ABSTRACT

To investigate at the population level the impact of BRCA1/BRCA2 gene alterations in male breast cancer, we analyzed a population-based series of 25 male breast cancer cases from Florence, Central Italy. We combined mutational screening with the study of germ-line allele transcript levels and of tumor-associated alterations of heterozygosity. Screening by protein truncation test and single-strand conformational polymorphism assay, followed by sequencing, revealed 4 pathogenetic mutations (4 of 25 = 16%; 95% confidence interval, 5–37%), 1 in BRCA1 and 3 in BRCA2, including mutations recurring in Central Italy (BRCA1 3345delAG and BRCA2 6696delITC). The a priori probability of carrying a mutation, estimated using BRCAPRO software, showed a good agreement between expected and observed mutations (14% versus 16%). A 7-fold association between germ-line mutations and family history of breast-ovarian cancer emerged. To investigate associations between BRCA1/BRCA2 status and clinicopathological characteristics, we analyzed the histopathological and immunophenotypic parameters of the tumors. A significant association emerged between mutation carrier status and histopathological grade (P = 0.02). Furthermore, one BRCA2 carrier was affected with Paget’s disease, an extremely rare male breast cancer histotype. Overall, BRCA1/2 mutations were observed to be strongly associated with positive c-erbB-2 immunostaining (P = 0.004). To evaluate germ-line allele expression, we used primer extension assays targeting frequent BRCA1 and BRCA2 polymorphisms. A BRCA2 allele transcript imbalance was found in one of four heterozygotes tested, all of them negative for germ-line mutations. BRCA1 transcript imbalances were not detected in nine heterozygotes analyzed. Losses of heterozygosity at one or more of nine loci in the BRCA2 region were found in 8 of 22 tumors tested. Interestingly, a case that was negative for BRCA1/BRCA2 germ-line mutations and that had a priori mutation probability <10% showed loss of heterozygosity at all three of the intragenic BRCA2 markers analyzed, which could be related to a somatic involvement of BRCA2. No losses of heterozygosity were detected at BRCA1. In conclusion, constitutional BRCA1/BRCA2 mutations accounted for 16% of the male breast cancer cases in this area of Central Italy. The detection of a BRCA2 germ-line transcript imbalance and of a somatic loss of BRCA2 among the cases that resulted negative for germ-line mutations suggests a role of this gene more relevant than indicated by conventional mutational analysis. A distinct pattern of characteristics indicative of aggressive behavior, including high-grade and c-erbB-2 expression, was evident in tumors from germ-line BRCA2 mutation carriers. This suggests that phenotypic characteristics may contribute to the identification of hereditary BRCA2-related male breast cancers and that these tumors might share a unique molecular pathway of cancer progression.

INTRODUCTION

Cancer of the breast is rare in males. In Western countries, in which FBC is the first or second most commonly diagnosed malignancy of women, MBC accounts for less than 1% of all cancers in men. Epidemiological risk factors include pathological conditions associated with primary and secondary hyperestrogenism, radiation exposure, and, particularly, BC FH, which points to a relevant genetic component in disease predisposition (1–2). Furthermore, MBC incidence rates are relatively stable in time, which contrasts with FBC, but tend to vary by race and/or geographical location, suggesting that ethnic and/or locally acting environmental factors may enhance disease risk at the population level (1). Evidence provided by several studies implicate pathogenetic germ-line mutations of BRCA2 and, with lower frequency, of BRCA1 in MBC. In fact, mutations in BRCA1 and BRCA2 were estimated to be responsible for 16 and 76%, respectively, of the MBCs occurring in high-risk breast/ovarian cancer families (3–5). With regard to MBCs unsolicited for FH, the prevalence of BRCA1/BRCA2 mutations has been investigated in population- and clinic-based series from countries with ethnically diverse populations, such as the United Kingdom, Iceland, continental Europe, the United States, and Israel. Mutation frequencies ranged from 4 to 40% for BRCA2 and up to 4% for BRCA1, being higher in populations with founder mutations (5–15). Overall, these studies suggest that migration patterns and genetic bottlenecks could account for regional differences in the contribution of the two genes to disease. However, the frequency of BRCA1/BRCA2 alterations is probably underestimated in MBCs from populations without highly recurrent founder mutations. In fact, the sensitivity of the most commonly used mutation screening techniques is regarded to be about 70–80% (4). Moreover, extensive genomic deletions, known to account for a subset of BRCA1/2-related breast/ovarian cancers, are missed by standard PCR-based screening strategies, whereas mutations in the promoter regions, in regulatory elements and in introns, which interfere with gene expression or with transcript processing, are currently not investigated (16–21). At the somatic level, MBCs arising in BRCA1/BRCA2 mutation carriers are anticipated to follow the classic double-hit/loss-of-function mechanism, with conversion to homozygosity often attributable to somatic loss of the wild-type allele (5, 22–24).

