Human Epithelial Cancers Secrete Immunoglobulin G with Unidentified Specificity to Promote Growth and Survival of Tumor Cells

Xiaoyan Qiu, Xiaohui Zhu, Liang Zhang, Yuntao Mao, Jian Zhang, Peng Hao, Guohui Li, Peng Lv, Zhixin Li, Xin Sun, Lemeng Wu, Jie Zheng, Yuqing Deng, Chunmei Hou, Peixian Tang, Shuren Zhang, and Youhui Zhang

ABSTRACT

Immunoglobulins (Igs) are found thus far only to be produced by differentiated B lymphocytes. By immunohistochemistry analysis, in situ hybridization, and laser capture microdissection-assisted single-cell PCR, we demonstrate that human cancers of epithelial origin, including carcinomas of breast, colon, liver, and lung, established epithelial cancer lines, as well as some normal lung tissues, also produce IgG in both cytoplasmic and secreted forms. Furthermore, blockade of tumor-derived IgG by either antisense DNA or anti-human IgG antibody increased programmed cell death and inhibited growth of cancer cells in vitro. More importantly, administration of anti-human IgG antibody also suppressed the growth of an IgG-secreting carcinoma line in immunodeficient nude mice. Our results support a role of tumor-derived IgG as growth factor for epithelial cancers. Prevalent expression of IgG in human carcinomas and its growth-promoting functions may have important implications in growth regulation and targeted therapy of human cancers.

INTRODUCTION

Elevated level of serum IgG, IgA, or IgM antibodies is frequently observed in patients with cancers of epithelial origin, including carcinomas of breast, colon, and liver (1, 2). These tumor-reactive Igs3 have been interpreted as humoral responses of host to cancer growth (3). In fact, by Serex method, it has been firmly established that these tumor-reactive antibodies are capable of binding to normal and tumor-associated antigens, including those of cell surface and intracellular proteins (3–5). However, monoclonal gammapathy was observed not only in patients with neoplastic proliferation of B cell and/or plasma cells but also in those with malignant tumor of epithelial origin (6–9). These observations suggest the possibility that the Ig is produced by the epithelial cancer cells. In this article, we present unexpected findings that IgG with unidentified specificity could be secreted directly from cancer cells, and these antibodies are involved in their survival and growth.

MATERIALS AND METHODS

Tissue Samples. Formalin-fixed, paraffin-embedded biopsy specimens of tumor and corresponding normal tissues were collected from Department of Pathology, Norman Bethune University of Medical Sciences and Department of Pathology, Taiping Road Hospital. Fresh biopsy samples were obtained from Department of Pathology, Beijing Railway Hospital. All procedures were performed with the approval of the Institutional Review Board and proper consent from patients (if any). For immunohistochemical staining, the biopsy tissues had been fixed immediately in 10% buffered formalin and, 24 h later, dehydrated in increasing concentrations of alcohol and embedded in paraffin. Sections of 5 μm were made. Fresh biopsy samples were used for the isolation of tumor cells.

Cell Lines. Human breast cancer cell line (MCF-7) and colon cancer cell lines (HT-29, LOVO) were purchased from Beijing Institute for Tumor Prevention and Treatment; human cervical cancer cell line (HeLa MR) was a gift of Dr. Shouping Ji (Academy of Medical Medical Science); cervical cancer cell line (HeLa S3), lung cancer cell line (A549), ovarian cancer cell line (CaOV3), and B lymphoprolifeic leukemia cell lines (Raji and Daudi) were supplied by Beijing University Center for Human Disease Genomics. The MCF-7, HT-29, LOVO, HeLa MR, HeLa S3, A549, and CaOV3 were cultured in DMEM with 10% FCS, whereas Raji and Daudi cell lines were cultured in RPMI 1640 10% FCS at 37°C in a humidified atmosphere of 95% O2 and 5% CO2.

Immunohistochemistry. The tissue sections were dewaxed, rehydrated through graded ethanol washes, placed in 10 ml citrate buffer (pH 6.0), and then heated twice in microwave oven for 5 min each. The slides were incubated with 0.3% hydrogen peroxide for 5 min, washed with PBS, and blocked in PBS plus 10% normal goat serum for 10 min. Immunohistochemical staining was performed using a standard avidin-biotin-peroxidase immunohistochemical method. Mouse antihuman IgG-HRP was used to detect IgG (1:100; Dako, Carpinteria, CA). Slides were incubated for 45 min with antibody at 37°C in a humidified chamber. After thorough washing, the bound antibody was detected using DAB; control sections were stained with goat antimouse IgG-HRP (1:100; Dako). Indirect immunohistochemical staining was performed to detect CD20 using mouse antihuman CD20 mAb (CD20cy, clone: L26, 1:200, Dako). To do so, the mAb was added to slides and incubated for 45 min with antibody at 37°C, after washing three times with PBS, the slides were incubated with goat antimouse IgG-HRP for 40 min at 37°C; after extensive washing, the bound antibody was detected using DAB.

