily to the difference in tumor weight among these groups, as mentioned above.

In Vivo Induction of Tumor Cell Apoptosis of PEG-ZnPP. The TUNEL assay was used to examine apoptosis induced in vivo by PEG-ZnPP. Untreated control and PEG-PP-treated specimens showed only negligible positive staining, whereas strong positive staining was observed in PEG-ZnPP-treated Sarcoma 180 tumor tissue (Fig. 7A). Morphometric analysis of TUNEL-positive cells in the Sarcoma 180 solid tumors showed that the numbers of positive cells in the control group, the PEG-PP-treated group, and the 5 mg/kg PEG-ZnPP-treated group were 25.9 ± 5.7, 55.5 ± 14.9, and 560.5 ± 77.3/mm², respectively (Fig. 7B). In contrast, no significant increase in apoptosis was found after PEG-ZnPP treatment in the liver and spleen (Fig. 7).

Targeted Inhibition by PEG-ZnPP of HO Activity in Sarcoma 180 Solid Tumor. To clarify whether the induction of apoptosis in vivo and thus the suppression of tumor growth caused by PEG-ZnPP were because of the inhibition of HO activity, the expression and activity of HO-1 in tumor and spleen after PEG-ZnPP treatment were examined. As shown in Fig. 8A, HO-1 protein was clearly expressed in tumor and spleen of ddY mice. More important, even though HO-1 protein increased in tumor after PEG-ZnPP treatment (Fig. 8A), this treatment significantly inhibited (by ~50%) HO activity in the tumor (Fig. 8B, tumor). In contrast, PEG-ZnPP treatment neither increased HO-1 protein nor inhibited HO activity in the spleen (Fig. 8B, spleen). Similarly, HO activity in liver was not affected by PEG-ZnPP treatment (data not shown).

Evaluation of Side Effects of PEG-ZnPP Treatment. Because of a report that ZnPp is potentially toxic to both myeloid and erythroid cell growth (30), the hematological toxicity of PEG-ZnPP treatment was investigated in Sarcoma 180 tumor-bearing mice, by blood cell measures (RBC, WBC, and hemoglobin). No significant decreases in RBC and WBC counts, and hemoglobin levels were found after PEG-ZnPP treatment at the dose effective against cancer, compared with the measures in untreated control (Table 1). In addition, no significant effects of PEG-ZnPP treatment were seen in biochemical assays of major organs (liver and kidney), i.e., plasma alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, blood urea nitrogen, and creatinine values (Table 1).

HO-1 has also been known to be anti-inflammatory in various settings (31–33). To additionally clarify whether inhibition of HO-1 by PEG-ZnPP will induce spontaneous inflammation, the proinflammatory cytokine TNF-α was measured by use of a mouse TNF-α ELISA for evaluating systemic inflammation in mice receiving PEG-ZnPP treatment. Either at 24 h or 3 days after PEG-ZnPP treatment, no increment of TNF-α production in sera of mice with PEG-ZnPP treatment was observed compared with untreated control mice. The levels of TNF-α in all of the serum samples measured (both control and PEG-ZnPP treatment groups) were <19.5 pg/ml (detection limit of this ELISA).

Histological Examination. Tumor tissues showed necrotic changes, whereas no pathological changes were observed in the liver and spleen, after PEG-ZnPP treatment (data not shown).

DISCUSSION

The present study investigated the antitumor activity of a water-soluble HO inhibitor, PEG-ZnPP. In vitro experiments showed that PEG-ZnPP had cytotoxic effects on cultured SW480 cells, which express HO-1, whereas PEG-PP, a zinc-free analogue of PEG-ZnPP having no HO inhibitory activity, did not (Fig. 1). Coincubation of cells with the antioxidant NAC reduced the cytotoxicity of PEG-ZnPP. In addition, flow cytometric analysis using an oxidant-sensitive fluorescence probe (DCDHF) revealed increased intracellular oxidant levels after PEG-ZnPP treatment (Fig. 2). Thus, PEG-ZnPP exerts its cytotoxic effect on tumor cells by inhibiting HO activity, which leads to increased production of toxic oxidants. Reactive oxidants thus formed could trigger the apoptotic pathway (Fig. 3) by activating the caspase-3 cascade, as demonstrated recently for native ZnPp (34). The antiapoptotic role of HO-1 was additionally demonstrated in this study by using siRNA (Fig. 3B), which specifically knocked down HO-1 expression (Fig. 3B, inset) by targeting HO-1 mRNA (26). Among the products of the HO reaction, bilirubin could function as an antioxidant and/or free radical scavenger (10–12). In this context, we found recently that native ZnPp treatment reduced the intracellular bilirubin level and that exogenous bilirubin supplementation could compensate for the cytotoxic effect of ZnPp (34).