The phenotypic characteristics of tumors may shed light on the molecular mechanisms implicated in the progression of BRCA1/BRCA2-related cancers. In fact, studies conducted on FBCs indicate that BRCA1- and, to a lesser extent, BRCA2-related tumors tend to manifest specific phenotypic profiles. In particular, BCs arising in female BRCA1 mutation carriers tend to show high histological grade and high proliferative activity, and to be negative for ER/PR and for...
c-erbB-2 (25–31). The genetic and clinicopathological characteristics of MBCs stratified for BRCA1/BRCA2 status have not been reported. Population-based series of MBCs from Southern European countries have not been described thus far. We determined the prevalence of pathogenetic BRCA1/2 mutations in a well-characterized population-based series of MBC patients from Florence, Central Italy. In carriers of frequent BRCA1 or BRCA2 polymorphisms, mutational data were complemented with the analysis of germ-line BRCA1/2 allele expression. Tumors were investigated for LOH at 13q12–14 (BRCA2) and 11q21 (BRCA1). Finally, BRCA1/2 status was correlated with cancer FH, tumor histotype, and immunostaining for hormone receptors, c-erbB-2 and Ki-67/MIB1.

PATIENTS AND METHODS

Patients. All of the male patients diagnosed with BC residing in the area of Florence and alive at the end of 1998 were identified and included in an ongoing project. After exclusion of deceased and migrated patients and of those severely ill, eligible subjects were traced and invited to participate in the study. The local Cancer Registry recently estimated the age-adjusted (world standard) incidence rates of BC in males and females in the area to be 0.6 and 6.7, respectively, per 100,000 residents/year (32). Overall, a series of 31 unrelated MBC patients were contacted and invited to provide a blood sample and detailed personal information; six cases refused, mostly because of advanced age. Twenty-five cases agreed to participate and signed a detailed consent form; all were included irrespective of age, FH, and hospital of origin. Diagnosis and treatment. Histological slides for diagnostic confirmation were obtained for all of the patients, but tissue samples for additional sections were not available for two and scarce for another four cases. A short questionnaire was administered to all of the participants to collect information on the personal and FH of cancer of the breast and/or ovary, and at other sites. All of this information was validated by available sources.

The a priori probability of carrying a mutation in BRCA1 and BRCA2 was estimated using BRACAPRO software (33, 34). The association between mutation-carrier status and first-degree FH of breast/ovarian cancer was measured by calculating the prevalence rate ratio and its 95% CI. The two-tailed Fisher exact test was used for 2 by 2 tables. The study was approved by the Ethical Review Board of the University of Chieti.

Mutational Analysis. The 25 samples were analyzed anonymously. We screened the entire BRCA1 and BRCA2 coding sequences, including intron-exon boundaries, using SSCP analysis for BRCA1 exons 2–10 and 12–24 and BRCA2 exons 2–9 and 12–27, combined with protein truncation test for BRCA1 exon 11 and BRCA2 exons 10 and 11, as described previously (35). Mutations were verified by PCR direct sequencing on two independent blood samples.

Primer Extension Assay. We used a previously described primer extension protocol to quantitate the relative expression of BRCA1 and BRCA2 allele transcripts (36). A subset of 16 cases accepted to provide an additional fresh blood sample RNA extraction, which was typed for the frequent polymorphisms BRCA1 4427 C→T and BRCA2 203 G→A, reported in the BIC database.5 Heterozygotes were identified after EcoR1 digestion of PCR-amplified BRCA1 exon 13 (BRCA1 4427 C→T), SSCP and PCR-direct sequencing of BRCA2 exon 2 (BRCA2 203 G→A). RNA was isolated using the QIAamp RNA Blood Mini kit, and cDNA was prepared using Sensiscript reverse transcriptase (Qiagen Inc., Chatsworth, CA) in the presence of random hexamers and RNase inhibitor. Primer extension assays were performed as described previously (36) using matched gDNA and cDNA templates, and were confirmed using gDNA and cDNA preparations from independent blood samples. The radioactive signals corresponding to each allele were analyzed using the Molecular Imager System (BIO-RAD, Hercules, CA). Relative transcript expression was estimated by comparing the ratio between the allele signals obtained using cDNA as primer extension template. This ratio was normalized by the corresponding ratio obtained using gDNA as template. A 100% expression was arbitrarily assigned to the allele showing the higher level of expression. The relative expression levels of the allele variants were verified in repeated assays using two distinct antisense primers. The sequences of the primers used are available on request.