Purification of Tumor Cells. Tumor tissue suspension was prepared from fresh biopsy cancer tissues of the breast, colon, liver, and lung. After passing through a 90-mesh net and washing twice with Hank's solution, lymphocytes in the cell suspension were removed by gradient centrifugation in lymphocyte separation medium (Shanghai Chemical Reagent, Inc., Shanghai, China). The separated cancer cells were washed and resuspended in Hank's solution. To detect IgG in the isolated cancer cells, goat antihuman IgG-HRP (1:100) was used in direct immunocytotoxic staining.

Extraction and Purification of Ig Molecules. Cancer cells were treated with lysis buffer [50 mM Tris·HCl (pH 8.0), 1 mM EDTA (pH7.5), 25% sucrose, 0.8 mM 2-mercaptoethanol, and 1 mM phenylmethylsulfonyl fluoride] on ice for 20 min. The lysate was centrifuged for 25 min at 15,000 rpm/min at 4°C. The pellet was discarded, and the supernatant containing the cytosolic proteins was added to CM-Sepharose (Pharmacia, Peapack, NJ), and the bound IgG was eluted by different concentrations (0.5, 0.8, 1.0, and 1.5 M) of NaCl. Fractions collected were analyzed by SDS-PAGE, Western blot, or capillary electrophoresis. For simplicity, sometimes the Ig in the cytosol protein was not separated by CM-Sepharose but directly analyzed by SDS-PAGE and Western blot after protein concentration was determined according to A280 nm.

SDS-PAGE and Western Blot. The cytosol protein (crude protein at 40 μg/well; purified protein at 10 μg/well) was analyzed in 10% SDS-PAGE (under reducing and nonreducing conditions) and stained with Coomassie Brilliant Blue. For Western blot analysis, after electrophoresis, the separated proteins on the gel were transferred to polyvinylidenefluoride membrane. In
direct staining, goat anti-human IgG-HRP (1:1000) was used. In indirect
staining, mAbs against IgG heavy chain (1:1000; Sigma, St. Louis, MO), κ
chain, and λ chain (Dako, Glostrup, Denmark; 1:1000) were used as primary
antibodies, and goat anti-mouse IgG-HRP (Dako; 1:1000) was used as sec-
ondary antibody.

In Situ Hybridization. Paraformaldehyde-fixed and paraffin-embedded
tissue sections (5 μm) were deparaffinized, dehydrated, and incubated in 0.2 M
HCl for 20 min. The sections were treated with proteinase K, fixed with
paraformaldehyde, prehybridized at 42°C for 4 h, and hybridized overnight at
46°C with human IgG Fc cRNA as probe. After hybridization, the sections
were washed in 2× SSC and 0.2× SSC (65°C) and then treated with RNase.
The samples were incubated with antidigoxigenin antibody conjugated with
alkaline phosphatase (dilution 1:500; Roche Diagnostics, Rotkreuz, Switzer-
land). 5-Bromo-4-chloro-3-indolyl phosphate and nitro-blue-tetrazolium (Sigma)
were used for color reaction. In control experiments, the slides were
incubated with RNase or with corresponding sense probes.

Northern Blot Analysis. Total RNA was extracted from normal lung and
lung carcinoma tissues using Trizol Reagent (Life Technologies, Inc.) fol-
lowed by electrophoresis. The RNA was transferred onto nylon membranes
and cross-linked by UV irradiation. The membranes were prehybridized using
hybridization solution (Life Technologies, Inc.) for 6 h at 42°C and hybridized with
32P-labeled IgG Fc cDNA probe for 16 h at 68°C. After extensive
washing, positive signals were displayed on a phosphor screen.

Single-Cell RT-PCR. Frozen lung cancer samples were sectioned at 8 μm
and mounted on slides, and slides containing frozen sections were quickly
fixed in 70% ethanol for 5 min, stained with hematoxylin for 1 min, counter-
stained with eosin for 2 min, and then quickly rinsed in diethyl pyrocarbo-
treated water. Slides were dried in a fume hood for 5 min and then was used
to LCM using the PALM Micro Laser Systems (PALM Micro Laser
Technologies). The total RNA microdissected cancer cells was isolated following the
standard RNeasy Mini Kit (Qiagen, Hilden, Germany) protocol.

