Insulin-like Growth Factor-binding Protein-3 Gene -202 A/C Polymorphism Is Correlated with Advanced Disease Status in Prostate Cancer

Lizhong Wang,2 Tomonori Habuchi,2 Norihiko Tsuchiya, Kenji Mitsumori, Chikara Ohyama, Kazunari Sato, Hidehumi Kinoshita, Yoshiyuki Kamoto, Akira Nakamura, Osamu Ogawa, and Tetsuro Kato

Departments of Urology [L. W., N. T., K. M., C. O., K. S., T. K.] and Medical Information Science [A. N.], Akita University School of Medicine, Akita 010-8543, and Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 605-8507 [T. H., K. K., T. Kan., O. O.], Japan

ABSTRACT

The circulating level of insulin-like growth factor-binding protein-3 (IGFBP-3) is inversely associated with the risk of prostate cancer (PCa) and its progression and may be modulated by the A/C polymorphism at position -202 in the promoter region of IGFBP-3. This study was conducted to evaluate the role of the A/C polymorphism as a genetic modifier in the etiology of PCa and its disease status. The polymorphism was analyzed by PCR restriction fragment-length polymorphism technique in 307 PCa patients, 221 benign prostatic hyperplasia (BPH) patients, and 227 male controls. No significant difference in the genotype frequency was found between the PCa or BPH patients and controls (PCa versus control, P = 0.316; BPH versus control, P = 0.964). Regarding the tumor stage, the C allele was more frequently observed in patients having tumors with higher stage (P for trend = 0.002). When the PCa patients with localized disease (stage A + B + C) were considered as reference, those with CC and AC genotype had a significantly increased risk of metastatic disease (stage D) compared with those with AA genotype (adjusted odds ratio [aOR] = 3.89, 95% confidence interval [CI] = 1.42–10.64, P = 0.008, and aOR = 1.68, 95% CI = 1.01–2.79, P = 0.044, respectively). The presence of the C allele appeared to be associated with an increased risk of metastatic PCa with a gene dosage effect (aOR = 1.82, 95% CI = 1.23–2.68, P = 0.002). Similarly, significant findings were also observed when PCa patients were compared between those with organ-confined disease (stage A + B) and those with extra-prostatic extension (stage C + D). Furthermore, the C allele was present more frequently in patients with higher tumor grade. In conclusion, the IGFBP-3 -202 A/C polymorphism was not associated with susceptibility to PCa and BPH in Japanese men, but the presence of the C allele may cumulatively increase the risk for tumor metastasis and for having tumors with a biologically more aggressive phenotype. Because of the significant differences in incidence of clinically evident PCa according to racial backgrounds, the conjecture should be further examined in different racial populations.

INTRODUCTION

The incidence of PCa1 has been rapidly increasing during the last decade in East Asia (1). However, the incidence rates remain significantly higher in African-Americans or in American Caucasians than Japanese (2–4). Although Japanese immigrants in the United States have experienced a marked increase in PCa incidence, the incidence remains significantly lower in African-American men than those in American Caucasian men and the highest in Japanese men (20–22). Because the lower IGF-I bioavailability (5), these findings may partly explain why the African-American men have a greater incidence of PCa than the American Caucasian and Japanese men.

A recent Physicians’ Health Study revealed the presence of A/C polymorphism at position -202 in the promoter region of IGFBP-3 and reported that the polymorphism was correlated with the circulating IGFBP-3 level in men and circulating IGFBP-3 levels were higher when the subjects possessed at least one A allele (23). They suggested that the circulating IGFBP-3 level may be modulated by the A/C polymorphism. To assess the role of the A/C polymorphism as a genetic modifier in the etiology of PCa and its disease progression, we investigated the IGFBP-3 genotype distribution in men with or without metastatic disease.

MATERIALS AND METHODS

Subjects. We studied a consecutive series of 800 subjects, including 307 PCa patients, 221 BPH patients, and 272 male controls at the Akita University Medical Center and its related community hospitals in Akita prefecture, who agreed to participate in this study. Most subjects were enrolled in previous studies (24–26). The subjects were selected between April 1997 and November 2001 for the PCa patients, between August 1997 and November 2000 for the BPH patients, and between March 1998 and September 2001 for the male controls.

