Multicellular Resistance to Tirapazamine Is Due to Restricted Extravascular Transport: A Pharmacokinetic/Pharmacodynamic Study in HT29 Multicellular Layer Cultures

Kevin O. Hicks, Frederik B. Pruijn, Joanna R. Sturman, William A. Denny, and William R. Wilson

Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand

ABSTRACT

In common with other bioreductive drugs, metabolic reduction is required for activation of the benzotriazine-di-N-oxide tirapazamine (TPZ) in hypoxic regions of tumors. This same metabolism also consumes the drug as it diffuses, impeding its penetration into hypoxic tissue. In this study, we develop a pharmacokinetic (PK)/pharmacodynamic (PD) model for TPZ that explicitly includes its diffusion characteristics as measured in multicellular layer (MCL) cultures of HT29 colon carcinoma cells. The kinetics of TPZ metabolism to its mono-N-oxide derivative SR 4317, determined by high-performance liquid chromatography using anoxic HT29 single cell suspensions, demonstrated both a first order and saturable ($K_m = 3.6 \mu M$) component. Cell killing, assessed by clonogenic assay under the same conditions, demonstrated an approximately quadratic concentration dependence and linear time dependence. TPZ transport through MCLs, determined under hypoxic conditions (95% O2) to suppress reductive metabolism, provided a concentration-independent diffusion coefficient of $0.40 \times 10^{-6} \text{cm}^2\text{s}^{-1}$. Under anoxia, this transport was strongly suppressed and was well predicted by the single cell metabolism parameters (scaled to the cell density in MCLs). These PK (transport) and PD (cytotoxicity) parameters were used to calculate cell killing as a function of distance in anoxic HT29 MCLs after the addition of TPZ to both sides of the MCL. The predicted average cell kill was in good agreement with measured values, which showed much less killing than for single cell suspensions under the same conditions. The success of this PK/PD model in predicting response in MCL shows that inefficient transport, rather than changes in intrinsic sensitivity, is responsible for TPZ resistance in these three-dimensional cell cultures and suggests that optimization of transport properties is a high priority in developing second-generation TPZ analogues.

INTRODUCTION

Many studies have shown that tumor cells in three-dimensional contact with each other or with extracellular matrix, whether in tumors or multicellular spheroids in culture, are more resistant to ionizing radiation and cytotoxic drugs than are cells in monolayer culture (1–3). The causes of this “multicellular resistance” are interrelated and multifactorial (4–6), including adhesion-dependent changes in cell cycle progression (7, 8) and apoptosis (9, 10), changes in cell shape, gap junctional communication, chromatin packing, and expression of growth factors and other gene products (4, 6). In addition, the microenvironment in solid tumors, notably hypoxia and low extracellular pH, may lead to resistance (11) either directly (as for ionizing radiation) or indirectly through cytokinetic changes or expression of stress proteins including P-glycoprotein (12). These factors can all be considered as PD3 differences between cells in a tissue-like microenvironment versus low-density cultures. In addition, for chemotherapy drugs, PK limitations because of inefficient diffusion through tissue may contribute to multicellular resistance and may be an important (if poorly understood) component of “intrinsic” chemoresistance in the treatment of solid tumors (13, 14). Despite this, effect compartment measurements or models are rarely used to assess the relative contribution of the PK and PD components of multicellular drug resistance.

A recent initiative in chemotherapy has been the development of drugs that exploit features of the tumor microenvironment (15), as shown by the benzotriazine-di-N-oxide TPZ, which is selectively cytotoxic to hypoxic cells (16, 17) and is currently in clinical trial (18). The PK (penetration) problem is especially critical for hypoxic cytotoxins; not only are their target cells distant from functional blood vessels, necessitating long extravascular diffusion distances, but these “bioreductive” drugs are activated by metabolic reduction via oxygen-inhibited pathways as shown for TPZ in Fig. 1. This necessarily consumes the drug as it diffuses, potentially compromising its extravascular transport. Making multicellular spheroids more hypoxic has been shown to cause apparent resistance of the innermost cells to TPZ, consistent with such an extravascular transport problem (19). In addition, studies with the MCL model, in which tumor cells are grown on a permeable support to form multicellular layers, have demonstrated more directly that TPZ transport is impeded by rapid drug metabolism under hypoxic conditions (20–22). The latter studies included mathematical simulations that suggested the penetration problem to be severe enough to confer apparent resistance, although this conclusion depended on PD parameters (cytotoxicity) measured in other cell lines and was not tested experimentally. Thus, the two types of observations in the literature (resistance in spheroids, impeded transport in MCLs) have not been combined in a way that makes it possible to assess quantitatively whether the PK (penetration) problem is the main contributor to the observed PD (resistance) problem with TPZ. This is the main objective of the present study.

