Fluorescence Imaging of Multiple Myeloma Cells in a Clinically Relevant SCID/NOD in Vivo Model: Biologic and Clinical Implications

Constantine S. Mitsiades, Nicholas S. Mitsiades, Ron T. Bronson, Dharminder Chauhan, Nikhil Munshi, Steven P. Treon, Christopher A. Maxwell, Linda Pilarski, Teru Hideshima, Robert M. Hoffman, and Kenneth C. Anderson

Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 [C. S. M., N. S. M., D. C. N., S. P. T., T. H., K. C. A.]; Departments of Medicine [C. S. M., N. S. M., D. C., N. M., S. P. T., T. H., K. C. A.] and Pathology [R. T. B.], Harvard Medical School, Boston, Massachusetts 02115; Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2 Canada [C. A. M., L. P.]; and Department of Surgery, University of California at San Diego, San Diego, California 92111 [R. M. H.]; and AntiCancer, Inc., San Diego, California 92111 [R. M. H.]

ABSTRACT

The in vivo preclinical testing of investigational therapies for multiple myeloma (MM) is hampered by the fact that models generated to recapitulate the development of diffuse skeletal lesions after i.v. injections of tumor cells do not allow for ready detection of the exact site(s) of lesions or for comprehensive monitoring of their progression. We therefore developed an in vivo MM model in severe combined immunodeficient/nonobese diabetic mice in which diffuse MM lesions developed after tail vein i.v. injection of human RPMI-8226/S MM cells stably transfected with a construct for green fluorescent protein (GFP). Using whole-body real-time fluorescence imaging to detect autofluorescent GFP+ MM cells (and confirming the sensitivity and specificity of these findings both histologically and by flow cytometric detection of GFP+ cells), we serially monitored, in a cohort of 75 mice, the development and progression of MM tumors. Their anatomical distribution and pathophysiological manifestations were consistent with the clinical course of MM in human patients, i.e., hallmarked by major involvement of the axial skeleton (e.g., spine, skull, and pelvis) and frequent development of paralysis secondary to spinal lesions without significant tumor spread to lungs, liver, spleen, or kidney. This model both recapitulates the diffuse bone disease of human MM and allows for serial whole-body visualization of its spatiotemporal progression. It therefore provides a valuable in vivo system to elucidate the molecular mechanisms underlying the marked osteotropism of MM, particularly for the axial skeleton, and for assessment of in vivo activity of novel anti-MM therapeutics.

INTRODUCTION

The development of in vivo animal models that recapitulate the natural history of human cancers and their clinical response to therapy constitutes a major prerequisite for rapid bench-to-bedside translation of investigational anticancer therapies. However, most conventional in vivo models for preclinical evaluation of anticancer drugs have, in general, involved s.c. implantation of tumor cells in immunodeficient mice. Unfortunately, such models cannot accurately simulate the in vivo behavior and drug-sensitivity patterns of human neoplasias, especially hematological malignancies such as MM.4 s.c. xenograft models failed not only to reflect the systemic nature of diffuse lesions of MM and other hematological malignancies but also place tumor cells in the cutaneous microenvironment, which is radically different from the BM milieu, where MM cells are preferentially homing and which promotes their proliferation, survival, and resistance to therapy (e.g., dexamethasone) via adhesion of MM cells to BMSCs and ECM proteins and the local production of cytokines (1, 2). This limitation of s.c. xenograft models is critical because the interactions between tumor cells and their local microenvironment cannot only explain, at least in part, the tropism of tumors for certain metastatic sites but may also influence their responsiveness to therapy (1–3). Although the systemic nature of hematological malignancies may be recapitulated by in vivo models of i.v. injections of tumor cells such as in SCID/NOD models of MM (4), these models do not readily allow for sensitive, real-time detection of the exact anatomical site(s) of development of lesions or for comprehensive monitoring of their progression.

To address these limitations of conventional in vivo models for hematological malignancies, we developed an in vivo model of MM where MM cells stably transfected with construct for the GFP of the jellyfish Aequorea Victoria are injected i.v. in SCID/NOD mice: the subsequent development of diffuse MM lesions can be monitored by whole-body fluorescence imaging, which detects the fluorescence emitted by the GFP+ MM cells when illuminated with near-infrared light. Because of the marked visual contrast generated between fluorescent GFP+ MM cells and nonfluorescent GFP- normal tissues of the host, we were able to visualize noninvasively and monitor serially, the anatomical distribution of MM lesions in the intact mouse, including s.c. tissues, bone, and BM, as well as visceral sites of tumor infiltration.

