Dicumarol Inhibition of NADPH:Quinone Oxidoreductase Induces Growth Inhibition of Pancreatic Cancer via a Superoxide-mediated Mechanism

Joseph J. Cullen, Marilyn M. Hinkhouse, Matthew Grady, Andrew W. Gaut, Jingru Liu, Yu Ping Zhang, Christine J. Darby Weydert, Frederick E. Domann, and Larry W. Oberley

Departments of Surgery [J. J. C., J. J. G.], Radiation Oncology [J. J. C., A. W. G., J. L., Y. P. Z., C. J. D. W., F. E. D., L. W. O.], and the Holden Comprehensive Cancer Center [J. J. C., F. E. D., L. W. O.], University of Iowa College of Medicine [M. G.], Iowa City, IA, and Veterans Affairs Medical Center [J. J. C., M. M. H.], Iowa City, Iowa 52242

ABSTRACT

NADPH:quinone oxidoreductase (NQO1), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O$_2^-$). NQO1 gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD$. We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO1 was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO1 would alter the malignant phenotype, MiaPaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO1, dicumarol. Dicumarol increased intracellular production of O$_2^-$, as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO1 increases intracellular O$_2^-$ production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

INTRODUCTION

Pancreatic cancer is one of the most aggressive malignancies, the fourth leading cause of cancer death in the United States, and increasing in incidence (1). Surgical resection of the primary tumor remains the only potentially curative treatment for pancreatic cancer; however, in population-based studies the number of patients undergoing resection with curative intent can be <3% (2). Even after resection, median survival is only 12–18 months, and <20% of resected patients survive 5 years and the majority die of metastatic cancer recurrence (3). Other adjuvant treatments such as radiation therapy and chemotherapies have not improved long-term survival after resection. The rate of chemotherapy response is <20% (4), whereas <10% of patients benefit from radiation therapy (5, 6). Because of the lack of poor therapeutic responsiveness of pancreatic cancer to surgery, chemotherapy, and radiation therapy, survival beyond 5 years is rare with the median survival <6 months (3). Thus, effective therapeutics for pancreatic cancer are needed to control progression and metastatic disease.

NQO1 (DT-diaphorase; EC 1.6.99.2), a homodimeric, ubiquitous, cytosolic, and membrane flavoprotein, is considered to be a deactivating enzyme, because it catalyzes the two-electron reduction of quinones, including membrane ubiquinone (7). This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would redox cycle with molecular oxygen to generate O$_2^-$. NQO1 has been shown to redox, couple with, and reduce membrane ubiquinone, and both quinone reductase activity and ubiquinone have been established previously as necessary for function of the plasma membrane electron transport system (8). NQO1 also plays a role as an antioxidant enzyme, and generates antioxidant forms of ubiquinone and α-tocopherol during oxidative stress (9, 10). As a result of its protective effects, NQO1 has been proposed to function as a chemopreventive enzyme (11–13). However, NQO1 may also catalyze bioactivation of antitumor quinones (14–16) and is expressed at high levels in many solid tumors including pancreatic cancer (17–19). A recent study by Logsdon et al. (19) using microarrays demonstrated that there is a 10-fold up-regulation of NQO1 in pancreatic cancer when compared with normal pancreas. The NQO1 properties of catalyzing bioactivation of antitumor quinones and high expression in pancreatic cancer make it a principal target in therapeutics.

Like other flavoenzymes, NQO1 is inhibited by DPI and the quinone analogue capsazepin (20). It differs from other quinone reductases in that it uses both NADH and NADPH as cofactors, and is selectively inhibited by low concentrations of dicumarol (21). NQO1 gene regulation is greatly up-regulated in various solid tumors compared with normal tissues of the same origin, perhaps to accommodate the needs of rapidly metabolizing cells to regenerate NAD$^+$. (22).