To achieve this objective, we develop a detailed PK/PD model for cell killing by TPZ as a function of diffusion distance in MCLs. The MCLs are grown from HT29 colon carcinoma cells, and all of the parameters of the model are determined using this cell line. The PK parameters include the diffusion coefficient of TPZ in HT29 MCLs (D_{MCL}) and kinetics of its metabolism under anoxia (determined in single cell suspensions). The PD parameters describe the relationship between exposure and cell killing, also determined in single cell suspensions. The predictions of the PK/PD model are tested against measured cell killing in HT29 MCLs. The results show that the extravascular transport problem can entirely account for the apparent difference in TPZ sensitivity between single cells and cells in three-dimensional contact and demonstrate that improving transport parameters is an important goal in developing a second-generation TPZ analogue.

Received 11/18/02; revised 5/15/03; accepted 7/8/03.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by NIH National Cancer Institute Grant PO1-CA82566 and by the Health Research Council of New Zealand.

2 To whom requests for reprints should be addressed, at Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand. Phone: 64-9-3737-599, ext. 86939; Fax: 64-9-3737-571; E-mail: k.hicks@ auckland.ac.nz.

3 The abbreviations used are: PD, pharmacodynamic; HPLC, high-performance liquid chromatography; MCL, multicellular layer; PK, pharmacokinetic; TPZ, tirapazamine.
MATERIALS AND METHODS

Chemicals and Radiochemicals. TPZ was synthesized using a published method (23), dissolved in DMSO at 300 mg/mL, and diluted at least 100-fold into culture medium. [U-14C]mannitol (8.55 GBq/mmol) was purchased from ICN Biomedicals Inc. (Irvine, CA), and [14C]urea (2.11 GBq/mmol) and [3H]2O-[14C]mannitol (8.55 GBq/mmol) was purchased from ICN Biomedicals Inc. (Irvine, CA). The resulting DNA radicals are oxidized further by a second molecule of TPZ (step 2). Interaction with additional TPZ radicals and/or TopoIIα generates complex DNA lesions including double-strand breaks.

Growth of Monolayers, MCL, and Spheroids. HT29 human colon carcinoma cells (obtained from Dr. David Ross, University of Colorado, Denver, CO) were passaged in αMEM (Life Technologies, Inc., Grand Island, NY) with 5% fetal bovine serum (Life Technologies, Inc., Auckland, New Zealand) without antibiotics and were confirmed to be free of Mycoplasma using a PCR-ELISA assay (Roche Diagnostics GmbH, Mannheim, Germany).

MCLs were fixed in 2% formalin at pH 7.4 for 48 h and then transferred to PBS (pH 7.4) at 4°C. Paraffin sections were prepared by cutting the support membrane and placing between embedding sponges, and stained with hematoxylin and eosin. Frozen sections were prepared after fixing as above by embedding in Tissue Tek OCT (Miles Inc., Elkart, IN) and freezing rapidly with liquid nitrogen-cooled isopentane. Trans-

Diffusion of TPZ through MCLs (Flux Experiments). MCL experiments were performed in custom-built diffusion chambers (25) in which the MCL separates two well-stirred compartments, each containing 7 mL of medium under 5% CO2 in 95% O2 or 95% N2, which maintained pH at 7.4 ± 0.1 throughout the experiments. MCLs were equilibrated in the diffusion chambers for 1 h at 37°C before removal of 130 μL from the donor compartment and its replacement with an equal volume of medium containing TPZ (final concentration, 1–100 μM) and [14C]urea (internal standard; final concentration, 3 μM).

Fig. 1. Mechanism of activation of TPZ, via reduction to an oxygen-sensitive radical (TPZ•), which decays to form a DNA-oxidizing radical (TPZ2•) such as the hydroxyl radical (42) or benzotriazyl radical (43). The resulting DNA radicals are oxidized further by a second molecule of TPZ (step 2). Interaction with additional TPZ radicals and/or TopoIIα generates complex DNA lesions including double-strand breaks.
used for scintillation counting, and the balance was stored at −80°C for HPLC. Similar experiments were performed using collagen-coated inserts without MCLs to check for chemical stability and to determine the effective diffusion coefficient of TPZ in the support membrane. Diffusion coefficients were determined from flux data by fitting the concentration-time profiles in both the donor and receiver compartment simultaneously, using the approach described in “Appendix II.” The thickness of each MCL was determined from the flux of [14C]urea, using the diffusion coefficient of this internal standard as determined separately in HT29 MCLs, in which thickness was measured by frozen section immediately after the experiment (see “Results”).