This first GFP-based in vivo model of a hematological malignancy represents a new avenue of research distinct from previous applications of fluorescence imaging in solid tumor models (5–13). Herein, this GFP model recapitulates the diffuse bone disease of MM, and importantly, the anatomical distribution of GFP+ lesions, confirmed by flow cytometry and extensive histopathological analyses, is consistent with the distribution of tumors in MM patients and, in particular, their preferential development in sites of the axial skeleton. Therefore, this study not only provides a clinically relevant in vivo model for more accurate preclinical evaluations of investigational therapies against MM but also generates a reproducible framework to characterize the interactions of MM cells with the BM milieu in vivo, with particular emphasis on the preferential targeting by MM cells of distinct areas of the skeleton. Because the BM microenvironment is now emerging as a key aspect of the pathophysiology of other hematological malignancies and not just MM, our study constitutes a framework for development of similar models for those diseases as well.

MATERIALS AND METHODS

Stable Transfection of GFP Constructs in MM Cells. The human MM cell line RPMI 8226 was cultured in RPMI 1640 supplemented with 10% fetal
bovine serum, penicillin, streptomycin, and t-glutamine. Near-confluent RPMI-8226/S cells were incubated with a precipitated mixture of Lipofectamine 2000 (Life Technologies, Inc., Gaithersburg, MD) and saturating amounts of the GFP-expression pLNCX2-GFP plasmid for 6 h, and fresh medium was then added. Forty-eight h after transfection, RPMI-8226/S cells were subcultured at a ratio of 1:15 in selection medium containing 500 μg/ml G418 (Life Technologies, Inc.) to isolate cells with stably integrated GFP plasmids.

MTT Colorimetric Survival Assay. RPMI-8226/S cells transfected with GFP or control (neo) vector were incubated with 250 ng/ml doxorubicin (Sigma Chemical Co., St. Louis, MO) for 48 h, and cell survival was assessed by MTT colorimetric survival assay (14).

SCID/NOD Mice and MM Cell Injection. A cohort of 85 male (6–8-week old) immunodeficient SCID/NOD mice were obtained from The Jackson Laboratory (Bar Harbor, ME) and were housed and monitored in the Animal Research Facility of the Dana-Farber Cancer Institute. All experimental procedures and protocols had been approved by the Institutional Animal Care and Use Committee. Mice were γ-irradiated (300 rads) using a 137Cs γ-irradiation source. After 24 h, 75 mice received tail vein injections of 5 × 10^7 RPMI-8226/S-GFP+/ cells suspended in a total volume of 100 μl PBS/mouse, whereas a control cohort of 10 mice received equal volume of PBS i.v. injections. Mice were monitored daily for changes in their body weight, signs of infection, and paralysis and thrice weekly by fluorescence imaging. In accordance with institutional guidelines, mice were sacrificed by CO₂ inhalation in the event of paralysis or major compromise in their quality of life.

Whole-Body Real-Time Fluorescence Imaging. The development of fluorescent MM lesions in the skeleton and extraskeletal sites was periodically monitored by whole-body fluorescence imaging using the LT-9500 fluorescent light box (Lightools Research, Encinitas, CA). Fluorescence excitation of GFP+ tumors was produced through a 440 ± 20-nm interference filter (excitation filter) using slit fiber optics for animal illumination. Fluorescence was observed through a 520-nm long pass filter (viewing filter). Fluorescence imaging results were digitally captured on a Fujifilm FinePix 6800Z digital camera (FujiFilm USA, Edison, NJ) and analyzed with Adobe Photoshop 7.0 and Image Pro Plus v.4.0 software (Media Cybernetics, Silver Spring, MD). Before fluorescence imaging, cutaneous hair of the mice was removed with Nair (Carter-Wallace, New York, NY).

Fluorescence Imaging-Guided Necropsy. During necropsy of sacrificed mice, fluorescence imaging-guided macroscopic inspection of internals organs was performed after generation of skin flaps (to evaluate whether the autofluorescence of GFP+ tumors is attenuated by the skin), as well as during the preparation of the spine, lung, liver, and spleen after the dissection of each specimen but before additional processing for histopathological analysis. Samples from the spine, skull, pelvis, extremities, thoracic cage, s.c. tissue, or any other organ that contained fluorescent lesions (as well as control samples obtained from sites adjacent to fluorescent lesions or from unaffected contralateral sites) were processed for conventional histopathological examination.

Flow-Cytometric Analysis of s.c. Plasmacytomas and BM Aspirates. s.c. plasmacytomas from GFP+–injected mice (or s.c. tissue from control mice) were removed during necropsy and kept in PBS until processing for preparation of single-cell suspensions. BM aspirates from both femoral bones were obtained from all GFP+–injected and control mice by flushing PBS into the narrow cavity of femoral bones and were processed for RBC lysis. All samples were then analyzed with flow cytometry, using RPMI-8226/S-GFP+/ cells growing in monolayer cultures as positive controls and neo (vector)-transfected RPMI-8226/S-GFP– as negative controls. Counterstaining of GFP+ MM cells was performed with phycoerythrin-conjugated antihuman CD38 monoclonal antibody (Beckman Coulter, Miami, FL). All flow cytometric analysis (single-color flow cytometry for assessment of GFP+ and dual color cytometry for GFP+ status and CD38+ expression) was performed according to previously described protocols (14–16) and analyzed on an Epics-XL-MCL flow cytometer (Beckman Coulter).