Because pancreatic cancer is one of the most aggressive malignancies with rapid turnover and short doubling times, we hypothesized that pancreatic cancer cells would exhibit high levels of NQO1, and inhibiting it would suppress the malignant phenotype. Our study demonstrates that NQO1 is up-regulated in pancreatic cancer cell lines. Inhibition of NQO1 with dicumarol increased intracellular O$_2^-$. and inhibited the in vitro malignant phenotype of pancreatic cancer. The effect of inhibiting cell growth by dicumarol may be because of increased intracellular O$_2^-$. production, because enforced expression of MnSOD decreased hydroethidine staining and reversed the inhibition of cell growth.

MATERIALS AND METHODS

Human Pancreas

Human pancreatic specimens were retrieved from neurologically devastated, heart-beating patients that were transplant donors where the pancreas was considered unsuitable for transplantation or no recipient was available. Pancreatic specimens were discarded and not used in this study if the donor had any history of pancreatic disease. All of the specimens were retrieved at the University of Iowa Hospitals and Clinics. The protocol to use the human pancreatic specimens was approved by the University of Iowa Institutional Review Board for Human Subjects on February 12, 2001.
Cell Culture

The following human pancreatic adenocarcinoma cell lines were obtained from American Type Culture Collection (Manassas, VA): BxPC-3 (poorly differentiated), Capan-1 (moderately to well differentiated), MIAPaCa-2 (undifferentiated), and AsPC-1 (poorly to moderately differentiated). BxPC-3 was maintained in RPMI 1640 with 10% fetal bovine serum. Capan-1 was maintained in Iscove’s modified Dulbecco’s medium with 20% fetal bovine serum. MIA PaCa-2 was maintained in DMEM supplemented with 10% heat-inactivated fetal bovine serum and 2.5% horse serum. AsPC-1 was maintained in RPMI 1640 with 20% heat-inactivated bovine serum and 1% sodium pyruvate. All of the media was obtained from Life Technologies, Inc. (Grand Island, NY) and all of the cell lines were maintained at 37°C.

RT-PCR for Detection of NQO1 mRNA

For RT-PCR detection of NQO1, PCR was performed using the NQO1-specific primers 5'-CAGCGCCCCGGACTGCACCAGAGCC and 3'-GG-GAAGCTTGAAAA-GATACCGAGCA (24). PCR was continued for 30 cycles under the following conditions: denaturation at 94°C for 60 s, annealing at 58°C for 60 s, and elongation at 72°C for 120 s on cycles 1–29 and 10 min on cycle 30. β-Actin was used as a control for RNA input. Bands were stained with ethidium bromide and photographed under UV light. Sequence identity of RT-PCR products was confirmed by gel purification and sequencing by the University of Iowa DNA Facility.

Cell Homogenization and Protein Determination. Cells were washed three times in PBS (pH 7.0), scraped from the dishes using a rubber policeman, and then collected in potassium phosphate buffer (pH 7.8). This was followed by sonication on ice for 30 s in 10-s bursts using a VivaCell sonicator (Sonics and Materials Inc., Danbury, CT) at 100% power. Protein concentration was determined with the Bio-Rad Bradford dye binding protein assay kit (Hercules, CA) according to the manufacturer’s instructions.

Western Blot Analysis for NQO1 Protein

The NQO1 monoclonal antibodies were kindly supplied by Dr. David Ross (University of Colorado Health Science Center, Denver, CO). Total protein extracts were prepared and protein concentrations determined. Protein (20 μg/lane) was separated by 12% SDS-PAGE and electrotransferred to nitrocellulose membranes. After transfer, membranes were blocked with Tris-buffered saline containing 5% skim milk powder and 1% heat-inactivated fetal bovine serum for 2 h, and then incubated overnight with the anti-NQO1 monoclonal antibody (1:100) at 4°C. Blots were washed in Tris-buffered saline containing 0.05% Tween 20 and incubated for 90 min with 1:4000 dilution of goat antimouse horseradish peroxidase-conjugated antibody in Tris-buffered saline containing 1% skim milk powder and 1% heat-inactivated fetal bovine serum. Bands were visualized using an enhanced chemiluminescence detection kit (Amersham Life Science, Buckinghamshire, United Kingdom) and exposed to X-ray film as described previously (23).

