Helicobacter pylori Increases Proteasome-mediated Degradation of p27kip1 in Gastric Epithelial Cells

Hidetoshi Eguchi, Nicole Herschenhous, Noriyoshi Kuzushita, and Steven F. Moss

Division of Gastroenterology, Department of Medicine, Rhode Island Hospital/Brown University, Providence, Rhode Island 02903

ABSTRACT

Helicobacter pylori infection is associated with increased gastric epithelial cell turnover and is a risk factor for noncardia gastric cancer. *H. pylori* reduces the expression of p27kip1, a cyclin-dependent kinase inhibitor of the G1 to S-phase cell cycle transition and gastric tumor suppressor gene. Although cell cycle dysregulation associated with decreased p27 may contribute to gastric carcinogenesis, how *H. pylori* reduces p27 in gastric epithelial cells remains unknown. In the present study, we investigated the mechanisms of the p27 decrease, using AGS and MKN28 gastric epithelial cells cocultured with *H. pylori* strains under conditions of defined cell cycle distribution. The expression of p27 protein was reduced by *H. pylori* in a dose- and time-dependent manner. Northern blot and pulse-chase analyses revealed that this reduction was not regulated at a transcriptional level but by accelerated p27 degradation via a proteasome-dependent pathway. Despite up-regulation of the proteasome-dependent degradation of p27 protein, neither threonine 187-phosphorylated p27 nor skp2 (the ubiquitin ligase for p27) were increased. Furthermore, *H. pylori* impaired p27 ubiquitination and did not increase global proteasomal function. These results indicate that *H. pylori* increases the degradation of p27 through a proteasomal pathway distinct from the physiological pathway that degrades p27 during cell cycle progression. Putative virulence genes of *H. pylori* (cagA, cagE, or vacA) played no role in reducing p27 expression. Increased degradation of p27 by *H. pylori* through a proteasome-dependent, ubiquitin-independent pathway may contribute to the increased risk of gastric cancer associated with chronic *H. pylori* infection.

INTRODUCTION

Epidemiological studies have demonstrated that gastric infection with the Gram-negative bacterium *Helicobacter pylori* is associated with an increased risk of developing noncardia gastric cancer (1–3). Furthermore, eradication of *H. pylori* may prevent gastric cancer in high-risk populations with chronic gastritis (4) and can reduce the rate of progression from intermediate preneoplastic gastric lesions of intestinal metaplasia and atrophy (5). More direct evidence implicating *H. pylori* as a gastric carcinogen has come from the demonstration of gastric cancer in the Mongolian gerbil following experimental infection by *H. pylori* (6, 7) and from C57/BL6 mice infected with the related gastric bacterium *H. felis* (8).

How *H. pylori* promotes gastric carcinogenesis is not known. However, studies in humans and in animal models have demonstrated that *H. pylori* increases the percentage of gastric mucosal epithelial cells displaying markers of proliferation and apoptosis (9, 10). Because increased cell turnover is a common precursor of neoplastic transformation (11), investigating the link between *H. pylori* and altered gastric epithelial cell cycling may therefore provide important information regarding the mechanisms of gastric carcinogenesis associated with chronic *H. pylori* infection.

Progression of cells through the cell cycle is controlled by interactions between cell cycle control proteins (cyclins) and their catalytically active CDKs. The activity of each cyclin-CDK complex is in turn regulated by several different mechanisms, the most important being negative regulation by CDK inhibitors (12). Mutation or aberrant expression of specific cell cycle-regulatory proteins is common in tumors, suggesting that these proteins are critical targets during carcinogenesis (13). p27kip1 (p27) is a CDK inhibitor, whose major targets are the cyclin E-CDK2 and cyclin D-CDK4/6 complexes, that governs cell cycle transition from late G1 to S phase (14). The amount of p27 is mainly regulated by posttranslational ubiquitin-proteasome-mediated proteolysis. The cell cycle-dependent degradation of p27 is dependent on phosphorylation at Thr187 in late G1 phase by CDK2, under positive regulation by cyclin E. Thr187 phosphorylation is a necessary prerequisite for the sequential addition of ubiquitin molecules by a ubiquitin ligase complex containing the F-box protein skp2 (for review, see Ref. 15). Polyubiquitination of p27 then targets p27 for degradation in the proteasome, thus removing the p27 cell cycle “brake,” allowing cells to transition from G1 to S phase. Loss of p27 function therefore accelerates cell cycle progression and predisposes cells to malignant transformation, as is well illustrated by the observation of increased tumor incidence in hemizygous and homozygous p27-deleted mutant mice after carcinogen exposure (16). For this reason, p27 has been termed a haploinsufficient tumor suppressor gene (16), and decreased expression of p27, probably due to increased proteasomal degradation of p27 after ubiquitination (17, 18), has been demonstrated to be associated with a poor prognosis in several types of cancer, including gastric cancer (14, 19, 20).