All PCa patients were diagnosed histologically with specimens obtained from transrectal needle biopsy or transurethral resection of the prostate for voiding symptoms. The clinical or pathological stage of PCa at the time of diagnosis was determined by reviewing the medical records based on the General Rule for Clinical and Pathological Studies on Prostate Cancer by the Japanese Urological Association and the Japanese Society of Pathology (29), which is based on the WHO criteria (30) and according to the Gleason score (31). All pathological grading was based on needle biopsy specimens in stage B–D patients and surgical specimens in stage A patients. Well-, moderately, and poorly differentiated carcinoma generally correspond to Gleason scores of 2–4, 5–7, and 8–10, respectively (29, 32). In the present study, because the two grading systems were individually used by local
IGFBP-3 GENE POLYMORPHISM IN PROSTATE CANCER

pathologists, the tumor grade system was newly categorized as follows: (a) the low-grade cancer included the well-differentiated or Gleason 2–4 carcinomas; (b) the intermediate grade cancer included the moderately differentiated or Gleason 3–6 carcinomas; and (c) the high-grade cancer included the poorly differentiated or Gleason 8–10 carcinomas. In 3 patients, the final pathological grade was not determined because the endometrioid carcinoma, whose grading system has not been established, was pathologically diagnosed.

All BPH patients had various degrees of lower urinary tract symptoms and an apparent prostatic enlargement by digital rectal examination. The serum total PSA levels were measured in all of the patients, and men with an elevated total PSA level (4 ng/ml or greater by the Tandem-R assay; Hybritech, Inc., San Diego, CA) were confirmed not to have PCa by transrectal sextant biopsies. Serum total PSA was measured using the Tandem-R assay in most cases. When serum total PSA was measured using kits other than the Tandem-R, the measured total PSA level was adjusted to that of the Tandem-R assay using a formula published elsewhere (33).

RESULTS

Subject Characteristics. The mean age (±SD) was 71.77 ± 7.96 years for the PCa patients, 70.94 ± 9.43 years for the BPH patients, and 70.79 ± 8.06 years for the controls. No significant differences in the mean age were found between the PCa patients and controls (P = 0.143) or between the BPH patients and controls (P = 0.853). There were 27 stage A patients whose PCa was diagnosed incidentally by specimens removed for BPH treatment. Eighty-six PCa patients had clinical stage D2 disease, and 9 had clinical D1 disease, which was judged by radiological studies, whereas 15 patients were pathologically confirmed as having lymph node metastatic (D1) disease. In total, 110 patients were classified into having metastatic PCa; 106 and 64 PCas were classified into stage B and C disease, respectively, by clinical or pathological findings (Table 1).

Genotypes of IGFBP-3 -202 A/C Polymorphism and Risk of PCa and BPH. The frequencies of the IGFBP-3 genotype in the PCa, BPH, and control groups are shown in Table 1. No significant differences in the allele frequencies were found when the PCa patients (A 0.78, C 0.22) and BPH patients (A 0.75, C 0.25) were compared with the controls (A 0.75, C 0.25), respectively. The allele frequencies of the controls were significantly different from those of the American men reported by the Physicians’ Health Study (A 0.4, C 0.6; P < 0.001; Ref. 23). The IGFBP-3 genotype frequency in each group (PCa, BPH, and control) was in Hardy-Weinberg equilibrium (P = 0.05, data not shown).

Statistical analyses of the genotype prevalence showed that no significant differences were found between the PCa patients and controls (P = 0.316), between the BPH patients and controls (P = 0.964), and between the PCa patients and BPH patients (P = 0.482), respectively (Table 1). To evaluate the risk of PCa and BPH according to the IGFBP-3 genotypes, the logistic regression analysis was conducted with adjustment for age at the time of diagnosis (Table 1). Compared with the men with the AA genotype, no significant increased risk of PCa and BPH was found in men with the AC or CC genotype (Table 1).
IGFBP-3 GENE POLYMORPHISM IN PROSTATE CANCER

Table 1 IGFBP-3 genotype frequencies in PCa patients, BPH patients, and control males

<table>
<thead>
<tr>
<th>Study group</th>
<th>Total no.</th>
<th>AA</th>
<th>AC</th>
<th>CC</th>
<th>C allele frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCa<sup>a</sup></td>
<td>307</td>
<td>189 (61.6)</td>
<td>100 (32.6)</td>
<td>18 (5.9)</td>
<td>22.1</td>
</tr>
<tr>
<td>Stage<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>27</td>
<td>20 (74.1)</td>
<td>6 (22.2)</td>
<td>1 (3.7)</td>
<td>14.8</td>
</tr>
<tr>
<td>B</td>
<td>106</td>
<td>70 (66.0)</td>
<td>35 (33.0)</td>
<td>1 (0.9)</td>
<td>17.5</td>
</tr>
<tr>
<td>C</td>
<td>64</td>
<td>42 (65.6)</td>
<td>17 (26.6)</td>
<td>5 (7.8)</td>
<td>21.1</td>
</tr>
<tr>
<td>D</td>
<td>110</td>
<td>57 (51.8)</td>
<td>42 (38.2)</td>
<td>11 (10.0)</td>
<td>29.1</td>
</tr>
<tr>
<td>Grade<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>45</td>
<td>29 (64.4)</td>
<td>15 (33.3)</td>
<td>1 (2.2)</td>
<td>18.9</td>
</tr>
<tr>
<td>Intermediate</td>
<td>142</td>
<td>89 (62.7)</td>
<td>45 (31.7)</td>
<td>8 (5.6)</td>
<td>21.5</td>
</tr>
<tr>
<td>High</td>
<td>117</td>
<td>68 (58.1)</td>
<td>40 (34.2)</td>
<td>9 (7.7)</td>
<td>24.8</td>
</tr>
<tr>
<td>BPH<sup>d</sup></td>
<td>221</td>
<td>125 (56.6)</td>
<td>83 (37.6)</td>
<td>13 (5.9)</td>
<td>24.7</td>
</tr>
<tr>
<td>Control (reference)</td>
<td>272</td>
<td>152 (55.9)</td>
<td>105 (38.6)</td>
<td>15 (5.5)</td>
<td>29.7</td>
</tr>
</tbody>
</table>