Statistical Analysis. The overall survival of mice was defined as the time between i.v. injection of tumor cells and sacrifice or death. Kaplan-Meier survival analysis was performed as described previously (17). To confirm that differences in frequency of development of tumor lesions in individual organs are statistically significant, we calculated the 95% CI of each frequency as described previously (18). A difference in frequencies of tumor involvement for two organs or tissues was considered significant (P < 0.05) if the 95% CI of two compared frequencies of tumor involvement had no overlap (18).

Fluorescent Imaging Cross-Sections. After acquisition of external fluorescent images, 15 of the 80 mice of our cohort were kept at −80°C for 12–24 h, then sliced in cross-section at ~10-mm thickness using disposable microtome blades (Model 818; Leica) The sections were observed both under fluorescence microscopy or fluorescence light box imaging, simulating the acquisition of tomographic images to confirm the tumor localization determined by external visualization using whole-body fluorescence imaging.

Histopathological Analysis. Immediately after fluorescence imaging-guided necropsy, specimens from tissues with fluorescent lesions, as well as representative samples of nonfluorescent areas of several organs (lungs, liver, spleen, and so on) were fixed in 10% buffered formalin; skeletal tissues were decalcified with 14% EDTA and embedded in paraffin by previously described standard techniques (19, 20). Soft tissues were fixed in 10% buffered formalin and embedded in paraffin without prior decalcification. Nonconsecutive sections were cut longitudinally using a standard microtome through the sagittal plane of the lumbar vertebrae and through blocks of liver, spleen, lung, kidney, intestines, s.c. tissue, and other specimens in each animal. The sections were then placed on poly-L-lysine-coated glass slides and stained with H&E.

RESULTS

Isolation of Stable, High Level-Expression GFP Transfectants of RPMI-8226 Cells. RPMI-8226/S cells transfected with GFP or control (neo) vector were selected in multiple steps for growth in levels of geneticin (G418) up to 500 μg/ml, as well as for high expression of GFP, which was confirmed by flow cytometric analysis of RPMI-8226/S-GFP+ cells versus parental RPMI-8226/S cells (Fig. 1A). GFP+ cells retained bright GFP fluorescence after numerous passages in the absence of selective agents, whereas their responsiveness to conventional anti-MM drugs, e.g., doxorubicin, did not significantly differ from control RPMI-8226/S cells (Fig. 1B).

Whole-Body Fluorescence Imaging of GFP+ MM Lesions. Serial whole-body fluorescence imaging of SCID/NOD mice allowed external visualization of GFP+ tumors growing s.c. and/or internally. Whole-body fluorescence imaging of SCID/NOD mice 3–4 weeks after i.v. injection of RPMI-8226/S-GFP+ cells demonstrated development of GFP+ MM lesions in multiple skeletal, as well as extraskeletal (e.g., s.c.) sites (Fig. 2). Table 1 summarizes the anatomical distribution (with 95% CIs of site-specific frequencies) of MM lesions in a cohort of 75 SCID/NOD mice that received injected with RPMI-8226/S-GFP+ cells. The overwhelming majority of mice (74 of 75 mice, 98.7%, 95% CI: 92.9–100) developed skeletal lesions. Specifically, 72 of 75 mice (96.0%, 95% CI: 88.9–99.7) developed lesions in their spine, primarily lumbar (57 of 75 mice, 76.0% of mice, 95% CI: 65.2–84.2), and thoracic (39 of 75 mice, 52.0%, 95% CI: 40.8–63.0) vertebrae, whereas in a great majority of cases (64 of 75 mice, 85.3%), MM lesions were also formed, including s.c. plasmacytomas in 50 of 75 mice (63.0) vertebrae, whereas in a great majority of cases (64 of 75 mice, 98.7%, 95% CI: 92.9–100) developed skeletal lesions. Specifically, 72 of 75 mice (96.0%, 95% CI: 88.9–99.7) developed lesions in their spine, primarily lumbar (57 of 75 mice, 76.0% of mice, 95% CI: 65.2–84.2), and thoracic (39 of 75 mice, 52.0%, 95% CI: 40.8–63.0) vertebrae, whereas in a great majority of cases (64 of 75 mice, 85.3%), MM lesions were detected in the skull. Extraskeletal lesions were also formed, including s.c. plasmacytomas in 50 of 75 mice (66.7%, 95% CI: 55.4–76.3), and plasmacytomas in soft tissues of the posterior cervical area in 49 of 75 mice (65.3%, 95% CI: 54.0–75.1). Interestingly, however, visceral MM lesions in lung, liver, spleen, or kidney developed only rarely (<5% of mice). The development of spinal lesions was associated with hind limb paralysis (78.8% of mice), after a median of 29 days (range, 22–43 days), prompting sacrifice of mice per protocol (Fig. 3).