Recent studies by our group and others have shown that the level of p27 protein in gastric epithelial cells is decreased by *H. pylori*, both in chronic gastritis (21) and in intestinal metaplasia (22). Furthermore, p27 expression is reduced in gastric epithelial cells exposed to *H. pylori* acutely (23) and chronically (21), suggesting that the bacterium itself rather than the associated inflammatory response present in the gastric mucosa can rapidly and permanently down-regulate epithelial cell p27. Because decreased p27 may be an important step linking *H. pylori* to hyperproliferation and gastric carcinogenesis, we investigated the cellular and molecular mechanisms responsible for this effect of *H. pylori*.

MATERIALS AND METHODS

Cell Lines and Culture Conditions. AGS human gastric epithelial cells (CRL-1739; American Type Culture Collection, Manassas, VA) and MKN28 human gastric epithelial cells (ICRB0253; Japan Health Sciences Foundation) were maintained in an atmosphere of 5% CO2 at 37°C in Ham’s F-12 medium (AGS) or RPMI 1640 (MKN28) supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA) without antibiotics in 75-cm2 tissue culture flasks (BD Biosciences, San Jose, CA). For synchronization of the cell cycle at G0/G1 phase, cells were serum deprived for 48 h.

H. pylori Strains and Culture Conditions. Coculture experiments were performed, as described previously (23), using wild-type *H. pylori* strain 60190 (ATCC49503), a cagA-positive and vacA-positive strain isolated from a patient associated with chronic *H. pylori* infection. 3 The abbreviations used are: CDK, cyclin-dependent kinase; AMC, 7-amino-4-methylcoumarin.
with nonulcer dyspepsia, its isogenic cagA-negative mutant, its isogenic vacA-negative mutant, or its isogenic cagE (ΔpilB)-negative mutant kindly provided by M. Blaser (New York University); Refs. 24–26. Five minimally passaged clinical strains (GC102 and A855 (provided by Mark Kidd; Yale University, New Haven, CT) and J68, B107, and B166 (provided by Richard Peek; Vanderbilt University, Nashville, TN] were also used (27, 28). GC102 was isolated from a 58-year-old man with chronic atrophic gastritis, J68 was isolated from a 33-year-old woman who had a duodenal ulcer, B107 was isolated from a 60-year-old woman with gastric and duodenal erythema, and B166 was isolated from a 61-year-old woman with duodenal erythema. Bacteria were maintained on trypticase soy agar containing 5% sheep blood (BD Biosciences) incubated at 37°C in 5% CO2 for a minimum of two and a maximum of four passages from frozen stocks. Inocula for coculture were diluted from suspensions that had been prepared from 48-h subcultures and adjusted by comparison of absorbance to McFarland standards.

H. pylori cyclin E [kindly provided by J. Singer (Brown University)], CDK2 (Upstate/H9262 mg/ml), and 1.0 mM phenylmethylsulfonyl fluoride. The suspended cells were sonicated on ice (twice for 15 s) with a Sonic Dismembrator (Fisher Scientific, Pittsburgh, PA) and then centrifuged at 13,000 × g for 30 min at 4°C to yield soluble cell lysates. Protein concentrations were determined using the BCA Protein Assay (Pierce Chemical Co., Rockford, IL). Data acquisition and analysis were performed on a FACSort instrument equipped with CellQuest software (Becton Dickinson Immunocytometry Systems, San Jose, CA). Cell cycle analysis was performed with ModFIT software (Becton Dickinson Immunocytometry Systems). All experiments were performed at least three times and gave similar results.