LOH Analysis. Formalin-fixed, paraffin-embedded primary mammary tumor blocks from 23 of 25 cases could be retrieved from the pathology archives of local hospitals, and areas enriched with cancer cells adequate for DNA extraction could be microdissected, as described previously, from dewaxed sections of 22 cases (37). No microdissection could be performed in a case of intraepithelial Paget’s disease because tumor cells were not sufficient for the study. Allelotype of matched tumor and tumor genomic DNAs was performed as described previously (37). The markers analyzed6 were five for BRCA1 (intragenic: D17S855, D17S1322, D17S123: telomeric: D17S1183, D17S853) and 9 for BRCA2 (flanking: cen-D13S290, D13S260, D13S171, D13S267, D13S218, D13S263-tel: intragenic: D13S1695, D13S1699, D13S1701). The amplified products were fractionated in a 6% denaturing polyacrylamide gel and visualized by autoradiography. LOH was scored positive when the intensity of alleles varied by more than 50%. Cases with MSI were further tested at the BAT26 mononucleotide repeat, taken as a sensitive indicator of mismatch repair deficiency (38).

Immunohistochemistry. Immunohistochemical studies were performed on 19 of the 23 cases with available paraffin-embedded blocks. Immunohistochemical data could not be obtained for four patients (including a case of Paget’s disease), because tissues were not sufficient for study. Serial sections were mounted on electrostatic slides, air-dried overnight at 37°C, deparaffinized in xylene, and rehydrated in graded alcohols. Endogenous peroxidase activity was blocked in 3% H2O2 in methanol for 20 min, after which the slides were washed in PBS (pH 7.4) and treated with normal serum (Lab Vision Corporation, Fremont, CA). The following primary antibodies were applied and incubated overnight at 4°C: anti-c-erbB-2, clone TAB 250 (Zymed, S. Francisco, CA), diluted 1:20; anti-ER, clone 1D5 (BioGenex, San Ramon, CA) diluted 1:30; anti-PR, clone 1A6 (BioGenex, San Ramon, CA), diluted 1:50; and anti-Ki-67, clone MIB1 (Immunotech, Marseille, France) diluted 1:60. After washing in PBS, the primary antibody was detected by incubation with biotinylated antiserum IgG (Lab Vision, San Francisco, CA), diluted 1:200; anti-ER, clone 1D5 (BioGenex, San Ramon, CA) diluted 1:30; anti-PR, clone 1A6 (BioGenex, San Ramon, CA), diluted 1:50; and anti-Ki-67, clone MIB1 (Immunotech, Marseille, France) diluted 1:60. Western controls were obtained by omitting the primary antibody. For each marker analyzed, the percentages of immunoreactive cancer cells were scored as c-erbB-2-positive (30, 39). Cases were classified as negative or positive for c-erbB-2 when the percentages of immunopositive cancer cells were, respectively, ≤25% or >25%. Slides used for ER, PR, and Ki67/MIB1 staining were scored based on the percentages of positive nuclei (ER/PR positive if ≥10%; Ki67/MIB1 high if ≥20%) over the total number of counted cancer cell nuclei (40).