NQO1 Activity Assay

An indirect, coupled assay was used to measure NQO1 activity in the normal pancreas, pancreatic cancer cell lines, and in the MIA PaCa-2 cell line after 4 h of treatment with dicumarol (0–250 μM). Cells were harvested by scraping and frozen at −80°C. Cell extracts were suspended in 0.45 ml PBS plus 50 μl of a 10% solution of aprotinin and sonicated by exposure to five 10-s ultrasound pulses using a VivaCell sonicator. Activity was assayed spectrophotometrically by measuring cytochrome c reduction at 550 nm in the presence of NADH as described by Fitzsimmons et al. (25). Standard reaction mixtures (1 ml) contained cytochrome c (77 μM), NADH (cofactor, 200 μM), menadione (intermediate electron acceptor; 10 μM), BSA (0.14%), and Tris-HCl buffer (50 mm; pH 7.5). The activity attributable to NQO1 activity in the cell extracts was that which was inhibited by dicumarol (10 μM). All of the reactions were carried out at 37°C, rates of reduction were calculated from the initial linear part of the reaction curves, and units of enzyme activity were expressed as nanomoles of cytochrome c reduced per minute per milligram of protein. An extinction coefficient for cytochrome c of 21.1 nm/cm was used in the calculations.

In Vitro Growth Characteristics

Cell Growth. Cells (1 × 10^5) were plated in triplicate in 1.5 ml complete medium in 24-well plates. Cells were trypsinized and then counted on alternate days for 2 weeks using a hemocytometer. Cell population doubling time in hours (DT) was determined in triplicate using the following equation:

\[DT(h) = 0.693 \left(\frac{t - t_i}{N_f - N_i} \right) \]

where \(t_i \) = time at which exponential growth began, \(t \) = time in hours, \(N_f \) = cell number at time \(t \), and \(N_i \) = initial cell number (26). To determine the role of NQO1 inhibition, dicumarol (50–250 μM) was added to MIA PaCa-2 cell cultures. A 50 nm concentration of dicumarol was dissolved in water by drop-wise addition of 0.1 mM NaOH. Addition of up to 2.5 μl of this solution per ml (250 μM highest final concentration) did not change the pH of complete medium.

Plating Efficiency. Control and dicumarol-treated cells (2 × 10^3) were plated in triplicate into 60-mm dishes in complete medium. The dishes were maintained in the incubator for 6 days to allow colony formation. The colonies were then fixed and stained with 0.1% crystal violet and 2.1% citric acid, and those colonies containing >50 cells were scored.

Anchoragene-independent Growth in Soft Agar. Cells (5 × 10^3) were suspended in 3 ml of complete medium containing dicumarol (0–250 μM) in a solution of 6% agar in double-distilled H₂O so that the final concentration of the agar was 0.3%. This suspension was then plated over 3 ml of complete medium made up with a 6% agar solution in double-distilled H₂O so that the final concentration of the bottom agar was 0.5%. After 16 days, colonies of >0.1 mm in diameter were scored. The clonogenic fraction was determined using the following equation:

Soft Agar Plating Efficiency (PE) = (colonies formed/cells seeded) × 100.

Determination of Reactive Oxygen Species

To dissect potential sources of O₂⁻ production the following inhibitors of major oxidases were added: the NQO1 inhibitor dicumarol (50–250 μM), the flavoprotein inhibitor DPI (100 μM), and an AdMnSOD. O₂⁻ production was determined using three different assays.

Lucigenin Assay. Production of O₂⁻ was measured by lucigenin-enhanced chemiluminescence. Cells were plated in a microplate well containing PBS and placed in a microplate luminometer. Lucigenin (5 μM to avoid superoxide production) was added by injector, mixed by orbital shaker, and luminescence measurements obtained every 30 s for 10 min at 37°C. The luminometer reports relative light units emitted, which are proportional to superoxide levels. Dark current readings (photomultiplier background signal) were subtracted. The maximum rate of superoxide generation and the integrated relative light units for 10 min was determined and normalized to mg of protein. An advantage of using the microplate system for measurement of superoxide levels in cells is that the measurement can be made in attached cells (which may have differences from cells in suspension), and there is no need for digestion from the culture plate to obtain a cell suspension (which may alter cell function).