Protein Extraction and Western Blotting. Cells were collected with a rubber policeman, washed twice in ice-cold PBS, and resuspended in lysis buffer containing 50 mM HEPES, 150 mM NaCl, 2.5 mM EDTA, 1.0 mM DTT, 0.1% Tween 20, 10% glycerol, 10 mM β-glycerophosphate, 1.0 mM sodium fluoride, and 0.1 mM sodium orthovanadate (adjusted to pH 7.5), plus the protease inhibitors leupeptin (10 μg/ml), aprotonin (10 μg/ml), and 1.0 mM phenylmethylsulfonyl fluoride. The suspended cells were sonicated on ice (twice for 15 s) with a Sonic Dismembrator (Fisher Scientific, Pittsburgh, PA) and then centrifuged at 13,000 × g for 10 min at 4°C to yield soluble cell lysates. Protein concentrations were determined using the BCA Protein Assay (Pierce Chemical Co., Rockford, IL). For Western blotting, 30 μg of total cell lysate were subjected to SDS-PAGE. The proteins were then transferred to Immobilon-P membranes (Millipore, Bedford, MA). The primary antibodies used were mouse monoclonal antibodies to p27kip1 (clone 57; BD Biosciences), cyclin A (Upstate Biotechnology, Lake Placid, NY), cyclin D1/2 (Upstate Biotechnology), ubiquitin (clone P4D1; Santa Cruz Biotechnology, Santa Cruz, CA), and β-actin (Sigma Chemical Co.) and rabbit polyclonal antibodies to Thr18-phosphorylated p27 (PT-187; Zymed Laboratories Inc., San Francisco, CA), p45S-p27 (clone SKP2-2B12; Zymed Laboratories Inc.), cyclin E (kindly provided by J. Singer (Brown University)), CDK2 (Upstate Biotechnology), and p21WAF1 (ep-397, Santa Cruz Biotechnology Inc.). Immune detection was performed using the enhanced chemiluminescence Western blotting detection system (Perkin-Elmer Life Sciences Inc., Boston, MA). β-Actin immunoblotting was performed to verify that equal amounts of protein had been loaded in each lane. Quantitative densitometric analysis was performed using NIH Image software.

Northern Blotting. Total RNA was prepared with TRIzol Reagent (Invitrogen) according to the manufacturer’s instructions. Ten μg of total RNA were electrophoresed on a 1% agarose denaturing gel, transferred to Hybond-N membranes (Amersham Biosciences Corp., Piscataway, NJ) by capillary electrophoresis, and fixed with UV light. The membrane was hybridized with a 32P-labeled human p27 cDNA probe (29). After washing, the membrane was exposed to film with intensifying screens at −80°C.

Pulse-chase Analysis of p27 Degradation. Cells were serum starved for 48 h and metabolically radiolabeled with [35S]methionine and [35S]cysteine (200 μCi; Perkin-Elmer Life Sciences Inc.) for 2 h. The culture medium was then replaced by serum-free, methionine-containing medium. After 2, 4, and 6 h of coculture with H. pylori, cells were harvested, and lysates were immunoprecipitated with anti-p27 antibody. Immunoprecipitates were subjected to SDS-PAGE, and signals were surveyed by autoradiography.

In Vitro p27 Ubiquitination Assay. [35S]Methionine-labeled p27 was prepared with the coupled in vitro transcription/translation system (Promega, Madison, WI) using plasmid pcDNA3/p27 (30). Cells were serum starved for 48 h and then cocultured with or without H. pylori for 6 h. Extracts were prepared as described by Nguyen et al. (31), with minor modifications. Briefly, plates were washed twice with ice-cold PBS and then with cold hypotonic buffer [20 mM HEPES (pH 7.5), 1.5 mM MgCl2, 5 mM KCl, and 1 mM DTT], resuspended in hypotonic buffer, left to stand on ice for 30 min, and then centrifuged at 13,000 × g for 30 min at 4°C, and supernatants were collected. Ten μl of radiolabeled p27 were then incubated with 200 μg of cell extracts supplemented with 1 mg/ml methylated ubiquitin (Boston Biochem, Cambridge, MA), 2 μM ubiquitin aldehyde (Boston Biochem), 200 μM MG-132 (Calbiochem, San Diego, CA), and an ATP regeneration system (25 mM phosphocreatine, 10 μg/ml creatine kinase, and 1 mM ATP) at 30°C in a total volume of 50 μl for the times indicated in the figure legends. The reactions were stopped by the addition of SDS sample buffer, and the products were resolved by SDS-PAGE. Ubiquitinated p27 forms were identified by fluorography.