Cytotoxicity of TPZ in Anoxic MCLs. MCL cytotoxicity studies were performed in the same apparatus as the transport studies. MCLs were equilibrated under anoxia for 2 h, during which time [14C]urea flux was measured to determine the thickness of each MCL as above. TPZ was then introduced into both donor and receiver compartments (0, 50, 75, or 100 μM), and MCLs were incubated for an additional 1 or 2 h. Initial and final TPZ concentrations were measured by HPLC. After exposure, the MCLs were trypsinized and plated for clonogenic assay.

RESULTS

Cellular Uptake and Metabolism of TPZ. Cellular uptake and metabolism of TPZ was investigated by HPLC in stirred suspensions of HT29 cells obtained by trypsinizing multicellular spheroids. Concentrations of TPZ in extracellular medium and lysed cell pellets were independent of concentration and constant with time under aerobic conditions between 1 and 4 h, with a ratio of intracellular:extracellular concentration (C/C) of (0.77 ± 0.10; n = 7). C/C was slightly lower (0.57 ± 0.06; n = 12) under anoxia, but the apparent decrease in uptake was shown to be an artifact caused by metabolism of TPZ to its mono-N-oxide metabolite (SR 4317) during preparation of cell pellets (data not shown). Under the same conditions, the more lipophilic metabolite SR 4317 showed slightly higher uptake factors (C/C, ca 2.5 under both aerobic and anoxic conditions). These low uptake factors mean that >99% of the TPZ and SR 4317 is extracellular at the cell densities used (≈ 5 × 10⁶ cells/ml). Given that the mass balance was dominated by the extracellular compartment, it was appropriate to monitor overall metabolism by assaying the extracellular medium only.

The kinetics of TPZ metabolism under anoxia was determined by following TPZ loss and SR 4317 formation at a range of cell densities and initial TPZ concentrations (10–150 μM), as shown for a typical experiment in Fig. 3. TPZ loss was first order at high concentrations, but faster relative metabolism was evident at ≪10 μM. No loss of TPZ was seen in anoxic culture medium without cells, even at low concentrations (data not shown). For each experiment, the TPZ and SR 4317 concentrations were simultaneously fitted to a metabolism model (see “Appendix I,” Eq. A2) with first-order and saturable (Michaelis-Menten) terms as shown in Fig. 3. The estimated metabolism parameters were then averaged across experiments and used as initial parameter estimates to fit all data across all experiments simultaneously (28 concentration-time profiles), to give the values shown in Table 1.

Cytotoxicity of TPZ in Single-Cell Suspensions (PD Model). Cell killing was assessed by clonogenic assay over a similar range of cell densities (0.5–5 × 10⁶ cells/ml) and initial TPZ concentrations (5–100 μM), often in the same experiments in which TPZ metabolism was determined; a representative data set is shown in Fig. 4. Anoxic cytotoxicity was greater for high than low TPZ concentrations at equivalent concentration (C) × time (T), as shown by the greater killing with 100 μM TPZ for 0.5 h than 50 μM for 1 h in Fig. 4. The C-T dependence was fitted well (Fig. 4, lines) by a PD model in which the rate of log cell killing is proportional to the product of the TPZ concentration and the rate of its metabolism (see “Appendix I”). At low cell density, when the TPZ concentration can be approximated as a constant, this model gives a log cell kill approximately proportional to exposure time and concentration squared (see “Appendix I”).

TPZ Transport in HT29 MCLs. The above PK/PD model was determined for single cells dissociated enzymatically immediately

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Mean ± SE (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f₀</td>
<td>min⁻¹</td>
<td>SR 4317 yield as a fraction of TPZ metabolized</td>
<td>0.73 ± 0.08 (28 curves)</td>
</tr>
<tr>
<td>kₘet</td>
<td>min⁻¹</td>
<td>First order rate constant for TPZ metabolism</td>
<td>0.78 ± 0.03 (28) *</td>
</tr>
<tr>
<td>Vₘax</td>
<td>μM⁻¹</td>
<td>Maximal rate for Michaelis-Menten component of TPZ metabolism</td>
<td>8.5 ± 2.2 (28) *</td>
</tr>
<tr>
<td>Kₘ</td>
<td>μM</td>
<td>Michaelis constant for TPZ metabolism</td>
<td>3.5 ± 3.5 (28)</td>
</tr>
<tr>
<td>α</td>
<td>μM⁻²</td>
<td>Proportionality constant in PD model</td>
<td>(2.33 ± 0.05) × 10⁻⁸ (14 curves)</td>
</tr>
<tr>
<td>T₁₀log</td>
<td>min</td>
<td>Time lag to onset of killing in PD model</td>
<td>13.9 ± 2.9 (14)</td>
</tr>
</tbody>
</table>