Hydroethidine. Intracellular generation of O₂⁻ was assessed using hydroethidine fluorescence. O₂⁻ reacts with hydroethidine to produce ethidium bromide, which binds to nuclear DNA and fluoresces red. Hydroethidine is one of the best reagents now available for measuring intracellular O₂⁻. Cells were incubated for 30 min with hydroethidine (5 μM) and after rinsing to remove extracellular dye, fluorescence was detected in the cells with a Bio-Rad MRC-1024 laser scanning confocal microscope equipped with a krypton-argon laser. Excitation and emission wavelengths were 488 and 610 nm. Fluorescence was detected with a 585-nm long pass filter. Control and treatment groups were always imaged in parallel to ensure that the processing techniques and laser settings were identical. All of the images were collected using a 512 × 512 pixel format and archived for subsequent analysis. The fluorescence of hydroethidine was quantitated using flow cytometry. Cells were grown to subconfluence in 60-mm dishes, and initially treated with or without dicumarol (50–250 μM) for 4 h, washed, and incubated with hydroethidine (10 μM) for 40 min. The cells were removed by trypsinization, which was neutralized with PBS containing 10% FCS and then analyzed by flow cytometry (Becton Dickinson FACScan). To determine the specificity of O₂⁻ changes with...
dicumarol treatment, subsequent experiments were performed with cells receiving no treatment (controls), dicumarol 100 μM, or dicumarol 100 μM + pretreatment with an adeno viral construct containing the cDNA for MnSOD.

Cytochrome c. Unfortunately, in live cells, the cytochrome c assay can only measure extracellular \(\text{O}_2^- \) and that is why the above assays are useful, even if they may not be as specific. The cytochrome c assay relies on the use of the addition of SOD to make it specific for \(\text{O}_2^- \). For this assay one simply follows the reduction of cytochrome c spectrophotometrically at 550 nm in the absence and presence of SOD protein. An extinction coefficient of \(\Delta E_{550} = 2.1 \times 10^4 \text{ M}^{-1} \text{cm}^{-1} \) was used to calculate \(\text{O}_2^- \) levels.

Adenovirus Gene Transfer. To determine the specificity of the above assays in measuring \(\text{O}_2^- \) generation and to delineate the mechanisms of NQO1 inhibition on pancreatic tumor cell growth, additional experiments were performed on MIA PaCa-2 cells by increasing expression of MnSOD using an adeno viral vector containing the cDNA for MnSOD. The adenovirus construct used was a replication-defective, E1- and partial E3-deleted recombinant adenovirus (26). Inserted into the E1 region of the adenovirus genome is the human MnSOD gene, which is driven by a cytomegalovirus promoter. The adenovirus construct was obtained from the University of Iowa Gene Transfer Vector Core.

Approximately 10⁶ MIA PaCa-2 were plated in 10 ml of complete medium in a 90-cm² plastic dish and allowed to attach for 24 h. Cells were then washed three times in serum- and antibiotic-free medium. The AdMnSOD, suspended in 3% sucrose, was then applied to cells suspended in 4 ml of serum- and antibiotic-free medium at 100 MOI. Cells were incubated with the adenovirus constructs for 24 h. Medium was then replaced with 4 ml of complete medium for an additional 24 h before cells were harvested. Three days later, intracellular generation of \(\text{O}_2^- \) was assessed using hydroethidine fluorescence and cell growth curves determined in MIA PaCa-2 cells (controls), MIA PaCa-2 cells treated with dicumarol (100 μM) for 4 h, and MIA PaCa-2 cells infected with AdMnSOD and then treated with dicumarol (100 μM) for 4 h. Also, cells were harvested to determine changes in MnSOD protein and activity after infections with and without AdMnSOD. Immunoreactive protein corresponding to MnSOD was identified and quantitated from total cell protein by the specific reaction of the immobilized protein with its antibody. Total protein was electrophoresed in a 12.5% SDS-polyacrylamide running gel and a 5% stacking gel. The proteins were then electrotransferred to nitrocellulose sheets. After blocking in 20% fetal bovine serum for 1 h, the sheets were washed and then treated with antisera to MnSOD (1:1000) for 1 h. Polyclonal rabbit-antihuman antibodies to MnSOD has been prepared and characterized in our laboratory (27). This antibody has been shown to react with the appropriate protein in a variety of species, including hamster (28) and human (23, 26). The blot was incubated with horseradish peroxidase-conjugated goat-antirabbit