Reverse transcription was carried out with Sensiscript RT Kit (Qiagen), following the standard protocol, with oligo(dT) primer. After reverse transcription,
1 μl of each reverse transcription reaction was used for Touchdown PCR
with LA Taq Polymerase (Takara Bio, Inc., Siga, Japan). The specific primers for IgG gene of variable region and CH1 were used to RT-PCR of IgG heavy
chain (included V, D, and J region and CH1). Two Ig genes of variable region
primers were: V3, 5′-GAGGTGACAGCTCGAGACTGAG-3′ and V4F, 5′-
CAGGGTGACAGCTGCGAGG-3′. Touchdown PCR was performed for 35 cycles under the following conditions: denaturing at
94°C for 1 min; annealing at 55°C for 1 min; and polymerization at 72°C for 1
min. Nest PCR amplification with primers FR3, 5′-ACACGGCGCTGTAT-
TACGT-3′; and VLH, 5′-GTGACACGGGTCTGCCTGCAAG-3′, was performed for 30 cycles under the following conditions: denaturing at
94°C for 1 min; annealing at 57°C for 1 min; and polymerization at 72°C for 1
min. The PCR product, predicted as 60–100 bp in size, was separated on
2.5% agarose gel by electrophoresis. The identification of the PCR product
was confirmed by DNA sequencing.

For amplifying RAG-1 and RAG-2, RQI RNase-free DNase (Promega,
Madison, WI) was used to treat the RNA samples to eliminate any contami-
nating genomic DNA. Nest-PCR was performed as described previously (10).

Effect of ASODN. ASODN 5′-ACACGGCTGTATT-3′ and RODN
5′-TGAAGACTCGGTA-3′ were separately introduced into cultured can-
cer cells (10 μM ODN/10 6) by Electro square porator ECM80. The introduced
cells were then incubated in DMEM plus 5% FCS at 37°C for 18, 24, and 42 h.
IgG expression was determined using rabbit anti-human IgG-FITC. Cell
apoptosis was assessed after annexin V and PI staining by flow cytometry.

In Vitro Effect of Anti-IgG Antibody. Cancer cells were seeded in a
24-well plate at 6 × 10 4 cells/ml, incubated overnight at 37°C in DMEM with
2.5% FCS. The supernatant was discarded, and goat anti-human IgG antibody
(25 μg/ml; Sigma) was added to the culture for 4 h additional incubation.

Apoptosis of cancer cells was assessed as described above. Normal goat IgG
(25 μg/ml) was used as control. In cell proliferation assay, cancer cells were
seeded in 96-well plate at 1 × 10 5 cells/ml and incubated overnight in DMEM with
2.5% FCS. The supernatant was discarded, and the cancer cells were subsequently treated with goat anti-human IgG antibody (10 μg/ml; Sigma).

Animal Studies. Cultured HeLa MR cells (5 × 10 6) were s.c. inoculated
into nude mice (BALB/c). When the tumor became palpable, polyclonal
antibody of goat anti-human IgG [purified by protein A-Sepharose 4B column,
achieved from PLK Research, Changchun, China], with an antibody
titer of 1:125 by double diffusion test] was injected 1.5 mg/tumor intratumor-
ally for five times with a 3-day interval. The growth of the tumor was
monitored every day. On day 21 after tumor cell inoculation, the tumors were
excised and histologically examined. Nude mice with HeLa MR xenografts
were treated with normal goat IgG (PLA Logisitic University, also purified by
protein A-Sepharose 4B column), and PBS was used as controls.