In Vitro Proteasome Activity Assay. Cells were collected and resuspended in a lysis buffer containing 50 mM Tris (pH 8.0), 5 mM EDTA, 150 mM NaCl, 0.5% NP40, 0.5 mM phenylmethylsulfonyl fluoride, and 0.5 mM DTT. They were then sonicated twice for 15 s and centrifuged at 13,000 × g for 10 min, and the supernatants were collected as whole cell extracts. Twenty-μg aliquots of cell extracts were then incubated in reaction buffer [25 mM HEPES, 0.5 mM EDTA (pH 7.6)] in quadruplicate for 30 min at 37°C with the following fluorogenic substrates: (a) chymotrypsin-like activity, Suc-Leu-Leu-Val-Tyr-AMC; (b) aspartyl/glucyl peptide hydrolyzing activity, Z-Leu-Leu-Arg-AMC; and (c) trypsin-like activity, Z-Ala-Arg-Arg-AMC, 3HCl (all from Calbiochem). The amount of product (free AMC) was measured by Fluorocounter (Packard Bio Science Co., Meriden, CT) with an excitation filter of 360 nm and an emission filter of 460 nm.

In Vitro Assay for CDK2-associated Activity. The in vitro CDK2-associated kinase assay was performed as described previously (32). Cells were collected, sonicated twice for 15 s in lysis buffer, and centrifuged, and the supernatant fraction was collected. Immunoprecipitation with 1 μg of anti-CDK2 polyclonal antibody was performed using protein A-Sepharose beads (Sigma Chemical Co.), followed by washing of the beads four times with lysis buffer and twice with reaction buffer [50 mM HEPES, 10 mM MgCl2, 1 mM DTT, 2.5 mM EDTA, 10 mM β-glycerophosphate, 1 mM NaF, and 0.1 mM sodium orthovanadate (pH 7.5)]. The final pellets were resuspended in 45 μl of reaction buffer containing 2 mg of histone H1 (Calbiochem) and 5 nM of [γ-32P]ATP and incubated at 30°C for 30 min. The reaction mixture was then subjected to SDS-PAGE, and the intensity of phosphorylation of the histone H1 substrate was determined by autoradiography.

RESULTS

Cell Cycle-dependent Expression of p27 Protein in AGS Cells. The expression of p27 protein was low in AGS cells during the exponential phase of growth in medium containing 10% serum (Fig. 1A). Under these conditions, expression of skp2, the ubiquitin ligase for p27, was abundant. In comparison, after 48 h of serum deprivation, AGS cells accumulated in the G1/G0 phase of the cell cycle (Fig. 1B) in association with high expression of p27 and low expression of phosphorylated p27 and skp2, consistent with reduced degradation of p27 protein in the G1/G0 phase of the cell cycle. Cyclin E, the major positive regulator of the G1 to S-phase transition was also at a low level in these cells. Treatment of AGS cells with the proteasome inhibitor MG-132, both p27 and phosphorylated p27 expression were markedly increased, consistent with a decrease in proteasomally mediated degradation of p27.

H. pylori Reduces p27 Protein Expression Dose-dependently, Irrespective of Cell Cycle Effects. The level of p27 protein changes considerably during normal cell cycle progression. To examine the effects of H. pylori on p27, it was therefore necessary to separate

Downloaded from cancerres.aacrjournals.org on July 13, 2017. © 2003 American Association for Cancer Research.
changes in p27 levels due to altered cell cycle progression induced by \textit{H. pylori} from changes in p27 due to effects of \textit{H. pylori} that are not related to \textit{H. pylori}'s effects on the cell cycle. To do this, we deprived AGS cells of serum for 48 h to inhibit the G1 to S-phase cell cycle transition and then added \textit{H. pylori} in the absence of serum. Under these conditions, the addition of \textit{H. pylori} did not alter cell cycle phase distribution significantly (Fig. 2A), yet there was a dose-dependent decrease of p27 protein (Fig. 2B, Lanes 1–5). Thus, the reduction of p27 induced by \textit{H. pylori} was not due to the physiological down-regulation of p27 during cell cycle progression. The addition of \textit{H. pylori} to serum-fed, exponentially growing AGS cells also resulted in a dose-dependent decrease in p27 expression (Fig. 2B, Lanes 6–9), but the effect was less marked in these proliferating cells.

Reduction of p27 Protein Is due to Its Increased Degradation.

The addition of \textit{H. pylori} did not alter the abundance of steady-state p27 mRNA as determined by Northern blotting (Fig. 3A). Because the regulation of p27 protein abundance under physiological (cell cycle-related) conditions is known to be predominantly posttranslational, we therefore examined the effect of \textit{H. pylori} on the degradation of p27 protein. Metabolically radiolabeled p27 was more rapidly degraded in the presence of \textit{H. pylori} (Fig. 3B), indicating that the down-regulation of p27 by \textit{H. pylori} is due to increased p27 protein degradation.