![Image](image-url)
RESULTS

RT-PCR for Detection of NQO1 mRNA. RT-PCR demonstrated that NQO1 is expressed in four human pancreatic cancer cell lines. Fig. 1A shows that the NQO1 PCR bands are much more intense in the pancreatic cancer cell lines than in normal human pancreas as reported in other solid tumors when compared with normal cells of the same origin (25).

Western Analysis for NQO1. The levels of NQO1 immunoreactive protein expressed in human pancreas and pancreatic cancer cell lines were assessed by Western blot analysis. Fig. 1B demonstrates immunoreactive protein for NQO1. Normal human pancreas had minimal amounts of immunoreactive protein when compared with the four cell lines. In normal pancreas and the AsPC-1 cell line, two distinct bands could be seen in the Western analysis. Previous studies have suggested that the lower molecular weight band (Mr 500–1000 smaller than wild-type NQO1) observed may be a result of proteolytic processing or chemical degradation and was included in the densitometric analysis (29). It should be noted that the increases in NQO1 mRNA shown in Fig. 1A appear to be greater than the increases in NQO1 protein shown in Fig. 1B. This could be because the RT-PCR reaction was only semiquantitative and was saturated in the carcinoma samples after 30 cycles. The significance of the different migrations in the Western blots is unknown, but suggests that the proteins in the cancer cell lines may be different because of mutations or some other protein modification.

NQO1 Enzyme Activity. Fig. 1C demonstrates NQO1 enzyme activity, which was significantly higher in the pancreatic cancer cell lines when compared with normal pancreas. Normal pancreas had NQO1 enzyme activity of 1.7 ± 0.3 nmol/min/mg compared with NQO1 enzyme activity in the pancreatic cancer cell lines, which ranged from 60 ± 4 nmol/min/mg in the MIA PaCa-2 cell line up to 133 ± 12 nmol/min/mg in the Capan-1 cell line.

To determine whether the NQO1 activity assay correlated with the protein levels measured by the Western blot, we examined the relationship between two quantitative variables, activity and protein, using Pearson’s correlation coefficient and linear regression. We harvested cells, and performed both the activity assay and a Western blot on the same cell homogenate. The NQO1 enzyme activity assay correlated well (r² = 0.96; P < 0.01) with the results obtained with the NQO1 immunoblot (Fig. 1D).

Tumor Biological Characteristics of NQO1-treated Cells. Cell growth inhibition of NQO1 with dicumarol slowed the in vitro growth of MIA PaCa-2 pancreatic cancer cells (Fig. 2A). MIA PaCa-2 cell doubling time significantly increased with dicumarol (50–250 μM) when compared with the parental cells. Tumor cell doubling time increased from 21.5 ± 0.2 h for the parental cell line to 22.5 ± 0.2, 28.1 ± 0.9, and 14.1 ± 1.5 h with 50, 100, and 250 μM dicumarol, respectively. For example, 48 h after dicumarol treatment, cell number decreased by ~37% with 100 μM dicumarol and by 81% with 250 μM dicumarol compared with the MIA PaCa-2 cells with no treatment (Fig. 2A).