^a PCa versus control, P = 0.316 by χ² test.
^b According to the Whitmore-Jewett system. Stage A = T_{1a}-T_{1b}N₀M₀, Stage B = T_{1a}-T_{1b}N₀M₀ and Stage C = T₁a-N₀M₀ and Stage D = T₁c-N₀M₀-1 or T₁c-N₀M₁. C allele frequency, P = 0.002 by the Cochran-Armitage trend test. Stage A + B + C versus Stage D. P = 0.010 by χ² test. Stage A + B versus Stage C + D, P = 0.010 by χ² test.
^c Low grade = well-differentiated carcinoma (WHO) or Gleason score 2–4 carcinoma. Intermediate grade = moderately differentiated carcinoma (WHO) or Gleason score 5–7 carcinoma. High grade = poorly differentiated carcinoma (WHO) or Gleason score 8–10 carcinoma. C allele frequency, P = 0.215 by the Cochran-Armitage trend test.
^d BPH versus control, P = 0.964 by χ² test.

with higher stage (P for trend = 0.002; Table 1). A significant difference in the genotype frequency was found between the localized PCa patients (stage A + B + C) and metastatic PCa patients (stage D; P = 0.01) and the organ-confined PCa patients (stage A + B) and extraprostatic PCa patients (P = 0.01; Table 1). Compared with the AA genotype, the PCa patients with CC genotype had a 3.89-fold increased risk of metastatic disease, and those with the AC genotype had a 1.68-fold increased risk of metastatic disease (Table 2). When the CC, AC, and AA genotypes were valued as “2,” “1,” and “0” into the model, respectively, the presence of the C allele significantly increased the risk of metastatic disease with a gene dosage effect (aOR = 1.82, 95% CI = 1.23–2.68, P = 0.002). However, when the patients with localized and metastatic PCa were independently compared with the normal controls, no significant risk of localized PCa (aOR = 0.54, 95% CI = 0.23–1.38, P = 0.198) or metastatic PCa (aOR = 1.95, 95% CI = 0.85–4.5, P = 0.118) was found in men with the CC genotype against those with the AA genotype. Similar findings were found when the PCa patients were compared between those with organ-confined (stage A–B) disease and those with extraprostatic extension (stage C–D; Tables 1 and 2).

No significant difference in the genotype frequency was found among the three subgroups of grade (low, intermediate, and high grade; P = 0.715; Table 1). The frequency of AA genotype was decreased, whereas that of CC genotype was increased as the tumor grade rose (Table 1). Although not statistically significant by the linear trend test, the C allele was more frequently observed in patients with higher tumor grade (P for trend = 0.215; Table 1).

DISCUSSION

A relatively small number of studies concerning the IGFBP-3 -202 A/C polymorphism on common diseases has been reported, and the genotype frequency of this polymorphism in the normal population has not been fully clarified. The present study revealed that the A allele appeared to be significantly more common in the Japanese men (A 0.75, C 0.25) than American men (A 0.4, C 0.6) reported by the Physicians’ Health Study (23). It was reported previously that the A allele was correlated with a higher plasma level of IGFBP-3 in men (23) and that the mean plasma IGFBP-3 level was significantly higher in Japanese men than that in African-American and American Caucasian men (21). We found no association between the IGFBP-3 genotype and susceptibility to PCa or BPH in Japanese men. However, it should be noted that, because the control subjects were a cohort of aged men with normal PSA levels and no significant voiding symptoms, it is possible that the control subjects might include substantial cases with BPH and some PCa cases as well.

