Intermittent of Nuclear Factor κB Signaling by the Androgen Receptor Facilitates 12-O-Tetradecanoylphorbolacetate-Induced Apoptosis in Androgen-sensitive Prostate Cancer LNCaP Cells

Saleh Altuwaijri, Hui-Kuan Lin, Kuang-Hsiang Chuang, Wen-Jye Lin, Shuyuan Yeh, LeRoy A. Hanchette, Mujib M. Rahman, Hong-Yo Kang, Meng-Ying Tsai, Zhan Zhang, Lin Yang, and Chawnshang Chang

ABSTRACT

12-O-tetradecanoylphorbol acetate (TPA) influences proliferation, differentiation, and apoptosis in a variety of cells including prostate cancer cells. Here, we show that androgen treatment potentiates TPA-induced apoptosis in androgen-sensitive prostate cancer LNCaP cells but not in androgen-independent prostate cancer cell lines DU145 and PC-3. The use of the antiandrogen bicalutamide (Casodex) rescued LNCaP cells from 5α-dihydrotestosterone (DHT)/TPA-induced apoptosis, suggesting that DHT/TPA-induced apoptosis is mediated by androgen/androgen receptor (AR). In addition, a caspase-3 inhibitor (Ac-DEVD-CHO) reduced the level of apoptosis, suggesting that DHT/TPA-mediated apoptosis occurs through a caspase-3-dependent pathway. A functional reporter assay using nuclear factor (NF) κB-luciferase and an electromobility gel shift assay showed that DHT suppressed NFκB activity. In addition, apoptosis mediated by combined DHT/TPA treatment was abrogated by overexpression of the NFκB subunit p65 in LNCaP-p65 cells, suggesting that NFκB may play an important role in regulating the effects of androgen/AR and TPA on apoptosis. Furthermore, use of the c-Jun N-terminal kinase (JNK) inhibitor SB202190 showed that the combination of DHT/TPA increased JNK activation in LNCaP cells but not in LNCaP-p65 cells, demonstrating that NFκB may be able to suppress JNK activity. These results indicate that androgen/AR facilitates TPA-induced apoptosis by interruption of the NFκB signaling pathway, leading to activation of JNK in LNCaP cells. These data describe a signaling pathway that could potentially be useful in proposed therapeutic treatment strategies exploiting combinations of different agents that control apoptosis in prostate tumors.

INTRODUCTION

One characteristic of prostate cancer is the initial dependence of tumor growth on circulating androgens, and androgen- ablative pharmacotherapy is a common treatment strategy for prostate cancer (1, 2). Androgen deprivation results in the involution of prostate tissue, a process dependent in part on apoptosis of prostate epithelial cells (3). However, androgen-independent tumor cells that are unresponsive to androgen deprivation eventually arise, and the progression of tumor cells to complete androgen independence is associated with a poor prognosis (4). As dependency on androgen is lost, other growth factor signaling pathways must become activated to enable the survival and growth of androgen-independent tumors. Understanding the development of androgen-independent prostate tumor cells and devising treatment schemes for targeting these cells, such as intermittent androgen therapy, would provide therapeutic options currently not available for advanced prostate cancer.

Intermittent androgen therapy has been proposed as a means to minimize adverse effects associated with androgen ablation therapy. Repeated cycles of intermittent treatment may postpone the emergence of androgen-independent tumor cells, decrease the severity of advanced treatment-related effects, and be less costly than continuous androgen- ablative therapy. It has been hypothesized that reintroduction of androgen after a period of androgen deprivation may alter the growth behavior of the remaining tumor cells (5, 6), an effect that may be caused, in part, by alterations in the apoptotic potential of remaining tumor cells in the presence of emergent androgen levels. The effect of intermittent androgen therapy has been studied in animals, but the molecular mechanisms controlling the delay to androgen independence are poorly understood. Because apoptosis may play a role in such processes, an understanding of the contribution of androgen/AR to apoptosis induction is important in developing a rationale for exploitation of such therapeutic approaches.

Characterization of the role of AR in controlling apoptosis and the participation of AR signaling in cross-talk with other pathways will clarify the role of androgen in prostate tumor growth. Induction of apoptosis is determined by the integration of numerous signals that control entry into the cell death pathway. One pathway that controls cell growth and differentiation is activation of PKC (7, 8). Activation of PKC by TPA induces apoptosis in the androgen-sensitive cell lines LNCaP (9) and HaCaT (10) but not in the androgen-independent cell lines PC-3 and DU145 (9), or in normal keratinocytes (10). Another pathway involved in growth control and suppression of apoptosis involves NFκB, which is a member of the nuclear transcription factor family of proteins (11). NFκB consists of dimers of Rel family proteins (12, 13), each of which contains a conserved Rel homology domain that allows dimerization and a DNA binding domain that allows binding to NFκB response elements on the target genes. In mammalian cells, there are five members of the NFκB family: NFκB1 (p50/p105), NFκB2 (p52, p100), RelA (p65), cRel, and RelB (12). NFκB is retained in the cytoplasm in an inactive form by the inhibitor protein IκB (14, 15). In response to certain extracellular signals such as TNF, interleukin-1, TPA, or lipopolysaccharide (16, 17), IκK is activated and phosphorylates IκB, releasing NFκB, which then translocates to the nucleus and binds to DNA.