* Normalized to intracellular density as described in “Appendix I.”
metabolism as shown by the TPZ mass balance and lack of formation of SR 4317 in Fig. 5. The data were well fitted as simple Fickian diffusion, with D_{MCL} as the sole fitted parameter, using the flux of the urea internal standard to estimate the thickness of each MCL. D_{MCL} for TPZ was independent of the initial TPZ concentration in the donor compartment over the range 1–90 μM (Fig. 6A), with a best estimate of $(0.40 \pm 0.01) \times 10^{-6}$ cm2s$^{-1}$ (Table 2). This was approximately 2-fold and 3-fold lower than the TPZ diffusion coefficients measured previously in V79 and MGH-U1 MCL (0.74 ± 0.03 and 1.3 ± 0.2 cm2s$^{-1}$), respectively (20). Similar trends were seen in urea and sucrose diffusion coefficients determined in previous studies (20, 24) and probably reflects differences in extracellular space and tortuosity between MCL grown from different cell lines.

When the HT29 MCLs were anoxic, TPZ loss from the donor compartment was enhanced (Fig. 5C), and flux into the receiver compartment was suppressed, with accompanying formation of SR 4317 (Fig. 5D). These features, coupled with the lack of effect of anoxia on urea flux (Fig. 5, A and B), pointed to bioreductive metabolism in the MCL as the reason for impeded TPZ transport. We tested whether the decrease in TPZ flux could be quantitatively accounted for by the rate of TPZ metabolism observed in single cells above. This required scaling the single cell metabolism parameters to correct for the higher cell density in MCLs. We used [1H]$_2$O and [14C]mannitol as markers for total and extracellular water volumes, respectively, to determine the average intracellular water volume in cell pellets of

before exposure to TPZ. Whether it also applies to cells in a tissue-like environment was assessed by determining killing in intact HT29 MCLs, which were grown for 3 days after seeding with 10^6 cells to give densely cellular, uniform structures lacking central necrosis (Fig. 2). At this time, MCL thicknesses were approximately 140 μm. Previous studies have shown that transport of TPZ into hypoxic MCLs is significantly impeded by its bioreductive metabolism (20–22). Thus, prediction of PD response in MCLs requires information about the TPZ concentration-time profile as a function of distance into the MCL.

Diffusion coefficients were determined following the approach described previously for EMT6 and MGH-U1 MCL (20), but using an apparatus that allowed measurement of TPZ concentrations on both sides of the MCL (22, 25); this more tightly constrains fitting of the data to the transport model (see “Appendix II”). Typical raw data are shown for TPZ and the internal standard, urea, in HT29 MCLs in Fig. 5. The key parameter values are reported in Table 2. First, the apparent diffusion coefficients of urea and TPZ were determined in the collagen-coated Teflon support membrane (D_s). Second, flux of urea through Teflon supports bearing MCLs of known thickness $(197 \pm 22$ μm (mean ± SE) for six MCLs as determined by histology) was fitted to determine the diffusion coefficient for urea in HT29 MCLs (D_{MCL}). All these values were independent of O$_2$ concentration (data not shown). TPZ flux through MCLs was then investigated using 95% O$_2$ in the gas phase, which effectively suppressed bioreductive

![Fig. 5. TPZ diffusion through representative HT29 MCL under oxic (95% O$_2$, open symbols) and anoxic (filled symbols) conditions, respectively.](image)

![Fig. 6. Parameters of the model (see “Appendix II”) describing transport of TPZ through HT29 MCLs, plotted against the initial TPZ concentration in the donor compartment, A, D_{MCL} of TPZ in MCL and B, estimated intracellular volume fraction in MCLs, ϕ_i, used to scale the single cell metabolism model (comprising a first order and Michaelis-Menten term; see “Appendix I”) to the cell density in MCLs. The linear regressions for both D_{MCL} and ϕ_i show them to be concentration independent (slope not significantly different from zero; $P > 0.3$).](image)