Effect of \textit{H. pylori} on Expression of p27 Protein Degradation Intermediates and Its Ubiquitin Ligase, skp2.

The degradation of p27 during the cell cycle is known to be largely through the ubiquitin-proteasome pathway. The addition of the proteasome inhibitor MG-132 at a concentration of 20 µM that did not influence \textit{H. pylori} viability (as assessed by colony counts 48 h after plating the media; data not shown) abolished the decrease of p27 induced by \textit{H. pylori} (Fig. 4A). This result indicates that the decrease in p27 induced by \textit{H. pylori} depends on proteasomal activity. However, the reduction in levels of p27 protein caused by \textit{H. pylori} was accompanied by decreased expression of phosphorylated p27 and skp2 (Fig. 4B), thus the decrease in p27 induced by \textit{H. pylori} was proteasome dependent, but not through the physiological phosphorylation-ubiquitination pathway associated with increased skp2 expression.

Although Shirane et al. (33) reported that under some circumstances p27 may be degraded into a M$_r$ 22,000 proteolytic product through a ubiquitin proteasome-independent pathway, the M$_r$ 22,000 proteolytic product of p27 was not observed in any of these experiments (data not shown).

\textit{H. pylori} Paradoxically Decreases CDK2-associated Kinase Activity.

Phosphorylation of p27 at Thr187 in the physiological ubiquitin-proteasome pathway is mediated by cyclin E-associated CDK2 activity, and a reciprocal relationship exists between cyclin E-associated CDK2 activity and the expression of p27. However, the reduction of p27 and phosphorylated p27 that we observed after the addition of \textit{H. pylori} was associated with a decrease in CDK2 kinase activity (Fig. 5A). This was not due to an inhibition of the binding of CDK2 by p27 because the expression of p27 was reduced to a similar extent.
by H. pylori in both the CDK2 immunoprecipitate and the supernatant (Fig. 5B). To determine the mechanism of the decrease of CDK2 activity associated with decreased p27, we examined the expression of other regulatory partners of CDK2 activity and of other proteins involved in the transition from the Gi to S phase of the cell cycle (Fig. 5C). Both cyclin E and cyclin A were also decreased by H. pylori. In contrast to these reductions in cyclin E, cyclin A, and p27, H. pylori did not alter cyclin D1/2 or the CDK inhibitor p27.

H. pylori Inhibits Ubiquitination of p27. During the cell cycle-dependent regulation of p27, the degradation of p27 via the ubiquitin-proteasome pathway is dependent on p27 ubiquitination mediated by skp2. Because a skp2-independent ubiquitination pathway has also been reported (34), the decrease of skp2 expression by H. pylori that we observed does not preclude H. pylori from increasing the ubiquitination of p27. However, the in vitro p27 ubiquitination assay demonstrated that H. pylori decreased the ability of AGS cells to ubiquitinate p27 (evident from comparing Lanes 5 and 6 in Fig. 6A with Lanes 2 and 3, respectively). As a control in this assay, p27 ubiquitination activity was greater in lysates from exponentially growing AGS cells (Lane 7) compared with serum-starved cells (Lane 3), consistent with increased ubiquitin-dependent p27 degradation during S phase. Additionally, the expression of several ubiquitinated proteins that may normally be detected by anti-ubiquitin antiserum when proteasomal function is inhibited were decreased by H. pylori (Fig. 6B). Taken together, these results indicate that H. pylori does not increase but instead decreases the ubiquitination of p27 and possibly other proteins.

Effects of H. pylori on Proteasomal Activity. Our results show that the proteasome-dependent degradation of p27 by H. pylori is associated by neither up-regulation of phosphorylation nor increased ubiquitination of p27. However, it is conceivable that our findings could be explained by H. pylori markedly accelerating p27 degradation at the level of increased proteasomal function, despite low concentrations of the intermediary forms of p27 (Thr187-phosphorylated p27 and ubiquitinated p27). We therefore measured the in vitro proteasomal activity of lysates from AGS cells that were cultured with H. pylori to test the hypothesis that H. pylori increases proteasomal activity nonspecifically. However, after the addition of H. pylori, the three major proteasome activities examined were decreased (Fig. 7), as determined by proteolytic cleavage of representative proteasomal substrates. These results indicate that the increased degradation of p27 by H. pylori is not due to an increase in global proteasomal function, but rather due to a ubiquitin-independent, proteasome-dependent pathway.