RESULTS AND DISCUSSION

Individual characteristics, mutational data, FH of cancer, histopathology, and immunohistochemical features of the population-based series of 25 MBC cases are shown in Table 1. Age at diagnosis ranged between 42 and 87 years (median, 68 years). The tumors included 18 invasive NOS carcinomas, 1 mixed NOS/colloid carcinoma, 1 mixed NOS/papillary carcinoma, 2 papillary carcinomas, 2 adenoid cystic carcinomas, and, remarkably, a case of Paget’s disease of the nipple, associated with intraepithelial neoplasia of the subareolar ducts. Three patients (MB2, MB10, MB22) reported a personal history of metachronous bladder cancers, all of which were diagnosed when they were over 75 years of age. Seven patients (7 of 25, 28%) reported a first-degree FH of breast or ovarian cancer. Thirteen patients (13 of 25, 52%) had a verified first-degree FH of cancer at sites other than breast and ovary, but there was no evidence of specific associations, 5 Internet address: http://www.nhgri.nih.gov/Intramural_research/Lab_transfer/Bic/.

6 Markers analyzed: see Mapview at http://www.gdb.org.
with the exception of the MB1 family, in which gastric cancer occurred in three first-degree relatives.

Protein truncation test and SSCP screening of the BRCA1/BRCA2 coding sequences and flanking intron-exon borders revealed three frameshift and one nonsense mutations in four cases, one (1 of 25, 4%) in BRCA1 (3345delAG) and three (3 of 25, 12%) in BRCA2 (1003delA, 6010G→T, 6696delITC). All of these mutations are already reported in the BIC database.6 Interestingly, BRCA2 6696delITC appears to recur in Italy, where it was detected in nine unrelated female BC kindreds (Ref. 35 and unpublished data6). Furthermore, BRCA1 3345delAG was independently detected in two unrelated FBC patients from Northeastern Tuscany.7 In this respect, it is noteworthy that founder BRCA1 and BRCA2 mutations were recently described in Calabria and Sardinia, two Italian regions that show genetic micro-homogeneity (41–42). This suggests that the selection of cases from small geographic areas might lead to the identification of BRCA1/2 founder effects in other Italian regions of ancient settlement, such as Tuscany.

As in other studies, the median age at cancer diagnosis among the cases with mutations tended to be younger than that of the cases in which mutations were not detected (median, 60.0 years; range, 53–64 years, versus median, 66.7 years; range, 42–87 years; Refs. 5–15). Overall, 3 (42.8%) of 7 cases with breast or ovarian cancer FH carried mutations, in comparison with 1 (5.5%) of 18 cases with a negative FH (Table 2). Thus, a 7-fold association emerged between a positive FH and carrier status: the estimate of the prevalence rate ratio was 7.7, but fell short of statistical significance (95% CI, 0.96–62.2). The a priori probability of carrying a mutation was also estimated and compared with the results of mutational analysis, overall showing a good agreement (expected versus observed: 14 and 16%, respectively), as recently reported by other studies (33, 34). The agreement persisted also in the two subgroups of cases classified according to a 10% probability cutoff point, as shown in Fig. 1. Three mutations were detected in the 8 cases with an a priori probability above 10% (expected versus observed: 37.2% and 37.5%), and 1 in the 17 cases with probability below 10% (expected versus observed: 3.1 and 5.9%, respectively).

With regard to histopathology, it is relevant to note that all of the tumors from mutation carriers were of high grade (P = 0.02). The mutation-positive cases included two ductal carcinomas (one in the BRCA1 carrier), a mixed NOS/papillary carcinoma and, remarkably, the case of Paget’s disease (Table 1, Fig. 2). This represents the first documented association of this extremely rare MBC histotype (43) with BRCA2. In FBC, the association between mutation carrier status and high tumor grade, already established for BRCA1, is still debated for BRCA2 (28–31). Intriguingly, Paget’s disease of the breast is known to be associated with molecular markers of aggressive behavior (44–45). Overall, our data suggest that in MBC a high-grade phenotype is associated with BRCA2 mutations.

There was no consistent association between the spectrum of tumors other than breast and ovarian and BRCA1/2 status. In particular, the case with strong FH of gastric cancer and the three cases with metachronous bladder cancer resulted negative for mutations.