![Table 2. Parameters of the TPZ transport model for HT29 MCLs](table)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Value ± SE (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{Urea} (M, 60)</td>
<td>cm2s$^{-1}$ × 10^6</td>
<td>Diffusion coefficient of urea in Teflon support</td>
<td>2.08 ± 0.05 (19)</td>
</tr>
<tr>
<td>D_{TPZ} (M, 178)</td>
<td>cm2s$^{-1}$ × 10^6</td>
<td>Diffusion coefficient of TPZ in Teflon support</td>
<td>1.26 ± 0.04 (5)</td>
</tr>
<tr>
<td>$D_{\text{MCL}},$ Urea</td>
<td>cm2s$^{-1}$ × 10^6</td>
<td>Diffusion coefficient of urea in HT29 MCL</td>
<td>0.450 ± 0.023 (6)</td>
</tr>
<tr>
<td>$D_{\text{MCL}},$ TPZ</td>
<td>cm2s$^{-1}$ × 10^6</td>
<td>Diffusion coefficient of TPZ in HT29 MCL</td>
<td>0.40 ± 0.01 (12)</td>
</tr>
<tr>
<td>$\phi_i,$ TPZ</td>
<td></td>
<td>Intracellular volume fraction (calculated)</td>
<td>0.517 ± 0.017 (20)</td>
</tr>
<tr>
<td>$\phi_i,$ Urea</td>
<td></td>
<td>Intracellular volume fraction (experimental)</td>
<td>0.508 ± 0.040 (6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Value ± SE (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{MCL}</td>
<td>cm2s$^{-1}$</td>
<td>Diffusion coefficient of urea in HT29 MCL</td>
<td>0.450 ± 0.023 (6)</td>
</tr>
<tr>
<td>D_{MCL}</td>
<td>cm2s$^{-1}$</td>
<td>Diffusion coefficient of TPZ in HT29 MCL</td>
<td>0.40 ± 0.01 (12)</td>
</tr>
<tr>
<td>ϕ_i</td>
<td></td>
<td>Intracellular volume fraction (calculated)</td>
<td>0.517 ± 0.017 (20)</td>
</tr>
<tr>
<td>ϕ_i</td>
<td></td>
<td>Intracellular volume fraction (experimental)</td>
<td>0.508 ± 0.040 (6)</td>
</tr>
</tbody>
</table>

Table 2. Parameters of the TPZ transport model for HT29 MCLs

The model is described in “Appendix II.” The other parameters of the transport model are the TPZ metabolism parameters, determined in single cell suspensions (Table 1) and scaled to the cell density in MCLs using ϕ_i.

Fig. 5. TPZ diffusion through representative HT29 MCL under oxic (95% O$_2$, open symbols) and anoxic (filled symbols) conditions, respectively. Lines are model fits, used to determine the effective thickness of the MCLs (146 μm for the oxic MCL; 137 μm for the anoxic MCL). C and D, TPZ diffusion (circles) through the same MCLs. Lines are model fits to the reaction-diffusion equation (see “Appendix II”). Concentrations of SR4317 in the receiver compartment are shown as triangles.

Fig. 6. Parameters of the model (see “Appendix II”) describing transport of TPZ through HT29 MCLs, plotted against the initial TPZ concentration in the donor compartment, A, D_{MCL} of TPZ in MCL and B, estimated intracellular volume fraction in MCLs, ϕ_i, used to scale the single cell metabolism model (comprising a first order and Michaelis-Menten term; see “Appendix I”) to the cell density in MCLs. The linear regressions for both D_{MCL} and ϕ_i show them to be concentration independent (slope not significantly different from zero; $P > 0.3$).
HT29 cells dissociated enzymatically from MCLs (1.23 pl4). Using this measured cell volume, we then estimated the intracellular volume fraction in MCLs (\(\phi_c\)) needed to account for the transport impedance in anoxic MCLs by fitting the anoxic MCL flux data using the oxic \(D_{MCL}\) and the single cell metabolism model. The fitted value of \(\phi_c\) showed no significant trend with concentration (Fig. 6B), provided that both the Michaelis-Menten and first order terms were included. We then asked whether the average value of \(\phi_c\) corresponds to the actual cell volume fraction in intact MCLs by measuring the latter directly, again using the \[^{3}H\]H2O/[14C]mannitol method. The measured MCL intracellular volume fraction, \(\phi_c\), was indeed in good agreement with \(\phi_c\) (Table 1). The concentration independence of \(\phi_c\), and its agreement with \(\phi_c\), demonstrates that the metabolism model in single cells provides an excellent description of TPZ metabolism at the tissue-like cell densities in MCLs.