GFP+ MM cells in this model home primarily to bone directly adjacent to skin, facilitating external imaging of these lesions. To
address the possibility that internal organs may harbor small visceral fluorescent lesions that could not be detected externally because of light scattering in intervening tissue, we performed postsacrifice opening of skin-flaps in the light path to reduce signal attenuation and light scattering in intervening tissue, we performed postsacrifice opening of skin-flaps in the light path to reduce signal attenuation and light scattering in intervening tissue.

Fig. 1. A, flow cytometric analysis (FL1 channel) indicates a ~2-log difference in mean fluorescence intensity of RPMI-8226/S-GFP⁺ cells (■) versus control RPMI-8226/S transfected with empty (neo) vector (□). B, after a 48-h incubation with doxorubicin (250 ng/ml), MTT colorimetric assay indicates that there is no difference in the survival of RPMI-8226/S control cells versus RPMI-8226/S-GFP⁺ cells.

Analysis of in Vivo GFP⁺ Expression. s.c. plasmacytomas from GFP⁺ cell-injected mice or s.c. tissue samples from control mice were removed immediately after sacrifice and kept in cold 1× PBS. Single-cell suspensions were prepared and analyzed by flow cytometry to compare their GFP-derived fluorescence with RPMI-8226/S-GFP⁺ cells cultured *in vitro* as positive control versus non-GFP-expressing RPMI-8226/S cells as negative control. After several weeks of growth *in vivo*, RPMI-8226/S-GFP⁺ cells explanted from s.c. plasmacytomas did not significantly differ in their GFP⁺ expression from GFP-transfected cells cultured *in vitro* during the same period of time (Fig. 4A), consistent with previous reports of stable long-term fluorescence of tumor cells transfected with GFP vectors (5–13). Importantly, tumor cells explanted from these s.c. plasmacytomas were subsequently cultured *in vitro* for several months, confirming their viability, which is consistent with prior studies that GFP-fluorescent lesions represent viable cells (5–13) rather than accumulations of cellular debris or cells internalizing fluorescent protein from dead GFP⁺ cells. Moreover, GFP protein irreversibly loses its fluorescence in the event of cell death (R. M. Hoffman, unpublished observations).

BM Homing of GFP⁺ MM Cells. To confirm that GFP⁺ MM lesions in the skeleton reflect homing of MM cells to the BM, we collected bilateral BM aspirates from femurs of mice harboring unilateral femoral GFP⁺ lesions. BM aspirates were collected in cold PBS and directly analyzed by dual color flow cytometry, which confirmed homing to the affected femur of a distinct population of highly fluorescent cells, which was absent in the contralateral unaffected femur (Fig. 4B). Additional flow cytometric analyses confirmed cell surface expression of human CD38, which is expressed by MM cells, providing additional support of specific homing of GFP⁺ MM cells to the BM. Interestingly, flow cytometric analyses of BM aspirates from femurs with bilateral involvement of GFP⁺ lesions demonstrated variability in the extent of BM infiltration by GFP⁺ MM cells, reflecting the heterogeneity of BM infiltration by MM cells noted clinically (Fig. 5).

Histopathological Analysis. Standard H&E staining of sections from specimens obtained by fluorescence imaging-guided necropsy were performed to examine the potential presence of microscopic lesions that were not detectable by macroscopic fluorescence imaging and to additionally confirm that fluorescent lesions indeed correspond to GFP⁺ MM tumor cells. No discrepancies were revealed between histopathological examination and macroscopic data obtained by fluorescence imaging; no MM lesions were detected that were not fluorescent; and conversely, no fluorescence was attributable to normal cells of the host, confirming the very high sensitivity and spec-

Fig. 2. Whole-body fluorescence imaging of SCID/NOD mice with diffuse GFP⁺ MM lesions. Representative imaging results obtained from 4 mice, 4 weeks after i.v. injection of 5 × 10⁶ RPMI-8226/S-GFP⁺ human MM cells indicate extensive bone lesions (depicted by yellow arrows) in the spine, skull, lower extremities, and pelvis, as well as s.c. lesions.
Table 1 Distribution of MM lesions in skeletal and extraskeletal sites in SCID-NOD mice injected i.v. with RPMI-8226/S-GFP⁺ cells