Effects of H. pylori on MKN28 Cells. We have previously reported that H. pylori inhibits the G1 to S-phase cell cycle progression through a p53-independent mechanism (23). Because AGS cells possess wild-type p53 (35), to determine whether any of the changes we observed in AGS cells were dependent on functional p53, we also examined the effect of H. pylori on p27 and related molecules in MKN28 gastric epithelial cells that have a missense mutation in p53 (codon 251, isoleucine to leucine; Ref. 36). As seen in Fig. 8, MKN28 cells showed reductions in p27, cyclin E, and cyclin A that were similar to those observed in AGS cells (Fig. 5C), indicating that these changes are independent of p53 function.

Effect of H. pylori-related Factors on p27 Expression. The reduction of p27 induced by H. pylori was dependent on direct contact between live H. pylori and AGS cells because it could be abolished by separating AGS cells from H. pylori by a Transwell membrane (Nalge

Fig. 3. A, Northern blot analysis of p27 mRNA in AGS cells after 0, 3, 6, and 12 h of coculture with H. pylori, demonstrating that the abundance of p27 mRNA was not altered by H. pylori. B, pulse-chase analysis of the turnover rate of p27. The bottom graph shows the densitometric analysis of the radiolabeled p27, relative to time 0 (100%). The addition of H. pylori increases the rate of degradation of 35S-labeled p27.

Fig. 4. A, p27 degradation by H. pylori is proteasome dependent. AGS cells and H. pylori were cocultured for 6 h in the absence (−) or presence (+) of the proteasome inhibitor MG-132 (20 μM). Western blot demonstrates that the decrease in p27 expression induced by H. pylori is abolished by MG-132. The bottom graph shows the densitometric analysis of p27 expression in this blot, normalized for β-actin. B, effects of H. pylori on total p27, Thr187-phosphorylated p27, and skp2 ubiquitin ligase. AGS cells were serum deprived for 48 h, and then H. pylori (+) or serum-free medium only (−) was added, and cells were harvested at the times indicated. The bottom graph shows the densitometric analysis of specific protein expression by immunoblot after normalization for β-actin.
reduction in the expression of p27 protein in gastric epithelial cells in has demonstrated that chronic et al. (21) and others (22) that cagA is not related to to reduce p27 expression. Taken DISCUSSION malignant transformation induced by cagA within the phase-regulatory proteins in AGS cells. H. pylori expression after the addition of H. pylori to gastric epithelial cells.

It is noteworthy that the reduction in p27 that we observed with H. pylori occurred independent of H. pylori’s effects on the cell cycle. Previous work has established that although chronic H. pylori infection in vivo is associated with a hyperproliferative state (10), short-term coculture of H. pylori with gastric epithelial cells in vitro results in an inhibition of cell cycle progression at the G1-S phase of the cycle (10, 38) and at G2-M (28). The level of p27 protein is highly cell cycle phase dependent. Therefore we took particular attention in designing experiments that demonstrated that H. pylori was capable of down-regulating p27 expression in cells that were not actively proliferating (because p27 expression falls during S phase), thus dissociating the effect of H. pylori on p27 expression from the effects of H. pylori on cell cycle-dependent changes in p27 expression.

What are the molecular mechanisms responsible for the increased p27 degradation by H. pylori? Increased activation of Thr187-dependent ubiquitin-proteasome pathway associated with increased splk2 expression has been reported in several human cancers, including Nunc International Corp., Naperville, IL; data not shown). Putative H. pylori virulence-associated genes include the cagA and cagE genes within the cag pathogenicity island and the vacA gene (37). Incubation of AGS cells with isogenic H. pylori strains with loss of function deletions in each of these three genes resulted in a decrease in p27 expression similar to that observed with the wild-type strain (Fig. 9A).

All of the five clinical strains tested also decreased the level of p27 protein, but strains lacking the entire cag island (strains J68, B107, and B166) showed a small decrease in their ability to decrease p27 (Fig. 9B), indicating that genes within the cag pathogenicity island may play a minor role in decreasing the level of p27 protein. Taken together, these data suggest that the ability of H. pylori to reduce p27 is not related to cagA, cagE, or allelotypes of vacA or iceA but may be partially dependent on other cag island genes.