TPZ Cytotoxicity in HT29 MCLs. Cell killing was quantified by exposing anoxic MCLs to TPZ at up to 100 \(\mu\)m for 1 or 2 h, with the drug added to both sides of the MCLs, then dissociating with trypsin to determine clonogenic survival. Cytotoxicity was greatly reduced relative to exposure of single cell suspensions under equivalent conditions, as shown in Fig. 7A. This ignores any difference in actual TPZ concentrations in the cells as a result of compromised transport into anoxic MCLs. To test whether the transport problem quantitatively accounts for the apparent resistance in MCLs, we calculated the expected killing using the PK (transport) and PD (cytotoxicity) parameters determined above. For each MCL, the effective thickness was determined from the urea flux (before the addition of TPZ), and the TPZ concentration-time profile and cell killing was calculated as a function of distance from the MCL surface as shown for a representative MCL in Fig. 7B. Spatially averaging across this MCL gave a predicted mean surviving fraction of 0.20, whereas a value of 0.002 would be expected in single cell culture under the same exposure conditions. The measured surviving fraction for this MCL was 0.23. Across the 23 MCLs investigated, the predicted surviving fractions were in good agreement with measured cell killing (Fig. 7C).

DISCUSSION

This study demonstrates that anoxic HT29 cells in three-dimensional MCLs are resistant to TPZ, relative to anoxic single cells obtained from the same MCLs by a brief trypsinization (Fig. 7A). To assess the extent to which this multicellular resistance is caused by failure of TPZ to penetrate anoxic MCLs, we have measured the transport of TPZ through HT29 MCLs. This provided a mathematical model of TPZ transport that has allowed us to calculate the concentration-time profile as a function of distance into MCLs (Fig. 7B). We have also developed a PK/PD model that relates cell killing to TPZ exposure, and to its metabolic activation, in isolated HT29 cells. Combining the PK/PD model for cell suspensions with the MCL transport model has enabled us to predict cell killing as a function of position in MCLs (Fig. 7B). Averaging this calculated surviving fraction over the whole MCL provided predicted values in good agreement with the measured (average) surviving fraction (Fig. 7C).

The success of this spatially resolved PK/PD model indicates that there is no need to invoke any mechanism other than drug penetration limitations to account for the apparent resistance of cells in multicellular structures to TPZ. The corollary of this is that the intrinsic sensitivity of HT29 cells to TPZ is the same whether these cells are exposed in intact MCLs or as single cells, at least when the cells are exposed to the drug promptly after their isolation from MCLs. This has implications for the development of new analogues of TPZ, suggesting that critical elements of the overall PK/PD model such as rates of anoxic metabolism and cytotoxic potency can be determined meaningfully using single cell suspensions. We are currently using this approach, in conjunction with measurement of penetration through MCLs and the oxygen dependence of metabolism and cytotoxicity, to model response in HT29 tumors, and have recently demonstrated that this has strong predictive value (unpublished data).

The finding that extravascular transport limitations account for resistance of MCL cultures to TPZ does not necessarily preclude the existence of other forms of multicellular resistance if these persist for several hours after enzymatic dissociation of the three-dimensional structures. The “contact effect,” first demonstrated by the resistance of cells in small spheroids to ionizing radiation (1), is known to show such persistence (4,6). Similarly, resistance because of cytokinetic changes in MCLs, or to other relatively slow changes in gene expres-

There was a significant \(P < 0.01\) difference in cell volume between anoxic (0% \(O_2\)) cell suspensions (1.40 ± 0.02 pl; \(n = 12\)) and hyperoxic (95% \(O_2\)) cell suspensions (1.09 ± 0.06 pl; \(n = 16\)). For purposes of scaling the intracellular volume fraction from cell suspensions to MCLs, the pooled average of these values has been used.
sion, cannot be expected to reverse quickly after trypsinization of MCLs or spheroids. Whether there are subsequent changes in sensitivity as cells adapt to growth as log-phase monolayers is not addressed by this study, but we see it as an advantage that the PK/PD model approach described here does not require use of monolayers that potentially introduce artifacts in chemosensitivity testing (5, 6, 13). Given that TPZ has been shown to act as a hypoxia-selective TopoII poison (28), and that cells in three-dimensional contact can be resistant to TopoII poisons relative to monolayers because of changes in TopoII phosphorylation and nuclear accumulation (29), differences in TPZ sensitivity might well be expected between monolayers and cells in MCLs or tumors. Changes in sensitivity to apoptosis via cell contact (5) could also contribute and might become important in modeling tumor response if cell contact after TPZ exposure suppressed apoptotic cell killing.