Plating Efficiency. To determine the clonogenic capacity of dicumarol-treated cells, we performed a plating efficiency assay in the MIA PaCa-2 cell line. In general, malignant cells have a higher plating efficiency than do normal cells. Plating efficiency was reduced in the dicumarol-treated cells compared with the parental cells (Fig. 2B). Plating efficiency was 24.3 ± 2.3% in the untreated MIA PaCa-2 cells. Inhibition of NQO1 with the higher doses of dicumarol (100 and 250 μM) significantly decreased the plating efficiency to 10.0 ± 0.6%, and to nondetectable levels, respectively (P < 0.01 versus control).

Growth in Soft Agar. To examine anchorage-dependent growth, we performed a soft agar assay. Whereas malignant MIA PaCa-2 cells form colonies in soft agar, normal cells do so in far smaller numbers. As seen with plating efficiency, dicumarol significantly reduced colony formation (Fig. 2C) with the higher doses of dicumarol. Soft agar plating efficiency was 1.1 ± 0.1% in the parental cells and significantly reduced to 0.9 ± 0.1% in cells treated with dicumarol 100 μM.
Maximal reduction in colony formation was observed at a dicumarol dose of 250 μM, where the colony formation decreased to 0.3 ± 0.03% (Means ± SE; P < 0.05, 50, and 100 μM dicumarol-treated cells versus 0 μM dicumarol).

Superoxide Production in Dicumarol-treated Cells. To investigate whether inhibition of NQO1 with dicumarol would alter generation of O$_2^-$, MIA PaCa-2 cells were treated with an inhibitor of flavoenzymes, DPI, and a selective inhibitor of NQO1, dicumarol (0–250 μM), for 4 h. Cells were washed, and lucigenin-enhanced chemiluminescence was performed for detection of O$_2^-$). Neither DPI nor dicumarol had any effect on O$_2^-$ levels in MIA PaCa-2 cells (Fig. 3A) as measured by lucigenin-enhanced chemiluminescence. Additionally, dicumarol (100 and 250 μM) had no effect on O$_2^-$ levels measured by the cytochrome c assay (Fig. 3B). DPI (100 μM) caused a slight decrease in O$_2^-$ levels as measured by cytochrome c (MIA PaCa-2: 3.43 ± 0.08 nmol/10^6 cells/h versus cytochrome c 2.81 ± 0.15 nmol/10^6 cells/h; P < 0.05 versus control; n = 3). Thus, DPI, which is a nonspecific inhibitor of NADPH oxidase, may have affected membrane oxidases that the cytochrome c could detect, whereas dicumarol did not.

Next, cells were treated with DPI (100 μM) and with dicumarol (50–250 μM) for 4 h, washed and incubated with hydroethidine, and examined with flow cytometry (Fig. 3C) and confocal laser scanning microscopy (Fig. 3D). Treatment with DPI resulted in a 2.2-fold increase in hydroethidine fluorescence as measured by flow cytometry. Treatment with dicumarol (50 and 100 μM) resulted in a 2.2- and 2.5-fold increase in hydroethidine fluorescence as measured by flow cytometry (P < 0.05 versus dicumarol μM; n = 3). Dicumarol (250 μM) had little effect on hydroethidine fluorescence when compared with no treatment. These differences may be explained in that higher doses of dicumarol are extremely toxic to the MIA PaCa-2 cell line leading to overwhelming cell death as evidence by the effects of this dose of dicumarol in the growth curves, soft agar, and plating efficiencies.

To determine whether the signal measured by hydroethidine fluorescence resulted from O$_2^-$, we used an AdMnSOD. MIA PaCa-2 cells were incubated with the adenovirus constructs at 100 MOI for 24 h. Three days later, cells (infected and noninfected) were treated with dicumarol for 4 h, incubated with hydroethidine, and examined by flow cytometry and confocal laser scanning microscopy. An increase in MnSOD immunoreactivity was observed in cells infected with the AdMnSOD construct and then treated with dicumarol (Fig. 4A). MnSOD immunoreactivity was low in the parental cells and in the dicumarol-treated cells. MIA PaCa-2 cells infected with AdMnSOD blocked the increase in hydroethidine fluorescence seen with treatment by dicumarol (100 μM) when examined with flow cytometry (Fig. 4B) and confocal laser scanning microscopy (Fig. 4C).