DISCUSSION

Chronic infection with H. pylori results in chronic gastritis, which progresses in some susceptible individuals to gastric cancer. Experiments reported here suggest that a pathway that may be relevant to malignant transformation induced by H. pylori involves the down-regulation of p27, a cell cycle inhibitor, tumor suppressor, and apoptosis regulator. Previous work from our group (21) and others (22) has demonstrated that chronic H. pylori infection is associated with a reduction in the expression of p27 protein in gastric epithelial cells in biopsy specimens, as detected by immunohistochemistry. We now demonstrate that the reduction in levels of p27 protein expression can be reproduced by the coculture of H. pylori with gastric epithelial cells and that it is dose and time dependent. Our data also reveal that the decrease in p27 protein is mediated through increased p27 protein breakdown rather than decreased transcription, based on the findings that steady-state p27 mRNA levels were unchanged, whereas pulse-chase analysis demonstrated more rapid protein degradation after the addition of H. pylori to gastric epithelial cells.

Fig. 5. Effects of H. pylori on regulators of the G1-S transition. AGS cells were serum deprived for 48 h, and then H. pylori or serum-free medium only was added, and cells were harvested at the indicated time points. A, decrease in CDK2-associated kinase activity by H. pylori [IP (+)]. B, the binding of p27 to CDK2 was not decreased by H. pylori. Cell lysates were immunoprecipitated using anti-CDK2 antibody, and immunoprecipitates (IP) and 10% aliquots of supernatant (SUP) were subjected to electrophoresis. p27 was evaluated by Western blot. C, immunoblot demonstrating expression of G1-S-phase-regulatory proteins in AGS cells. H. pylori was added at the indicated AGS: bacterial cell ratios. The bottom graphs show the densitometric analysis of protein expression after the addition of H. pylori.
H. pylori AND p27 DEGRADATION

The absence of H. pylori AGS cells than in serum-starved cells, consistent with decreasing p27 predominantly or entirely in cells in G0-G1 phase, possibly through this Thr187-independent pathway. It is not yet clear whether this more recently discovered pathway is dependent on the phosphorylation of p27 at sites other than Thr187; several other phosphorylated forms of p27 have been described, including p27 phosphorylation downstream of mitogen-activated protein kinase signaling pathways (39) and phosphorylation of serine 10 (41, 42), threonine 157 (43–45), and threonine 198 (by Akt; Ref. 46), which have each been reported to be associated with nuclear export of p27 and reduced p27 protein stability. Whether the apparent abundance of “alternative” p27 degradative pathways, as well as one involving the neddylation of skp2 that obviates the need for p27 phosphorylation before ubiquitination (47), are cell type dependent, cell cycle phase dependent, and stimulus dependent remains to be determined.

The above-mentioned mechanisms of increased p27 degradation all converge on ubiquitination as a final common step before proteasome-mediated degradation. However, our data support a proteasome-dependent but ubiquitin-independent degradation pathway. Such a pathway has not previously been described for p27, although it has been described for several other short-lived proteins including p21cip1 (48, 49), ornithine decarboxylase (50), and c-Jun (51). We speculate that H. pylori may stimulate such a novel proteasome-dependent, ubiquitin-independent pathway of p27 degradation.

Although our results indicate that H. pylori regulates the expression of p27 through increased degradation, this may not be the only mechanism responsible for decreasing p27 protein expression during chronic infection by H. pylori. In a long-term coculture model during which H. pylori selects for apoptosis-resistant gastric epithelial cells, we have documented that the expression of p27 mRNA is reduced in these apoptosis-resistant cells by about 30% by Northern blot (21) and have recently confirmed this result by cDNA microarray analysis.4 Thus, p27 protein may also be transcriptionally regulated by H. pylori during chronic infection.

H. pylori is highly prevalent in human populations and is genetically diverse (37). The ability of H. pylori to promote gastric carcinogenesis in only a subset of infected persons is therefore thought to

Fig. 7. Proteasomal activities measured in vitro. A, chymotrypsin-like activity; B, peptidylglutamyl peptide hydrolyzing-like activity; C, trypsin-like activity. AGS cells were cocultured with H. pylori for the indicated times. Gray columns show proteasome activity results in the absence of H. pylori. All data have been normalized to time 0 (100%). * P < 0.01 by two-way ANOVA with Bonferroni-adjusted t tests compared with the absence of H. pylori.