Determination of the parameters of the PK/PD model for HT29 cells, as required for this study, has also strengthened understanding of key steps in the mechanism of action of TPZ. The anoxic cytotoxicity of TPZ against HT29 single cell suspensions is in good agreement with an independent study showing similar cell kill after 1-h exposure of HT29 cell suspensions (30). The approximate quadratic dependence on concentration seen with HT29 cells is a general finding across cell lines (30,31). We show (see “Appendix I”) that the observed dependence of killing on $C^2 \times T$ at low cell density is consistent with the proposed “dual action” of TPZ cytotoxicity (32, 33). In this model, the rate of killing is proportional to the rate of metabolism of TPZ to a DNA-oxidizing radical (shown as TPZ* in Fig. 1) and to the TPZ concentration. The latter is consistent with the proposed second step in the action of TPZ in which it oxidizes the initial DNA radicals to generate DNA strand breaks, shown as step 2 in Fig. 1. The importance of the first step is consistent with other studies that have demonstrated a strong correlation between the rate of TPZ metabolism and cytotoxicity in several cell lines (30, 31).

The detailed investigation of TPZ metabolism in HT29 cells extends previous studies with cell lysates and isolated enzymes (34, 35) and cell suspensions (30, 31, 36, 37), the latter study reporting first order metabolism in HT29 cells at rates comparable with the present study. The previous studies did not detect saturable metabolism of TPZ at low concentrations, but the presence of two kinetic components was clearly evident over the wide concentration range investigated in this study. The kinetic data do not define the K_m of this component with precision (Table 1), but the saturable reductase(s) are important at concentrations <10 μM, which makes them significant in anoxic MCLs when the input TPZ concentration is <25 μM. We also predict that the Michaelis-Menten kinetic component will be important in vivo, because PK/PD modeling indicates that much of the exposure in hypoxic regions is at concentrations below 10 μM. The nonsaturating first order component may be largely attributable to reduction by cytochrome P450 reductase, which is a promiscuous electron donor in the endoplasmic reticulum (38) and is probably the quantitatively major TPZ reductase (39, 40). It is tempting to speculate that the saturable component is caused by the TPZ reductase(s) in the nuclear matrix, which is considered to make a disproportionate contribution to TPZ cytotoxicity (41). However, there is no indication from our PK/PD modeling that the saturable component makes a larger contribution to cell killing.

This study further extends the use of the MCL model for cytotoxicity (PD) studies, in which the effective thickness of the tissue can be measured accurately by the flux of a tracer (e.g., urea) during the experiment. To achieve the level of accuracy required for this study, precise measurement of MCL thickness and medium TPZ concentrations was essential because small differences in the penetration distance or initial drug concentration can lead to large differences in the average cell kill. The present validation of MCLs as an experimental model for quantifying TPZ transport, and the spatially resolved PK/PD model for cytotoxicity in MCLs, supports the use of these tools for developing an analogue of TPZ in which extravascular transport limitations are minimized. More generally, the present study points to a methodology with considerable potential for assisting lead optimization in anticancer drug development by providing information on PK as a function of distance from blood vessels in tumors. Thus, in vitro studies with multicellular layers have the potential to not only elucidate the relative importance of transport limitations in multicellular resistance but also to introduce transport considerations in the early stages of drug design. This PK/PD model is currently being extended by incorporating the O_2 dependence of TPZ metabolism and cytotoxicity, and by applying it to three-dimensional diffusion in tumor microvascular networks.

ACKNOWLEDGMENTS

The technical assistance of Dianne Ferry and Hui Hui Phua for single cell metabolism studies and Lorraine Rolston and Andrew Maslin for MCL histology is gratefully acknowledged.

APPENDIX

Appendix I. PK/PD Model for TPZ Metabolism and Cytotoxicity in Single Cell Suspensions. Because TPZ is metabolized only within cells in anoxic cultures (see “Results”), the cumulative amount metabolized per unit of intracellular volume (M) is

$$M(t) = ([TPZ]_0 - [TPZ])/\phi$$

(A1)

where ϕ is the intracellular volume fraction determined from the cell density (Coulter count) and cell volume, $[TPZ]$ is the concentration of TPZ averaged over the whole culture volume at time t, and $[TPZ]_0$ is the corresponding initial TPZ concentration. Given the low cellular uptake factor for TPZ (see “Results”), $[TPZ]$ is well approximated by the extracellular concentration at low values of ϕ. Anoxic TPZ metabolism in stirred single cell suspensions had both a first order and saturable (Michaelis-Menten) component over the concentration range examined; thus

$$\frac{dM}{dt} = \frac{1}{\phi} \frac{d[TPZ]}{dt} = \left(k_{\text{met}} [TPZ] + \frac{V_{\text{max}} [TPZ]}{K_m + [TPZ]} \right)$$