Recent reports indicate that alterations in the germ-line expression

Table 1: BRCA1/BRCA2 mutations, personal history and FH of cancer, pathologica characteristics, and immunohistochemical staining for ER, PR, c-erbB-2, and Ki67/MIB1 in the series of 25 MBC (MB) cases (Florence, Italy)

<table>
<thead>
<tr>
<th>Case</th>
<th>Age at diagnosis (yr)</th>
<th>BRCA1/2 germ-line mutations</th>
<th>Breast/ovary (age at diagnosis, yr)</th>
<th>Other sites (number of affected relatives)</th>
<th>Histology/Grade</th>
<th>Immunostaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB1</td>
<td>69</td>
<td>BRCA2 6696delITC</td>
<td>Larynx, stomach (3)</td>
<td>NOS/2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MB2a</td>
<td>78</td>
<td>Breast (63)</td>
<td>NOS/3</td>
<td>− +</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>MB3</td>
<td>63</td>
<td>BRCA1 3345delAG</td>
<td>Colorectal</td>
<td>NOS/3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MB4</td>
<td>65</td>
<td>Ovary (62)</td>
<td>+</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB5</td>
<td>60</td>
<td>BRCA2 6696delITC</td>
<td>Lung</td>
<td>Papillar1/1</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>MB5b</td>
<td>68</td>
<td>Breast (45, 41)</td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB9</td>
<td>50</td>
<td></td>
<td>NOS/1</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB10a</td>
<td>83</td>
<td></td>
<td>NOS/2</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB11</td>
<td>42</td>
<td></td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB12</td>
<td>58</td>
<td></td>
<td>Brachial</td>
<td>NOS/3</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>MB16</td>
<td>64</td>
<td>BRCA1 1003delA</td>
<td>Colorectal</td>
<td>NOS/3 plus papillar/3</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>MB18</td>
<td>71</td>
<td></td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB19</td>
<td>77</td>
<td></td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB20</td>
<td>76</td>
<td></td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB21</td>
<td>87</td>
<td></td>
<td>Larynx</td>
<td>NOS/2</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>MB22a</td>
<td>73</td>
<td>2 × breast (60, 48)</td>
<td>NOS/2</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB23</td>
<td>71</td>
<td></td>
<td>Lung (2)</td>
<td>NOS/2</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>MB24</td>
<td>70</td>
<td></td>
<td>Colorectal</td>
<td>NOS/3</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>MB25</td>
<td>61</td>
<td></td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB26</td>
<td>70</td>
<td></td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB27</td>
<td>54</td>
<td>BRCA2 expression imbalance</td>
<td>Prostate</td>
<td>NOS/1</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>MB28</td>
<td>55</td>
<td></td>
<td>Lung</td>
<td>NOS/2</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>MB29</td>
<td>71</td>
<td></td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB30</td>
<td>52</td>
<td></td>
<td>NOS/3</td>
<td>−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB31</td>
<td>53</td>
<td>BRCA2 6010G→T</td>
<td>3 × breast (48, 45, na)</td>
<td>NHLd</td>
<td>−</td>
<td>Paget’s/3</td>
</tr>
</tbody>
</table>

* Personal history of bladder cancer at age 77, 76, and 78 years, respectively.

† LOH at BRCA2 intragenic loci.

‡ na, not available.

§ NHL, non-Hodgkin’s lymphoma.

Table 2: Association between first-degree FH* of breast/ovarian cancer and BRCA1/2 germ-line mutations in the population-based series of 25 MBC cases (Florence, Italy)

<table>
<thead>
<tr>
<th>FH*</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>21</td>
<td>25</td>
</tr>
</tbody>
</table>

* At least one first-degree relative with breast or ovarian cancer.

†‡ P19 FH: 7/25 = 28% (95% CI, 12–49%); P20 mutations 4/25 = 16% (95% CI, 5–37%); P3 mutations in cases with positive FH: 3/7 = 42.8% (95% CI, 10–82%); P4 mutations in cases with negative FH: 1/18 = 5.55% (95% CI, 0.1–27%); prevalence rate ratio (PRR) = 7.71 (95% CI, 0.96–62.25).
of cancer-susceptibility genes may affect predisposition to tumorigenesis (19, 21, 36, 46). We used primer extension assays targeting the frequent polymorphisms **BRCA1** 4427C→T and **BRCA2** 203G→A to evaluate the relative expression levels of **BRCA1** and **BRCA2** allele transcripts in heterozygous cases. Of 16 patients for which RNA was available, 4 resulted heterozygous for **BRCA2** 203G-A and 9 for **BRCA1** 4427C-T. The **BRCA1** carrier resulted heterozygous for **BRCA2** 203G-A and not informative for the **BRCA1** marker; the **BRCA2** carriers were not available for allele expression studies. As shown in Fig. 3, using two distinct antisense primers, an ∼5-fold imbalance in the germ-line expression of the **BRCA2** allele bearing T at nucleotide 203 was detected in MB28, one of the four **BRCA2** heterozygotes. This result was confirmed using independent blood samples. Interestingly, MB28 was negative for germ-line mutations, did not report breast/ovarian cancer FH and, as estimated using BRCAPRO (33–34), had <10% a priori probability of carrying a mutation (Fig. 1). No abnormality in **BRCA1** allele expression was detected in the nine patients heterozygous for the **BRCA1** polymorphisms. The presence of a **BRCA2** allele expression imbalance in one of the four cases that could be tested suggests that constitutional transcript deregulation might represent a relevant mode of germ-line **BRCA2** inactivation in MBC. Deregulation of **BRCA1** germ-line expression was not detected in the MBCs analyzed. Thus, the results of the allele expression studies further support the association between **BRCA2** and MBC in the present series of cases.