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>No. of Mice</th>
<th>No. of Lesions</th>
<th>Percentage (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal lesions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>74</td>
<td>72</td>
<td>98.7</td>
<td>92.9–100%</td>
</tr>
<tr>
<td>Skull</td>
<td>64</td>
<td>59</td>
<td>85.3</td>
<td>77.3–93.3%</td>
</tr>
<tr>
<td>Parietal surface</td>
<td>63</td>
<td>59</td>
<td>84.0</td>
<td>75.7–92.3%</td>
</tr>
<tr>
<td>Base of skull</td>
<td>12</td>
<td>9</td>
<td>75.0</td>
<td>68.3–81.8%</td>
</tr>
<tr>
<td>Lower mandible</td>
<td>23</td>
<td>15</td>
<td>64.5</td>
<td>42.0–86.0%</td>
</tr>
<tr>
<td>Spine</td>
<td>72</td>
<td>65</td>
<td>90.2</td>
<td>83.3–96.2%</td>
</tr>
<tr>
<td>Cervical</td>
<td>12</td>
<td>9</td>
<td>75.0</td>
<td>58.3–89.3%</td>
</tr>
<tr>
<td>Thoracic</td>
<td>39</td>
<td>33</td>
<td>84.6</td>
<td>74.3–93.9%</td>
</tr>
<tr>
<td>Lumbar</td>
<td>57</td>
<td>49</td>
<td>86.0</td>
<td>76.3–95.2%</td>
</tr>
<tr>
<td>Sacral</td>
<td>14</td>
<td>11</td>
<td>78.6</td>
<td>56.3–95.2%</td>
</tr>
<tr>
<td>Thoracic cage</td>
<td>8</td>
<td>6</td>
<td>75.0</td>
<td>58.3–89.3%</td>
</tr>
<tr>
<td>Pelvis</td>
<td>5</td>
<td>4</td>
<td>80.0</td>
<td>62.0–94.0%</td>
</tr>
<tr>
<td>Upper extremity bones</td>
<td>45</td>
<td>39</td>
<td>86.7</td>
<td>77.3–94.2%</td>
</tr>
<tr>
<td>Lower extremity bones</td>
<td>52</td>
<td>46</td>
<td>88.0</td>
<td>79.2–95.0%</td>
</tr>
<tr>
<td>Extraskeletal lesions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and neck soft tissue</td>
<td>2</td>
<td>2</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
<tr>
<td>Posterior cervical soft tissue</td>
<td>49</td>
<td>46</td>
<td>93.8</td>
<td>86.3–98.4%</td>
</tr>
<tr>
<td>s.c. plasmacytomas</td>
<td>50</td>
<td>46</td>
<td>92.0</td>
<td>84.3–97.8%</td>
</tr>
<tr>
<td>Axillary region soft tissue</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
<tr>
<td>Mediastinum</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
<tr>
<td>Lung</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
<tr>
<td>Liver</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
<tr>
<td>Spleen</td>
<td>4</td>
<td>4</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
<tr>
<td>Small and large intestine</td>
<td>21</td>
<td>21</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0–0.0</td>
</tr>
<tr>
<td>Paraspinal muscles</td>
<td>25</td>
<td>23</td>
<td>92.0</td>
<td>79.2–99.0%</td>
</tr>
<tr>
<td>Upper extremity muscles</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
<tr>
<td>Lower extremity muscles</td>
<td>14</td>
<td>14</td>
<td>100.0</td>
<td>100.0–100.0</td>
</tr>
</tbody>
</table>

Fig. 3. Kaplan-Meier survival curve of SCID/NOD mice after i.v. injection with RPMI-8226/S-GFP⁺ cells. Median survival of mice was 29 (95% CI: 27–30) days.

Fig. 4. A, representative single-color flow cytometric analysis of RPMI-8226/S-GFP⁺ cells explanted from s.c. plasmacytomas generated after i.v. injections (left panel) compared with BM aspirate extracted from the contralateral femur (right panel). In both graphs, the x axes represent the side scatter of cells in BM aspirate, and the y axes represent GFP-emitted fluorescence detected in the FL1 channel. B, representative dual color flow cytometric analysis of BM aspirates obtained from a femur with a GFP⁺ lesion (left panel) versus its unaffected contralateral femur (right panel). The detection of human CD38 on fluorescent cells of the affected bone confirms the homing to the bone of human GFP-transfected cells rather than normal cells of the host that might have incorporated fluorescent protein.