RESULTS

IgG Expression in Human Cancer Tissues. We first used human
IgG-specific monoclonal or polyclonal antibodies in immunohisto-
chemistry to determine the expression of IgG in malignant epithelial
tumors. In all evaluated cancer tissues, including those from
breast cancer (n = 10), liver cancer (n = 14), colon cancer (n = 6),
and lung cancer (n = 12), positive staining was detected in the
cyttoplasm of all cancer tissues. In contrast, IgG was not detected in
similar numbers of normal tissues of breast, colon, liver, and lung,
except 4 of 10 normal lung tissues, some cells in the basal layer of

| Table 1 IgG expression in human cancers and normal tissues |
|-------------------|-----------|-----------|----------|
| Case | Positive/total (%) | Positive degree |
| Malignant epithelial tumor | Breast cancer | 10/10 (100%) | + + + + + + |
| | Liver cancer | 14/14 (100%) | + + + + + + |
| | Colon cancer | 6/6 (100%) | + + + + + + |
| | Lung cancer | 8/12 (66%) | + + + + + + |
| | Total | 38/42 (90%) | + + + + + + |
| Normal epithelial tissue | Normal breast tissue | 0/10 (0) | + + + + + + |
| | Normal liver tissue | 0/14 (0) | + + + + + + |
| | Normal colon tissue | 0/6 (0) | + + + + + + |
| | Normal lung tissue | 4/10 (40%) | + + + + + + |
| | Total | 4/40 (10%) | + + + + + + |
epithelium and cells close to tissues. In addition, immunoreactivity did not correlate with the amount of B lymphocyte (CD20-positive cells) and plasma cell found in cancer tissues; furthermore, tumor-infiltrating plasma cells were generally negative or weakly positive reaction by antihuman IgG staining (Table 1, Fig. 1A).

To minimize contamination of infiltrating B cells in cancer tissues, we isolated tumor cells by gradient centrifugation from fresh biopsy tissues of breast cancer (n/H11005 4), colon cancer (n/H11005 4), liver cancer (n/H11005 4), and lung cancer (n/H11005 2). After removal of lymphocytes (including plasma cells) by gradient centrifugation, IgG in the separated breast, liver, and colon cancer cells were detected by immunocytochemical staining (Fig. 1B). IgG was distinctly detected in the cancer cells by Western blot (Fig. 1C). Protein extract of enriched cancer cells from a case of lung cancer was further purified by ion exchange chromatography on CM-Sepharose, and IgG in these tumor cells was confirmed in Western blot analysis using specific antibodies (Fig. 1D). Finally, NH2-terminal sequence analysis of the purified protein detected the 14 amino acid residues that were identical to those of the published IgG sequences (N-VQLVESGGGLVHPG).

We also examined the expression of Ig mRNA by in situ hybridization using the cRNA of IgG Fc segment as a probe. Human IgG gene transcripts were demonstrated in all 6 breast cancer samples (Fig. 1E), all 10 lung cancer samples, and a part of adjacent normal epithelial cells of the breast and lung. Furthermore, we also demonstrated IgG expression by Northern blot analysis using cDNA of IgG Fc segment in 5 lung cancer tissues and in 5 adjacent normal lung tissues. Finally, Ig gamma chain mRNA was also detected in all 5 lung cancer tissues and 3 of 5 adjacent lung tissues (Fig. 1F). Cancer cells were isolated by LCM technique from the same lung cancer sample (the protein purified from this sample was Ig by NH2-terminal sequence analysis as described above), and the IgG heavy chain (including V, D, J, and CH1 region) was amplified by single-cell RT-PCR. This result confirmed that Ig gene recombination, a hallmark of functional Ig, exists in the cancer cells. Moreover, three clonal sequences sequenced were completely identical (Fig. 1H), suggesting limited diversity of cancer-associated IgG.

IgG Expression in Long-Term Cultured Human Cancer Lines. To entirely eliminate contamination of B cells in cancer tissues, we examined the expression of IgG also in long-term cultured human cancer lines of epithelial origin. FACS analysis demonstrated IgG expression in breast cancer (MCF-7), colon cancer (HT-29, LOVO), liver cancer (BCL-7402), ovarian cancer (CaOV3), lung cancer (A549), cervical cancer (HeLA S3 and HeLa MR), and two B lymphoma cell lines (Raji and Daudi). IgG immunoreactivity located predominantly in cytoplasm (30–90%) than in plasma membrane (15–20%; Fig. 2A). We have used antihuman CD19 (pan B cells) mAb to distinguish cancer cell lines from B-cell lines.
by flow cytometry. CD19 was found on B-cell line (Raji) but not on cancer cell line A549 (Fig. 2B), HT-29, and HeLaS3 (data not shown). The culture supernatant of two cervical cancer cell lines was also positive for IgG as determined by ELISA, suggesting that these cancer lines secrete human IgG (Fig. 2C). Consistent with this finding, Western blot analysis of lysate of cancer cell lines demonstrated immune staining at Mr 150,000, Mr 50,000, and Mr 25,000, which correspond to the molecular sizes for IgG, in several cancer cell lines using monoclonal antibodies against human IgG chain and κ chain (Fig. 2D).