To determine whether the increased O$_2^-$ levels from dicumarol treatment was leading to inhibition of cell growth in the MIA PaCa-2 cells, we performed growth curves on the parental cell line. MIA PaCa-2 cells without treatment without dicumarol (0 μM), treated with
dicumarol (100 μM), and MIA PaCa-2 cells infected with AdMnSOD and then treated with dicumarol (100 μM). Enforced expression of MnSOD with AdMnSOD partially blocked the inhibition of cell growth from dicumarol treatment at 24 h (Fig. 4D).

DISCUSSION

Our study demonstrates a potential role of NQO1 in the growth of pancreatic cancer. NQO1 was present in only very small amounts in normal pancreas and up-regulated in the pancreatic cancer cell lines. NQO1, a flavoenzyme, catalyzes the two-electron reduction of quinones. This reaction then prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in redox cycling with generation of O_2^{-} (7). This oxidoreductase electron transport system is a respiratory couple found in all of the eukaryotic cells. It functions as another system, in cells that lack mitochondria, activity of this plasma membrane oxidoreductase system is greatly up-regulated to support cell growth (30). Previous investigations have hypothesized that NQO1 is up-regulated in various tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD$^+$ (31). NQO1 has attracted interest over the years as an enzyme involved in detoxification of xenobiotics such as quinones and quinone-imines (14–16), and an enzyme associated with protection against mutagenesis and carcinogenesis (11–13). NQO1 has also been characterized as being capable of generating antioxidant forms of ubiquinone and vitamin E during oxidative states, providing evidence that this enzyme may function as an antioxidant (9, 10).

Previous studies have demonstrated a specific growth-inhibitory effect of dicumarol in some tumor cell lines. Inhibition of NQO1 by dicumarol is not from interference with vitamin K epoxide oxidoreductase or a previously unrecognized aspect of vitamin K metabolism, because addition of vitamin K does not impair the growth-inhibitory effect of dicumarol in melanoma cells (31). The growth-inhibitory effect of dicumarol may also be relatively specific for tumor cells, because proliferation of normal human airway myocytes was not affected (32). Indeed, our studies demonstrate that normal pancreas has little NQO1 immunoreactive protein compared with the abundant amount of protein in the pancreatic cancer cell lines studied. Thus, the growth-inhibitory effect of dicumarol may not affect normal pancreas, whereas inhibition of NQO1 by dicumarol...
changes the malignant phenotype of pancreatic cancer by decreasing cell growth, plating efficiency, and growth in soft agar.

The role of NQO1 in biological systems has been determined by the use of the competitive inhibitor dicumarol, which binds reversibly to the pyridine nucleotide binding site on NQO1 and is competitive against pyridine nucleotide (33, 34). Dicumarol has been used as a component of the standard activity assay for NQO1 for many years (20); however, it can inhibit many enzymes in addition to NQO1 (35). Dicumarol is also extensively protein bound, which can complicate its use in cellular systems (36). Furthermore, the effective concentration of dicumarol that is required to inhibit NQO1 depends on the efficiency of the second substrate or electron acceptor because of the competitive nature of dicumarol inhibition and the “ping-pong” kinetic mechanism of NQO1 (37).

Our study also compliments the recent study from Li et al. (38) that demonstrated inhibition of NADPH oxidase with iodonium compounds including DPI, resulting in increased mitochondrial O2− production leading to apoptosis. DPI, which inhibits flavoenzymes like NQO1, increased ethidium fluorescence in HL-60 cells, and the DPI-induced generation of O2− was reduced by overexpression of MnSOD. In our study, inhibition of NQO1 increased hydroethidine fluorescence, and the dicumarol-induced generation of O2− was also reduced by overexpression of MnSOD. Although previous studies in rat liver have demonstrated that the bulk of NQO1 is located in the cytoplasm, lesser amounts are present in the mitochondria (39). The cellular distribution of NQO1 in rapidly dividing tumor cells is variable (40). However, increasing mitochondrial superoxide production may prove to be a useful mechanism in treating cells that overexpress NQO1.