Table 1. Changes in RBC, WBC, hemoglobin, and plasma enzyme levels after PEG-ZnPP treatment of ddY mice

<table>
<thead>
<tr>
<th></th>
<th>RBC (10¹²/μl)</th>
<th>WBC (μl)</th>
<th>Hb (g/liter)</th>
<th>BUN (mg/dl)</th>
<th>Cr (mg/dl)</th>
<th>AST (IU/liter/at 37°C)</th>
<th>ALT (IU/liter/at 37°C)</th>
<th>LDH (IU/liter/at 37°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1074 ± 106.0</td>
<td>8013 ± 862</td>
<td>133.0 ± 13.4</td>
<td>19.7 ± 1.1</td>
<td>0.09 ± 0.0</td>
<td>249 ± 79.5</td>
<td>37.0 ± 4.4</td>
<td>7611 ± 3221</td>
</tr>
<tr>
<td>PEG-PP</td>
<td>1056 ± 50.5</td>
<td>7063 ± 1154</td>
<td>121.3 ± 3.8</td>
<td>17.6 ± 1.8</td>
<td>0.10 ± 0</td>
<td>221 ± 21.6</td>
<td>40.5 ± 5.5</td>
<td>4754 ± 567</td>
</tr>
<tr>
<td>PEG-ZnPP</td>
<td>1066 ± 29.8</td>
<td>7983 ± 2902</td>
<td>131.5 ± 7.4</td>
<td>18.2 ± 1.3</td>
<td>0.11 ± 0.01</td>
<td>181 ± 29.7</td>
<td>28.5 ± 1.4</td>
<td>4833 ± 1078</td>
</tr>
</tbody>
</table>

*No significant difference was found between each treatment group and the control group in all the selected indices. Values are presented as means ± SE.

Hb, hemoglobin; BUN, blood urea nitrogen; Cr, creatinine; AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase.

3572
As a more important finding, PEG-ZnPP showed marked antitumor activity in vivo even after systemic administration to tumor-bearing mice (Fig. 5). In contrast, PEG-PP at the same dose range did not show any antitumor activity. These results correlate well with the findings that PEG-ZnPP, but not PEG-PP, significantly suppressed intratumor HO activity (Fig. 8) and induced apoptosis of tumor cells (Fig. 7). Inhibition of HO activity makes tumor cells susceptible to ROS derived from the metabolism of the cells themselves and ROS derived from the host, e.g., inflammatory cells (18, 19), by reducing the antioxidant bilirubin level. Consequently, tumor cells undergo apoptosis (as seen in Fig. 7) via the caspase-3-dependent pathway, as mentioned above. An anti-inflammatory effect of HO-1 (32, 33) may inhibit the production of the proinflammatory cytokine TNF-α from activated macrophages (32, 33). Therefore, inhibition of HO-1 by PEG-ZnPP may enhance the inflammatory response in tumor tissues by increasing TNF-α production, and, hence, reinforce the host defense system. In addition, Yang et al. (35) reported that ZnPP induced apoptosis of hamster fibroblasts (HA-1) by up-regulating p53 expression, via ZnPP-mediated Egr-1 binding, which suggests an alternative pathway of ZnPP-induced apoptosis. However, whether this mechanism is involved in the increased apoptosis seen after PEG-ZnPP treatment observed in the present work needs additional investigation.