Previous reports indicate that somatic alterations at loci on chromosomes 13q12, including **BRCA2**, and 17q21, including **BRCA1**, occur quite frequently in MBCs (47). Fig. 4 shows the results of **BRCA1/2** LOH analyses, conducted on 22 of the 25 primary MBCs. No allelic losses at 17q21 were observed in the 19 cases informative at 1 or more of the 5 **BRCA1** polymorphisms (the **BRCA1** carrier was not informative at the loci tested and could not be investigated for loss of the wild-type **BRCA1** allele because of the lack of tumor DNA). These results exclude extensive deletions of **BRCA1** in the tumors studied (Fig. 4). all of the 22 cases were informative at one or more of the nine polymorphisms at or near **BRCA2**. LOH was detected in 8 (36%) of 22 tumors, that included three cases (MB5, MB6, and MB16) with LOH at three or more loci. The tumor from the **BRCA1** carrier MB5 manifested LOH at flanking **BRCA2** markers, but retained the intragenic markers, which suggests that the somatic alterations did not involve **BRCA2**. The tumor from MB6, a case negative for germ-line mutations, showed LOH at flanking and intragenic **BRCA2** markers. When we considered that somatic inactivation of **BRCA2** has been recently reported in sporadic MBCs (48) and that case MB6 had <10% a priori probability of carrying a mutation (Fig. 1), we concluded that somatic LOH in this case might be unrelated to germ-line **BRCA2** mutations. The tumor from the **BRCA2** carrier MB16 manifested LOH at loci centromeric and telomeric to **BRCA2** but were not informative at the intragenic loci. The analysis of tumor DNA, conducted using the heterozygous germ-line mutation as an intragenic marker, confirmed the loss of the wild-type-allele, in accordance with the classic double-hit mechanism (5, 22–24). The tumor from the other **BRCA2** carrier (MB3) was negative for LOH and could not be further investigated for loss of the wild-type allele because of the lack of DNA. LOH frequencies in informative cases were: **D13S260**, 3 (37.5%) of 8; **D13S267**, 4 (36.3%) of 11; **D13S218**, 2 (33.3%) of 6; **D13S263**, 6 (25.0%) of 12; **D13S171**, 2 (22.2%) of 9; **D13S1699**, 2 (18%) of 11; **D13S1695**, 4 (10%) of 10; **D13S1701**, 0% of 10; **D13S290**, 0% of 2. Overall, LOH was most frequent at loci telomeric to **BRCA2**, which could be consistent with literature data, suggesting the presence of MBC-related tumor suppressor gene(s) in this region (47). **MSI** at 1–5 of the 14 above-mentioned **BRCA1/2** markers (all dinucleotide repeats) was observed in 5 (23%).

Fig. 3. Analysis of germ-line **BRCA2** allele transcript expression by primer extension in case MB28. The region of **BRCA2** bearing the nucleotide 203 G-A polymorphism was amplified using matched cDNA and gDNA derived from PLBs. These templates were used for primer extension in the presence of 32P-oligonucleotide and the appropriate ddNTP. A, primer extension experiments performed using two distinct antisense primers, designed to identify the alleles bearing C or T at nt 203 on the antisense strand respectively by the incorporation of dideoxycytidine (ddC) and of dideoxythymidine (ddT), as indicated. B, histogram showing the relative expression levels of the germ-line transcripts from the two alleles. Data are the mean ± SE of two independent determinations, obtained by comparing primer extension signals derived from gDNA and cDNA.