The distribution was assessed with external whole-body fluorescence imaging of mice and confirmed by fluorescence imaging-guided necropsy and conventional histopathological analyses. We detected no fluorescent lesions that did not contain MM tumor cells; conversely, no tumors were present in nonfluorescent sites, confirming the high sensitivity and specificity of fluorescence imaging-based tumor detection. The lack of overlap between the 95% CI for frequency of lesions in, e.g., spine or skull versus other skeletal or extraskeletal lesions offers statistical confirmation (P < 0.05) of the nonrandom distribution of tumor lesions and their preferential involvement in the axial skeleton.

Whole-Body Radiographic Analysis. Whole body radiographic analyses were performed to evaluate the presence of potential lytic lesions at the sites of fluorescent tumors. Although bone involvement in the spine was associated in some cases with radiographic lucencies analogous to lytic lesions in MM patients, radiographic analysis in this model was, in the majority of cases, not sufficiently sensitive to unequivocally detect MM lesions, suggesting that fluorescence imaging can detect tumor lesions at skeletal sites before development of lytic disease.

DISCUSSION

MM, the second most commonly diagnosed hematological malignancy in the United States, has a median overall survival of ~3 years, which has not significantly improved over the last three decades (22). Recent preclinical and early clinical studies indicate that new therapies, which target not only MM cells but also their interactions with the host BM microenvironment (14–16, 23–27), may improve out-
followed-up by conventional imaging modalities, developing after i.v. injection cannot be readily detected and serially action of MM cells with the local BM milieu; and (b) logical malignancies and, in particular, do not reflect the close inter-

particular, the homing of MM cells to the BM, a critical process in the

simulate the clinical presentation of the disease in patients and, in

therapies. Furthermore, the comprehensive histopathological analyses

urements required for large-scale screening studies of new anticancer

imaging, currently have very high cost, which prohibits serial meas-

of BM involvement at distinct skeletal sites in MM patients.

come of MM patients. Nonetheless, MM is still considered an in-

variably fatal disease, highlighting the urgent need for accelerated

bench-to-bedside translation of investigational therapies. This neces-
sitates the development of preclinical in vivo models that accurately

simulate the clinical presentation of the disease in patients and, in

particular, the homing of MM cells to the BM, a critical process in the

pathophysiology of MM (28), and other hematological malignancies.

Unfortunately, currently available animal models for MM are not

optimal because (a) conventional models of s.c. implanted malignant

cells are not consistent with the diffuse systemic nature of hemat-

ological malignancies and, in particular, do not reflect the close inter-

action of MM cells with the local BM milieu; and (b) diffuse tumors

developing after i.v. injection cannot be readily detected and serially

followed-up by conventional imaging modalities, e.g., radiographic

examination is often not informative of soft tissue lesions and gener-

ally is not sufficiently sensitive to monitor tumor-associated skeletal

disease (29) because in rodents, which are much smaller than the

human body, tumors are also much smaller and often fall below the

threshold for radiographic detection (30). More sensitive imaging

modalities, e.g., computerized tomography or magnetic resonance

imaging, currently have very high cost, which prohibits serial meas-

urements required for large-scale screening studies of new anticancer

therapies. Furthermore, the comprehensive histopathological analyses

of the entire body of experimental animals might help define the

distribution of tumor cells in various organs and tissues but can only

be performed after necropsy and not serially during the course of

administration of an antitumor regimen.

The current study fulfills the major prerequisites for a clinically

relevant in vivo model of MM, namely the development of diffuse

bone lesions, with anatomical distribution and resulting manifesta-

tions (e.g., paralysis) consistent with the clinical picture of the disease

in human patients and the ability to perform, with high sensitivity and

specificity, noninvasive, real-time monitoring of the precise localiza-

tion of tumor lesions. Indeed, MM cells, malignant counterparts of

postgerminal center B-cells (28), are considered home to the BM after

the venous and subsequently the arterial circulation. In that respect,

our model of SCID/NOD mice injected i.v. with MM cells stably

expressing GFP constitutes an orthotopic model and allows these cells

to reach their preferred sites of homing, i.e., the bone and form diffuse

skeletal lesions, primarily in the axial skeleton, in a manner consistent

with the clinical presentation of the disease. The significant visual

contrast generated by the fluorescence of GFP \(^{+}\) tumors versus

adjacent nonfluorescent healthy tissues allows for detailed analysis by

whole-body fluorescence imaging of total number and size of even

small tumors, which might otherwise escape detection. The use,
during necropsy of sacrificed mice, of fluorescence imaging-guided

sampling of tissue specimens with fluorescent lesions, and subsequent

histopathological analyses confirmed, in this study, the very high

sensitivity and specificity of whole-body fluorescent imaging in this

GFP \(^{+}\) model. The selective noninvasive macroscopic visualization of
tumor burden without exogenous use of contrast agents, radioactivity,
fluorescent antibodies, or other preparative procedures that might

limit the application of this model or confound interpretation of its

results (13), allows for minimal alterations in tumor cell behavior in

vivo (31). Furthermore, collection of whole-body fluorescence imag-
ing data does not require (in contrast to other imaging modalities)
lengthy exposures of immobilized animals and was performed with

only short-acting anesthetics (e.g., isofluorane), which did not ad-
versely impact on the survival of mice, in this study.