V-D-J recombination of Ig heavy chain was analyzed in these epithelial tumor lines. The third CDR (CDR3) of IgG heavy chain gene was amplified by RT-PCR using a set of primers. The CDR3 segments, which include the V-D-J sequence and transcription of the Ig heavy chain were amplified by RT-nest-PCR. The primers for the first PCR amplification were segments of 5′-end of Ig genes (top) and complementary to 3′-end of J region (bottom); the primers for nest-PCR amplification were segments of FR3 and J region. The identification of the PCR product was confirmed by 2.5% agarose gel electrophoresis and DNA sequencing. F: RAG-1 and RAG-2 mRNA were also found in cancer cell lines by RT-nest-PCR. The fact that the amplified segments of RAG-1 and RAG-2 are on one exon of RAG-1 and RAG-2, respectively, excluded the effect of genomic DNA. The total RNA was treated with DNase before amplification. As a negative control, treated total RNA was also used as the template. 1R, A549 RNA as template; 1C, A549 cDNA as template; 2R, HT-29 RNA as template; 2C, HT-29 cDNA as template; 3R, HeLa MR RNA as template; 3C, HeLa MR cDNA as template.
CDR3 in HeLa S3 (GenBank No. AY05372) was also amplified, although the primer sequences used for FR3 and VLJH were not completely complementary.

The RAG-1 and RAG-2 are required for the formation of VDJ recombination. We next examined whether or not human cancers actively expressed these genes. Interestingly, RAG-1 and RAG-2 gene transcription in these cancer cell lines were detected by RT-PCR (Fig. 2F), using the primers as described previously (10). Moreover, both the RAG-1 and RAG-2 segments from cancer cells were identical to the published sequences from B lymphocytes. Our results thus suggest that human epithelial cancer cells have ability to process VDJ recombination.

ASODN and Antihuman Ig Increases Apoptosis and Inhibits Growth of Cancer Cells. To determine the functions of cancer-derived Ig, we first introduced a 15-mer S-oligos of ASODN into A549, HT-29, HeLa MR, and HeLa S3 cells to block the expression of human IgG. RODN was used for comparison. The ASODN was complementary to FR3 of the IgV heavy chain derived from A549, HT-29, and HeLa MR but not completely complementary to HeLa S3s. FACS analysis showed significant inhibition of IgG expression in A549 (inhibition rate: 50–70%), HT-29 (inhibition rate: 70–80%), and HeLa MR (inhibition rate: 30–50%) by ASODN. The inhibition of IgG expression induced by RODN in A549 and HT-29 was likely attributable to nonspecific effect, but it was significantly weaker than...
LCM-assisted single-cell RT-PCR essentially ruled out this possibility. Our results support that ASODN is selective for the inhibition of Ig gene expression in tumor cells.

We next examined the effect of ASODN on survival of tumor cells. After ASODN was introduced into A549, HT-29, and HeLa MR cells accompanied with an inhibition of IgG expression, apoptosis of tumor cells increased significantly (Fig. 3B). In contrast, no apoptosis occurred in HeLaS3 cells. Our results suggest that tumor IgG expression is required, at least, in part, for survival of tumor cells. The effects of tumor IgG on the growth and survival of tumor cells were additionally confirmed by a goat antibody specific for human IgG. Inclusion of this antibody-induced cell apoptosis and growth inhibition on A549, HT-29, and HeLa MR cells, whereas goat-derived normal IgG and PBS had not effect (Fig. 3C). Accordingly, the antihuman IgG antibody significantly inhibited proliferation of these cancer cell lines in a MTT assay (Fig. 3D). Goat-derived normal IgG or PBS did not induce cancer cell death and growth inhibition.

The effect of antihuman IgG in the growth of HeLa MR tumor in nude mice was evaluated. Inoculation s.c. of HeLa MR led to progressive growth of tumor. Tumor-bearing mice on day 7 were treated intratumorally on a 3-day interval using antihuman IgG. Tumor growth was significantly retarded as compared with those treated with normal goat IgG and PBS (Fig. 4A). Histological examination demonstrated extensive necrosis and apoptosis in the mice treated with antihuman IgG but not control goat IgG or PBS (Fig. 4B). Some of the anti-IgG antibody-treated tumors became liquefied (data not shown). Our results thus indicate that blockade of tumor-derived IgG inhibits growth of tumor and implicates a new method for cancer immunotherapy.