(A2)

where k_{met} is the first order metabolic rate constant, V_{max} is the maximal rate of Michaelis-Menten metabolism, and K_m is the Michaelis constant. SR 4317 production was proportional TPZ metabolized, thus:

$$[SR4317] = \phi f_m M(t)$$

(A3)

where f_m is the stoichiometric relationship (fraction of TPZ lost that appears as $SR4317$) during the log-surviving fraction (SF) was proportional to the rate of its bioreductive metabolism and to the TPZ concentration:

$$-\frac{d \log SF}{dt} = \alpha [TPZ] \frac{dM}{dt}$$

(A4)

where α is a proportionality constant. The data fit was improved by including a lag period, T_{lag}, in which there was no cell killing:

$$-\log SF = 0, \quad t \leq T_{\text{lag}}.$$

(A5)
The value of T_{lag} was found to vary between experiments (coefficient of variation, 21.2%; range, 7.3–24.1 min), possibly because of oxygen contamination at zero time, whereas the coefficient or gave more consistent values (coefficient of variation, 2.0%). All equations were solved numerically using a fourth order Runge-Kutta method in Modelmaker version 4.0 (Chevron Scientific Ltd., Oxford, UK), fitting all [TPZ], [SR4317], and SF data simultaneously by nonlinear least squares regression. Note that in the limiting case of low cell density, $[TPZ] = [TPZ]_{0}$, the predicted amount of metabolism is approximately

$$M(t) \approx R_{0} \frac{[TPZ]_{0}}{K_{m} + [TPZ]} \times t \quad (A6)$$

where

$$R_{0} = \frac{k_{\text{met}} + V_{\text{max}}}{K_{m} + [TPZ]} \quad (A7)$$

and, thus, the PD model takes the form

$$\text{log SF} = aR_{0}[TPZ]^\frac{2}{3} \times (t - T_{\text{lag}}). \quad (A8)$$

This allowed initial parameter estimates by linear regression of log SF versus time for each curve. The intersection at $\text{log SF} = 0$ gave an estimate of T_{lag} in each experiment. Repplotting log SF against $[TPZ] \times (M_{0} - M(T_{\text{lag}}))$ allowed estimation of a by linear regression for each experiment.

Appendix II. PK Model for TPZ Transport in MCLs. Transport was modeled as a one-dimensional diffusion through the MCL, in series with the collagen-coated Teflon support membrane as described previously (20, 25). For TPZ in the MCL, a reaction term is included to represent loss of drug attributable to metabolism:

$$\frac{\partial [TPZ]}{\partial t} = D \frac{\partial^2 [TPZ]}{\partial x^2} - \frac{\partial M}{\partial t} \quad (A9)$$

and

$$\frac{\partial M}{\partial t} = \left(k_{\text{met}} + \frac{V_{\text{max}}}{K_{m} + [TPZ]} \right)$$

$\text{where D is the diffusion coefficient of TPZ and the other parameters are as “Appendix I” except that M is now a function of distance x as well as t. The far end boundary conditions were for zero flux in the donor and receiver compartments with diffusion occurring only through the MCL. The initial conditions set $[TPZ]$ to its initial measured concentration in the donor compartment and to 0 elsewhere. Equations without a metabolism term, were used to model the concentrations of the internal standard (urea). The transport model was solved numerically for the concentrations in the donor and receiver compartments simultaneously using the NAG Fortran Library Mark 19 routine, D03PCF, and fitted to the data by minimization of the residual sum of squares, with compensation for volume removed during sampling as described previously (24) and for evaporative concentration (estimated from the urea mass balance). Calculations were performed on an Intel Pentium III computer using the Digital Visual Fortran version 6.0 implementation of the Fortran 77 programming language.

REFERENCES

Multicellular Resistance to Tirapazamine Is Due to Restricted Extravascular Transport: A Pharmacokinetic/Pharmacodynamic Study in HT29 Multicellular Layer Cultures

Kevin O. Hicks, Frederik B. Pruijn, Joanna R. Sturman, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/18/5970

Cited articles
This article cites 40 articles, 11 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/18/5970.full.html#ref-list-1

Citing articles
This article has been cited by 11 HighWire-hosted articles. Access the articles at:
/content/63/18/5970.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.