Our study also indicates that in mice with diffuse MM lesions, the

Fig. 5. Representative dual color flow cytometric analyses of BM aspirates obtained
from femurs with bilateral GFP \(^{+}\) lesions and stained with monoclonal antibody for human
anti-CD38 monoclonal antibody. The analysis indicates variable extent of BM infiltration
with GFP \(^{+}\) human MM cells in the two contralateral bones, reflecting the heterogeneity
of BM involvement at distinct skeletal sites in MM patients.

Fig. 6. Representative histopathological analyses (H&E staining) of BM sections at
sites of GFP \(^{+}\) MM lesions. All panels are characterized by extensive BM infiltration by
malignant plasma cells (A–D), and variable degrees of infiltration in cortical bone. A (×50
magnification) and B (×100 magnification) depict pronounced infiltration of the BM in
the distal epiphysis of the femur. C, the almost complete infiltration of the BM cavity of
a lumbar spine vertebral body (×20). D, invasion of RPMI-8226/S-GFP \(^{+}\) cells through
bone structures (×50).
overall survival and quality of life are not affected by the total tumor burden in a strictly proportional manner. Indeed, vertebral bone lesions (which can be of a relatively small size in comparison to the overall tumor burden) were the cause of paralysis and sacrifice in the overwhelming majority of mice, whereas lesions in other less critical skeletal or extraskeletal (e.g., s.c. tissues) areas with greater local tumor involvement did not have the same impact on the course of the disease. These findings suggest that systemic markers of total tumor burden (e.g., serum or urine levels of monoclonal immunoglobulins in MM or other plasma cell dyscrasias), although informative of its overall changes during the course of the disease, may not reflect how individual tumor lesions at various organs can differentially affect the survival and quality of life of mice. Importantly, the critical role of the local bone microenvironment in conferring drug resistance not only to MM cell but also to cells from other osteotropic malignancies (3, 32) indicates that systemic markers of total tumor burden may not reliably reflect how tumor cells homing in different organs may differentially respond to therapy because of differential interactions within the distinct local microenvironments of the various host tissues.

Because of these differential, site-dependent interactions of tumor cells with the local microenvironment, it is important for in vivo animal models of systemic malignancies such as MM to mimic the patterns of organ involvement, clinical course, and manifestations of the disease in patients. In this study, the SCID/NOD model of diffuse GFP+ MM lesions simulated the clinical behavior of MM more closely than conventional models of ectopic s.c. implantation of human MM cells (6) because >95% of mice injected with GFP+ MM cells developed bone lesions at one or more sites in the spine, and at least one tumor site in the axial skeleton was noted in 98% of SCID/NOD mice, which mirrors the osteotropic behavior of MM in patients (30). Importantly, GFP+ MM lesions targeted mainly the axial skeleton, which is consistent with the actual pattern of anatomic distribution of MM bone disease observed clinically (30). The clinical relevance of this model is additionally highlighted by the high incidence of clinical manifestations directly attributed to bone lesions, including the development of paralysis secondary to vertebral MM involvement.

Because of its clinical relevance, this GFP+ MM mouse model provides a valuable experimental setting to preclinically evaluate the in vivo antitumor activity of investigational agents. Indeed, recent studies of our group have applied this model not only to evaluate the antymyeloma activity of new therapeutic approaches such as the heat shock protein 90 inhibitors (33) but also to elucidate the antimyeloma activity of new therapeutic approaches such as the heat shock protein 90 inhibitors (33). Of note, in ongoing studies from our group using other GFP-expressing human MM cell lines (e.g., MM-1S, MM-1R, OPM-1) we have also found formation of MM bone lesions in SCID/NOD mice, similarly to the current results with RPMI-8226/S-GFP cells. Although the precise anatomical pattern of lesions generated by each line can depend on its individual molecular characteristics (and can potentially differ among different sublines or subclones of the same line if these exhibit different osteotropic potential), the tendency of MM cells for establishment of bone lesions is not limited to RPMI-8226-derived cells. Furthermore, these findings indicate that fluorescence imaging of diffuse MM bone lesions is applicable for a broader spectrum of MM cell lines. In addition, whole-body fluorescence imaging for detection of MM cells can also be incorporated in the setting of other of other in vivo MM models such as syngeneic mouse models of MM (e.g., by GFP-expressing 5T2 mouse MM cells injected in C57BL/KaLwRij mice; Ref. 34, 35), as well as in the SCID-hu model of MM (36, 37). In this latter model, direct injection of human MM cells in human bone grafts implanted in SCID mice leads to osteolytic lesions in the injected graft, as well as to a secondary (metastatic) bone lesion in contralateral human bone grafts not injected with MM cells. These models, which have provided important insight in the pathophysiology of the osteolytic lesions of MM, may be complemented by injection of GFP+ human MM cells to allow for better monitoring of the MM tumor burden (and its response to therapy) in the bone grafts and to facilitate the characterization of interactions between MM cells and the BM microenvironment.