The mechanisms involved in the growth-inhibitory effects of dicumarol may be different depending on the cell line studied. In our present study, dicumarol resulted in an increased intracellular burst of O2− as measured by hydroethidine. In cells transiently transfected with the antioxidant MnSOD and then treated with dicumarol, O2− levels were decreased compared with treatment with dicumarol alone, whereas cell growth was similar to the parental cell line suggesting that the increased intracellular generation of O2− may be involved in the growth-inhibitory effects of dicumarol in pancreatic cancer cells. Brar et al. (31) have demonstrated a similar reduction in cell growth in a melanoma cell line treated with dicumarol. Malignant melanoma M1619 cells also demonstrate expression of NQO1 by RT-PCR, and growth inhibition with dicumarol and other flavoenzyme inhibitors. However, in the melanoma cell line, measurement of O2− by the cytochrome c assay suggested that the highest dose of dicumarol (250 μM) decreased O2− generation. Our present study demonstrated that dicumarol (250 μM) did not affect cytochrome c reduction, lucigenin-enhanced chemiluminescence, or hydroethidine staining when compared with the parental cell line, but had the greatest effect in inhibition of in vitro cell growth. These differences may be explained in that the higher dose of dicumarol is extremely toxic to both the pancreatic and melanoma cell lines leading to overwhelming cell death. Also, there may be a different mechanism involved depending on the cellular compartment, which is affected by NQO1 inhibition. Lower doses of dicumarol (100 μM) also did not change cytochrome c reduction or lucigenin-enhanced chemiluminescence, but increased hydroethidine staining, in a similar fashion as the nonspecific flavoenzyme inhibitor, DPI, which was also demonstrated by the study of Li et al. (38). Increased levels of hydroethidine staining (intracellular O2−), but not lucigenin-enhanced chemiluminescence (total O2−) or cytochrome c (extracellular O2−), suggests that in MIA PaCa-2 pancreatic cancer cells, inhibition of NQO1 results in intracellular generation of O2−.

Adenocarcinoma of the pancreas is resistant to almost all classes of chemotherapeutic drugs. Currently, the only active agent appears to be the DNA chain terminator gemcitabine (2′,2′-difluorodeoxycytidine), which results in an response rate of <20% (4). Even after curative resection, the 5-year survival rates achieved at specialized centers are <20%, and the majority of patients die of metastatic cancer recurrence (3). Other adjuvant treatments such as radiation therapy and chemotherapy have not improved long-term survival after resection. Thus, novel treatment strategies directed against this devastating malignancy are greatly needed.

In summary, NQO1 is up-regulated in pancreatic cancer cell lines but absent in the normal human pancreas. Selective inhibition of NQO1 with dicumarol alters the malignant phenotype MIA PaCa-2 pancreatic cancer cells by inhibiting cell growth, plating efficiency, and growth in soft agar. The mechanism involved in growth inhibition of pancreatic cancer by selective inhibition of NQO1 appears to be an increased intracellular production of O2−. Both the increased intracellular production of O2− and the growth inhibition by dicumarol are blunted with transfection of an adenoviral vector containing the cDNA for MnSOD. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may be an effective strategy directed against pancreatic cancer.

REFERENCES

Dicumarol Inhibition of NADPH:Quinone Oxidoreductase Induces Growth Inhibition of Pancreatic Cancer via a Superoxide-mediated Mechanism

Joseph J. Cullen, Marilyn M. Hinkhouse, Matthew Grady, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/63/17/5513

Cited articles This article cites 38 articles, 20 of which you can access for free at: http://cancerres.aacrjournals.org/content/63/17/5513.full#ref-list-1

Citing articles This article has been cited by 16 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/63/17/5513.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.