DISCUSSION

In this article, we describe an unexpected finding that human cancers of epithelial origin produce IgG. Moreover, antisense oligos, which block the expression of IgG, also inhibit the growth of tumor cells in vitro. Administration of anti-IgG antibody induced regression of xenografted human tumors that secrete IgG. Our results reveal a novel mechanism for growth of cancer cells and implicate a new target for the manipulation of progressive tumor growth.

Several methods were used to verify the expression of IgG from cancer cells. Initial immunohistochemical studies showed IgG immunoreactivity in many tissues derived from a variety of human cancer samples. In addition, tumor cells were isolated from cancer biopsy tissues, and additional analysis was performed. Western blot and NH2-terminal sequence analysis confirmed Ig molecular expression in the isolated cancer cells. Although it is possible that IgA and IgG are transferred into epithelial cells via poly-IgA/G receptor on plasma membrane (11), our further analysis by *in situ* hybridization and LCM-assisted single-cell RT-PCR essentially ruled out this possibility. Additional studies also detected IgG in many established tumor cell lines by FACS and Western blot analysis; furthermore, the FCS (5%) was used for culture of all cell lines and used in ELISA experiments to detect IgG in cancer culture supernatants. We did not observe significant increase in IgG level unless supernatants from cancer cell cultures were added. We also found that culture of tumor cells in serum-free medium (Chinese Hamster Ovary Cell Culture Media; Life Technologies, Inc.) up to 6 days did not eliminate the detection of IgG as shown by immunocytochemistry staining (12). Interestingly, we found that IgM was also expressed in these tumor cell lines, albeit in much lower level than IgG (data not shown).

We have also found that Ig gene V-D-J rearrangement in conjunction with expression of RAG-1 and RAG-2 at mRNA level. Our results thus demonstrate the expression of IgG in human cancers of epithelial origin.

At this time, precise antigenic specificity of the cancer-derived Ig is unknown. High serum levels of autoantibodies were frequently found in patients with cancer (13, 14), and these autoantibodies often recognize intracellular proteins. There is yet no evidence that these autoantibodies are secreted by cancer cells. We found, however, that lung and breast cancer-derived IgG was capable of binding to smooth and striated muscles (data not shown). Moreover, the Ig V-D-J sequence of HT-29 was partially homologous with that of an autoantibody (GenBank no. Y17928). As the sequence of HeLa MR was identical to that of HT-29, it suggests that IgG from the two different cancer cell lines may have autoantibodies reacting to an identical antigen.

Tumor-derived IgG was found to involve, at least, in part, in the survival and growth of epithelial tumor cells because antihuman IgG and ASODN of Ig-induced apoptosis and growth inhibition of cancer cells in vitro and in vivo. It is likely that the cancer-derived Ig stimulates cell growth in an autocrine/paracrine fashion. As a matter of fact, Ig expression was not limited in malignant epithelial cells. Normal proliferating but not resting epithelial cells were also shown to express Ig, as seen in hyperplastic mammary glands, proliferating hepatocytes in cirrhotic liver (data not shown) and epithelium close to cancer tissue. Our results suggest that tumor-derived IgG contributes in cancer initiation in the precancerous stage when the epithelial cells are actively proliferating. Development of methods aiming at selective blockade of tumor-derived IgG thus may constitute a new approach for cancer therapy and prevention.

ACKNOWLEDGMENTS

We thank Drs. Dalong Ma (Peking University Center for Human Disease Genomics), Guizhen Yang (Norman Bethune University of Medical Sciences), and Sigano Akao (Institute of Microbiological Disease, Osaka University); Xinsheng Ye (The Natural Science Foundation of China) and Ning Mao (Institute of Basic Medical Science, Academy of Military Medical Science) for their comments and discussion; Dr. Michael M. Woolfson of University of
York (United Kingdom) for his comments and suggestions; Drs. Baoyu Li (Department of Pathology, Beijing Railway Hospital); Xueyuan Xiao (Department of Biology, Beijing Normal University) and Jing Ma (Chinese PLA General Hospital) for their generous technical support; and the National Natural Science Foundation of China for financial support.

REFERENCES

Human Epithelial Cancers Secrete Immunoglobulin G with Unidentified Specificity to Promote Growth and Survival of Tumor Cells

Xiaoyan Qiu, Xiaohui Zhu, Liang Zhang, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/19/6488

Cited articles
This article cites 12 articles, 4 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/19/6488.full#ref-list-1

Citing articles
This article has been cited by 14 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/63/19/6488.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.