The present findings showed a significant association between the IGFBP-3 -202 A/C polymorphism and risk of advanced disease in PCa patients. Furthermore, the presence of the C allele appeared to increase the risk with a gene dosage effect. However, the conjecture should be interpreted with a caution because the frequency of the CC genotype was relatively low in Japanese men, leaving the possibility that such significant findings were caused by chance. In addition, there was no significant difference in the IGFBP-3 genotype frequency between the metastatic PCa patients and normal controls, and the effect of the C allele was not evident when compared with the normal controls. However, if the IGHBP-3 system as influenced by the IGFBP-3 genotype was genuinely involved in PCa progression but not in its early carcinogenesis, and if the C allele had a deteriorating effect, whereas the A allele had a protective effect in its progression, it would be reasonable that the IGFBP-3 allelic frequency was associated with disease status but not distinct between normal and PCa subjects. It remains to be verified if the effect of the C allele (or the A allele) was only biologically significant under a certain condition in PCa patients.

Table 2 aOR according to IGFBP-3 genotype

<table>
<thead>
<tr>
<th>Study group</th>
<th>AA</th>
<th>AC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCa against control</td>
<td>1.00</td>
<td>0.77 (0.55–1.09, 0.144)</td>
<td>0.97 (0.48–2.00, 0.942)</td>
</tr>
<tr>
<td>BPH against control</td>
<td>1.00</td>
<td>0.96 (0.66–1.40, 0.840)</td>
<td>1.06 (0.48–3.20, 0.892)</td>
</tr>
<tr>
<td>Tumor stage<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage D against Stage A + B + D</td>
<td>1.00</td>
<td>1.68 (1.01–2.79, 0.044)</td>
<td>3.89 (1.42–10.6, 0.008)</td>
</tr>
<tr>
<td>Stage D + C against Stage A + B</td>
<td>1.00</td>
<td>1.31 (0.80–2.15, 0.279)</td>
<td>7.82 (1.74–35.2, 0.007)</td>
</tr>
<tr>
<td>Tumor grade<sup>f</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High against low + intermediate</td>
<td>1.00</td>
<td>1.16 (0.70–1.91, 0.567)</td>
<td>1.84 (0.69–4.90, 0.221)</td>
</tr>
</tbody>
</table>

^a These data were adjusted for age.
^b Tumor stage and grade systems are the same as Table 1.
The mRNA synthesis may be altered in correlation with the presence of [8, 37]. As shown by an

REFERENCES

General Hospital for help in collecting materials.

However, the presence of allele may be a genetic risk factor for [23]. These findings may

support our present finding that the presence of the C allele was significantly associated with an increased risk of metastatic disease in PCa patients with a gene dosage effect. On the other hand, Wolk et al. [16] found no association between the serum IGFBP-3 levels and disease status of PCs. However, the age, energy intake, nutrient status, and body mass index of individuals can profoundly affect the circulating IGFBP-3 level and other IGF-related protein, therefore making the interpretation of results of retrospective case control studies more difficult. Furthermore, the levels and activity of IGF-I and IGFBP-3 in the prostate cells appear to be more complicated [36]. Additional studies on the biological role of the IGFBP-3 -202 A/C polymorphism in the context of the IGF-I and IGFBP-3 axis should take many confounding factors into account.

The promoter region, where the IGFBP-3 -202 A/C polymorphism is located, may harbor the response elements for various hormone receptors and transcription factors, including insulin, growth hormone, retinoic acid, vitamin D, estrogen, thyroid hormone, glucocorticoids, tumor necrosis factor-α and β, and epidermal growth factor [8, 37]. As shown by an in vitro expression assay [23], the IGFBP-3 mRNA synthesis may be altered in correlation with the presence of the C or A allele, which might have a significant impact on the disease status in PCs patients.

In conclusion, the IGFBP-3 -202 A/C polymorphism was not associated with the susceptibility to PCs and BPH in Japanese men. However, the presence of C allele may be a genetic risk factor for metastasis or advanced disease status in PCs patients with a gene dosage effect and may also be associated with a biologically more aggressive tumor. However, the results should be interpreted with caution because of the relatively small number of study subjects and absence of significant difference in the genotype frequency between the metastatic PCs patients and normal controls. The proposed biological mechanism for the role of A/C polymorphism in progression of PCs will require further exploration and validation.

ACKNOWLEDGMENTS

We thank Mrs. I. Fujiwara and T. Matsuishi at Kyoto University for technical help. We also thank Drs. S. Kitajima and K. Takano at Akita Yuri General Hospital for help in collecting materials.

REFERENCES

Insulin-like Growth Factor-binding Protein-3 Gene -202 A/C Polymorphism Is Correlated with Advanced Disease Status in Prostate Cancer

Lizhong Wang, Tomonori Habuchi, Norihiko Tsuchiya, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/15/4407

Cited articles
This article cites 32 articles, 10 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/15/4407.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
/content/63/15/4407.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.