Fig. 8. Effect of H. pylori on p27, cyclin E, and cyclin A in MKN28 gastric epithelial cells. H. pylori was added to MKN28 cells that had been serum deprived for 48 h. Cells were harvested for immunoblotting at 12, 24, and 36 h. The bottom graphs show the densitometric analysis of protein expression.
be related to both specific bacterial virulence factors and genetically determined host responses to infection, particularly polymorphisms of cytokines and cytokine receptors (52, 53). Bacterial virulence factors with a potential to influence gastric epithelial cell cycling and epithelial cell signal transduction include Helicobacter pylori’s VacA exotoxin and genes within its cag pathogenicity island (10, 28). The cag gene products include several that form a type IV bacterial secretion apparatus capable of translocating H. pylori products, such as CagA, directly into gastric epithelial cells (54, 55), resulting in the induction of signal transduction pathways of potential relevance to malignant transformation (56). Our results indicate that the reduction of p27 is not dependent on H. pylori’s cagA, cagE, or vacA genes, although the requirement for adherence and the results using five clinical strains suggest that other genes within the cag pathogenicity island may be responsible for the effects of H. pylori on p27. We note with interest the recent report by Sommi et al. (57) that H. pylori broth culture filtrate may increase the expression of p27, as determined by immunofluorescence. This effect was associated with the inhibition of cell cycle progression in two of the four gastric cell lines examined. However, because in vivo p27 expression is decreased in H. pylori-infected patients (21, 22), the pathophysiological significance of these findings related to a putative soluble factor secreted by H. pylori are currently uncertain. Furthermore, in our experiments, the expression of p27 protein was unchanged when the attachment of H. pylori to gastric cells was inhibited by a Transwell membrane, thus indicating that secreted H. pylori products are unlikely to be responsible for altering p27. Of interest, this factor studied from broth culture filtrates also did not inhibit cell cycle progression in AGS cells (57), although it is well established that live H. pylori bacteria do have this effect (23, 28, 38). Therefore, although these discrepant results may be due to methodological differences, such as the use of highly concentrated broth culture filtrate or the measurement of p27 by flow cytometric analysis rather than immunoblotting, it is conceivable that H. pylori does have more than one effect on p27 protein—one that requires attachment, and one that does not.

Regardless of the precise mechanisms by which H. pylori alters the expression of the cell cycle inhibitor p27, the functional consequences of decreased p27 are likely to be relevant to gastric carcinogenesis. In an animal model, homozygous or heterozygous loss of p27 causes tissue hyperplasia associated with increased cell proliferation and increased susceptibility to cancer after exposure to exogenous carcinogens (16, 58). Additionally, loss of p27 may reduce cell death through apoptosis (59), thus potentially causing inappropriate and excessive tissue growth.

In summary, our results indicate that H. pylori activates pathways leading to the increased degradation of p27 in gastric epithelial cells through a proteasome-dependent, ubiquitin-independent mechanism that is distinct from the physiological pathway of p27 degradation known to be up-regulated in some cancers. Analysis of several H. pylori cancer-associated genes suggests that neither cagA, cagE, nor vacA is involved in this process but that other cag island genes may play a modest role in the reduction of p27. Further work may define the specific H. pylori factors responsible. Regardless of mechanisms, the down-regulation of p27 by H. pylori may lead to increased gastric epithelial cell proliferation, decreased apoptosis, and increased risk for gastric cancer.

ACKNOWLEDGMENTS

We are grateful to Suzanne de la Monte for technical advice and Jeffrey D. Singer for helpful discussions and manuscript review.

REFERENCES

Fig. 9. A. AGS cells and wild-type (WT) H. pylori or its isogenic mutants (cagA negative, cagE negative, or vacA negative) were cocultured for 12 h. Expression of p27 protein was decreased to the same manner by wild-type H. pylori or its isogenic mutants. The right panel shows the densitometric analysis of p27 expression. B. Strain 60190 and five clinical strains of H. pylori were cocultured for 12 h. cagA, vacA, and iceA status of the strains examined is listed in the table. The bottom graph shows the densitometric analysis of protein expression. –, no H. pylori (control).

Helicobacter pylori Increases Proteasome-mediated Degradation of p27kip1 in Gastric Epithelial Cells

Hidetoshi Eguchi, Nicole Herschenhous, Noriyoshi Kuzushita, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/15/4739

Cited articles This article cites 59 articles, 29 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/15/4739.full#ref-list-1

Citing articles This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/63/15/4739.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.