Fig. 1. Distribution of 25 MBC cases ranked according to a priori probability of carrying **BRCA1/2** germ-line mutations, as estimated using BRCAPRO (33–34).

Fig. 2. c-erbB-2 immunohistochemical staining in Paget’s disease from case MB31, carrying **BRCA2** 6010G→T. The microscopic field shows intraepithelial malignant cells of a subareolar duct diffusely stained for c-erbB-2 (×400).

Fig. 4. c-erbB-2 immunohistochemical staining in Paget’s disease from case MB31, carrying **BRCA2** 6010G→T. The microscopic field shows intraepithelial malignant cells of a subareolar duct diffusely stained for c-erbB-2 (×400).
of 22 tumors (Fig. 3). However, further testing at BAT26 (data not shown) did not reveal MSI at this sensitive mononucleotide repeat (38). This suggests that the MSI observed in the present MBC series might reflect spontaneous mutations at dinucleotide repeats, rather than tumor-associated mismatch repair deficiency (49–51).

In female patients, BRCA1-related tumors are characterized by poor differentiation and low ER/PR and c-erbB-2 positivity, suggesting independence from hormone receptors or c-erbB-2-mediated stimulation (23, 25–31). In contrast, a heterogeneous phenotype with high differentiation and low ER/PR and c-erbB-2 positivity, suggesting MSI might reflect spontaneous mutations at dinucleotide repeats, rather than the MSI observed in the present MBC series (Table 1). Thirteen tumors (68%) were ER/PR negative for all of the markers tested. Interestingly, the cases with germ-line mutations included all of the c-erbB-2+ tumors in the series (P = 0.004), which corresponded to the BRCA2 mutation carriers. Furthermore, two of these tumors were ER/PR− and Ki-67/MB1+, The case with imbalance in BRCA2 allele transcript expression (MB28) and the case with somatic loss of BRCA2 (MB6) were ER/PR+, c-erbB-2−, and Ki-67/MB1−. The association of germ-line BRCA2 coding sequence mutations with c-erbB-2 positivity is consistent with the occurrence of one of the three BRCA2 mutations in a case of Paget’s disease (Fig. 2). In fact, a strong association between c-erbB-2 positivity and mammary and extramammary Paget’s disease has been reported in the literature, suggesting that the c-erbB-2 protein might be implicated in promoting the in vivo intraepithelial spread of adenocarcinoma cells (44–45).

In conclusion, the prevalence of BRCA1 and BRCA2 mutations that we have found in this MBC series from Central Italy is relatively high. Mutations were associated with FH of breast/ovarian cancer. In addition, a marked germ-line BRCA2 transcript imbalance and a somatic LOH at BRCA2, detected among mutation-negative cases with a low a priori mutation probability, suggest an even more relevant role of BRCA2 as a cause of MBC at the population level. BCs arising in germ-line BRCA2 mutation carriers tended to manifest a distinct phenotype, characterized by high histological grade and c-erbB-2 positivity. This phenotype might imply a unique mechanism of molecular pathogenesis and is indicative of aggressive behavior. Overall, our data suggest that specific phenotypic characteristics could significantly contribute to the identification of BRCA2-related MBCs and that these tumors might benefit from ad hoc therapeutic approaches.

ACKNOWLEDGMENTS

We thank all of the study participants for their collaboration, Drs. M. Rosselli del Turco and M. Muraca (CSPO, Florence) for help in contacting patients, the local Tuscany Cancer Registry (RTT-CSPO) for providing breast cancer incidence data, Drs. L. Papi and M. Genuardi (University of Florence) for providing data on BRCA1 mutation analysis in female patients from local high-risk families, and Dr. D. M. Euhus (University of Texas Southwestern Medical Center, Dallas, TX) for the BRCA2PRO software. We thank Drs. P. Aretini, G. Bevilacqua, and S. Presciutti, Department of Oncology, Transplants, and New Technologies, University of Pisa, for information on recurrent mutations deposited in the database of the Italian Consortium for Hereditary Breast Cancer.

REFERENCES

BRCA1 and BRCA2 Mutation Status and Tumor Characteristics in Male Breast Cancer: A Population-based Study in Italy

Laura Ottini, Giovanna Masala, Cristina D'Amico, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/2/342

Cited articles
This article cites 46 articles, 11 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/2/342.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/63/2/342.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.