The antitumor activity of PEG-ZnPP may establish a new role for this compound in cancer treatment. In this regard, targeted delivery of PEG-ZnPP to tumor tissues is critical, because nonspecific distribution of PEG-ZnPP may cause systemic oxidative stress by reducing the antioxidant capacity of normal organs. Although radioactivity derived from 60Zn was detected at the highest level in spleen compared with other organs and tissues (Fig. 4C), the HO activity (Fig. 8) and the apoptotic index (Fig. 7) in spleen were unchanged by PEG-ZnPP treatment. These findings suggest that the bioavailability of PEG-ZnPP in the spleen may be limited, probably because of the special histological characteristics of this organ. PEG-ZnPP that accumulates in the spleen may be captured, degraded, or inactivated by the rich RES, including elements such as macrophages, as reported for other macromolecular compounds. This may be the case as well for liver, an organ also rich in RES (29).

In addition, various antioxidative enzymes such as catalase, glutathione peroxidase, and superoxide dismutase may also serve as the protective role against ROS in normal organs; however, these enzymes have been found to be greatly reduced in various tumor cells (36–39), which will increase the vulnerability of tumor cells to ROS. ZnPP is also known to have toxic effects on the bone marrow by inhibiting the growth of erythroid and myeloid cells (30). However, we did not find any significant changes in blood cells after PEG-ZnPP treatment (Table 1). These results, together with those for body weight change (Fig. 6) and the little serum TNF-α production (see “Results”), indicate that systemic side effects of PEG-ZnPP treatment seem to be negligible.

With exception for spleen and liver, PEG-ZnPP preferentially accumulated in solid tumor tissue (Fig. 4C). Pharmacokinetic study showed that the amount of PEG-ZnPP in tumor tissue increased in a time-dependent manner (Fig. 4B), whereas the amount of ZnPP in circulation gradually decreased (Fig. 4A). This finding suggests that PEG-ZnPP accumulates or is deposited in solid tumor tissues after systemic administration. A similar accumulation of biocompatible macromolecules has been reported for a variety of solid tumor tissues, which may be explained by the unique characteristics of the tumor vasculature (40–44). This phenomenon was named the EPR effect of macromolecules and lipids in solid tumor (40). This EPR effect can be observed for macromolecules having an apparent molecular size larger than 40,000, i.e., large enough to escape from renal clearance (40–44). As expected, the AUC for PEG-ZnPP (M, > 70,000 in aqueous medium as a micelle formation; see Ref. 17) showed a 40-fold increase compared with that for native ZnPP (M, = 626; Fig. 4A). Thus, PEG-ZnPP is delivered to tumor tissue according to the EPR effect, and, hence, it effectively and selectively inhibits HO activity in tumor.

In conclusion, we demonstrate here that tumor-targeted inhibition of HO activity could be achieved by using the water-soluble HO inhibitor PEG-ZnPP. Inhibition of intratumor HO activity leads to apoptosis of tumor cells by, at least in part, decreasing the bilirubin level, which results in sensitizing tumor cells to oxidative stress. This finding suggests that PEG-ZnPP may intensify the antitumor activity of chemotherapeutics that can produce reactive oxidants and that it may act selectively in the tumor tissue because of the EPR effect. Many chemotherapeutics including conventional antitumor agents such as doxorubicin and camptothecin (45), as well as PEG-conjugated oxido-reductases such as PEG-xanthine oxidase (46) and PEG-d-amino acid oxidase (47), are known to generate ROS and exhibit antitumor effects. The effect of PEG-ZnPP described here is consistent with this antitumor strategy.

ACKNOWLEDGMENTS

We thank Judith B. Gandy for editing this manuscript.

REFERENCES

ANTITUMOR ACTIVITY OF PEGYLATED ZINC PROTOPORPHYRIN

In Vivo Antitumor Activity of Pegylated Zinc Protoporphyrin: Targeted Inhibition of Heme Oxygenase in Solid Tumor

Jun Fang, Tomohiro Sawa, Takaaki Akaike, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/13/3567

Cited articles This article cites 45 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/13/3567.full.html#ref-list-1

Citing articles This article has been cited by 33 HighWire-hosted articles. Access the articles at:
/content/63/13/3567.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.