Furthermore, because of its clinical relevance, this in vivo model is not only appropriate for preclinical evaluation of potential new therapies but also for addressing important questions regarding the pathophysiology of MM. Of particular biological significance is the marked osteotropism of MM cells and their heterogeneous but not random skeletal distribution. The degree of BM infiltration by GFP+ MM cells, as assessed by flow cytometry of BM aspirates, was not uniform but heterogeneous and analogous to the variable percentage of BM infiltration by malignant plasma cells in different skeletal sites in the same patients noted clinically. Furthermore, detailed statistical analyses, including calculation of 95% CIs for the frequencies of tumor involvement in individual organ sites confirmed that the distribution of tumor lesions was not random and involved preferential bone involvement in the bones and, primarily, in the axial skeleton, which is characterized by the presence of trabecular bone, a major site of MM bone involvement in human patients. The precise etiology for this site-specific pattern of tumor formation is under investigation using this GFP+ MM model. It conceivable that the mechanism underlying this site specificity is multifactorial and could include heterogeneous expression of cytokines, growth factors, and/or adhesion molecules in different parts of the skeleton. Because MM cell proliferation and survival is significantly enhanced by BM-derived cytokines such as insulin-like growth factors (38) and interleukin 6 (32) or by binding of MM cells to the ECM or stromal cells in the BM (2), it is possible that skeletal areas with most frequent establishment of MM lesions represent areas with, e.g., higher local production of proliferative/antiapoptotic factors for MM cells, enhanced activity of BMSCs, and/or expression of specific ECM components. Interestingly, axial skeletal areas most frequently targeted by MM lesions also harbor active red BM (39), a principal site for adult hematopoiesis: the very active local network of BMSCs in those sites may not offer support via cytokine- or cell adhesion-mediated pathways not only for normal hematopoietic lineages but also for locally seeded tumor cells. The nonrandom distribution of MM lesions could also be due, at least in part, to well-documented organ- or tissue-specific molecular heterogeneity of the vascular tree (40, 41). Indeed, in vivo screening of phage-displayed peptide libraries has identified peptide sequences capable of homing selectively to the vasculature of specific organs (42). Such organ- or tissue-specific vascular markers may not only facilitate organ-specific blood-tissue exchange of biomolecules or selective homing of normal cells, e.g., migration of neutrophils to inflamed tissues, lymphocyte homing to lymphoid tissues (43–45), but may also function as receptors for metastasizing malignant cells (46–48), thus determining, e.g., the osteotropism of MM cells. Our study’s finding of more frequent bone lesions in the axial skeleton raise the hypothesis that the concept of heterogeneous molecular signature of the vasculature may apply not only to different tissues but...
malignant plasma cells. Their expression has been associated with disease progression, including the development of bone lesions and the production of cytokines that promote bone destruction.

REFERENCES

14. Mitsiades, N., Mitsiades, C. S., Poulaki, V., Chauhan, D., Richardson, P. G., Hideshima, T., Munshi, N., Treon, S. P., and Anderson, K. C. Malignant plasma cells: Ref. 51). At this stage of the disease, MM cells have acquired additional genetic abnormalities, allowing them to survive in the absence of interaction with the BM microenvironment. Importantly, however, the striking osteotropic behavior of these cells, with bone involvement in almost all mice of our study, indicates that the BM milieu can play an important role in promoting the proliferation and survival of even very aggressive MM cells.

15. This study, which represents a first application of whole-body fluorescence imaging in vivo models for the study of MM may also be applied to evaluate the development of diffuse lesions in other hematological malignancies, provides the context for additional characterization of disease pathogenesis and, importantly, establishes a clinically relevant framework for preclinical testing of new therapeutic strategies.

Fluorescence Imaging of Multiple Myeloma Cells in a Clinically Relevant SCID/NOD \textit{in Vivo} Model: Biologic and Clinical Implications

Constantine S. Mitsiades, Nicholas S. Mitsiades, Ron T. Bronson, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/20/6689

Cited articles This article cites 49 articles, 27 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/20/6689.full.html#ref-list-1

Citing articles This article has been cited by 21 HighWire-hosted articles. Access the articles at:
/content/63/20/6689.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.