It has been reported that NFκB induces expression of target genes that contribute to tumor progression. These genes include immunoregulatory, inflammatory, and antiapoptotic genes as well as genes that regulate cell proliferation (18). In the androgen-independent prostate cell lines PC-3 and DU145, the activity of NFκB is high compared with that in the androgen-dependent prostate cell line LNCaP (19). It has also been shown that in LNCaP cells cross-talk occurs between NFκB signaling pathways and steroid receptor sig-

Received 4/2/03; revised 8/6/03; accepted 8/27/03.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Supported by NIH Grants CA55639, CA71870, and DK60912.

To whom requests for reprints should be addressed, at Department of Pathology, University of Rochester Medical Center, Box 626, 601 Elmwood Avenue, Rochester, NY 14642. E-mail: chang@urmc.rochester.edu.

2 The abbreviations used are: AR, androgen receptor; PKC, protein kinase C; TPA, 12-O-tetradecanoylphorbol acetate; NFκB, nuclear factor κB; TNF, tumor necrosis factor; IKK, IkB kinase; JNK, c-Jun N-terminal kinase; DHT, 5α-dihydrotestosterone; TUNEL, terminal transferase-mediated dUTP-biotin nick end-labeling; Luc, luciferase; EMSA, electromobility gel shift assay.
naling pathways, such as glucocorticoid receptor and AR pathways (20–22). Differences in NFκB activity between androgen-sensitive and androgen-independent prostate cancer cell lines may contribute to androgen independence (23). Moreover, when cells undergo apoptosis, JNK activity is increased (24, 25). Recent studies have shown that cross-talk exists between the JNK and NFκB signaling pathways (25, 26). It has been proposed that JNK activity is an upstream event relative to activation of caspase cascades during apoptosis.

The differences between androgen-sensitive and androgen-independent cell lines with respect to TPA-induced apoptosis and NFκB activity (23) prompted the hypothesis that TPA may induce apoptosis through an AR-dependent pathway in LNCaP cells. To define the role of androgen/AR in apoptosis signaling in LNCaP cells, we used a regimen of treatment with androgen for 24 h, followed by 24-h treatment with 1 nM TPA. To characterize the response of LNCaP cells to these treatment conditions, we determined the percentage of cells undergoing apoptosis and the activities of AR, NFκB, caspases, and JNK in the apoptotic cascade. Our data show that interruption of NFκB signaling by androgen/AR facilitates TPA-induced apoptosis via activation of JNK. This observation suggests that androgen pre-treatment sensitizes cells to the apoptotic effect of PKC activation in a prostate cancer cell line. Resumption of androgen levels during intermittent androgen therapy may sensitize tumor cells to proapoptotic agents, providing an opportunity to improve the effectiveness of intermittent androgen therapy.

MATERIALS AND METHODS

Cell Culture, Plasmids, and Reagents. The human prostate cancer LNCaP cell line was maintained in RPMI 1640 containing 10% FCS, penicillin (25 units/ml), and streptomycin (25 μg/ml). DHT and TPA were purchased from Sigma Chemical Company. Caspase inhibitors Z-VAD-fmk and DEVD-fmk were obtained from Calbiochem. The anti-AR polyclonal antibody NH27 was produced as described previously (27). Anti-IκBα and Anti-IκB (p65) were obtained from Santa Cruz Biotechnology. A monoclonal antiactin antibody was obtained from American Biosciences. The plasmids pCDNA3, pCDNA3-RelA, pCMV, pCMV-mIkBα, pCMV-mIkBβ, pCMV-NFκB Luc reporter gene were gifts from Dr. Edward M. Schwarz (University of Rochester, Rochester, NY).

Detection of Apoptosis. To visualize apoptotic nuclei, LNCaP cells were fixed in 4% paraformaldehyde (pH 7.4) and subjected to the TUNEL assay. End-labeled DNA was visualized using FITC-conjugated avidin, and total cell count was determined by 4′,6-diamidino-2-phenylindole staining. In brief, myocytes were incubated for 1 h at 37°C in terminal deoxynucleotidyltransferase buffer containing 140 mm sodium cacodylate, 1 mm cobalt chloride, 50 mm Tris-HCl (pH 7.2), 50 units of terminal deoxynucleotidyltransferase, and 1 mmol of fluorescein-conjugated dUTP (Roche Molecular Biochemicals). After the terminal deoxynucleotidyltransferase reaction, cells were washed three times in PBS and mounted on glass slides. The number of FITC-labeled cells per 100 4′,6-diamidino-2-phenylindole-stained cells was used as a measure of the percentage of apoptosis. Genomic DNA was isolated for nucleosomal DNA fragmentation by gel electrophoresis, as described previously (28).

Transfections and Reporter Gene Assays. Transfections, using the calcium phosphate precipitation method, and Luc assays were performed as described previously (29). Briefly, 1–4 × 10^5 cells were plated on 35- or 60-mm dishes 24 h before adding the precipitation mix containing an NFκB-Luc reporter gene. In each experiment, the total amount of transfected DNA/dish was maintained at a constant level by the addition of an empty expression vector (pCMV). The medium was changed 24 h after transfection, and the cells were treated with 1 μM DHT for 24 h, followed by treatment with TPA for another 16 h. The cells were then harvested, and whole cell extracts were used for the Luc assay. Luc activity was determined using a Dual-Luciferase Reporter Assay System (Promega) and measured with a luminometer.

Western Blot Analysis. LNCaP cells were treated with 10 nm DHT for 24 h, followed by 24 h of treatment with 1 nm TPA. The medium was removed, and the attached cells were washed with PBS. Proteins were extracted by cell lysis with SDS, and protein concentrations were measured with the BCA protein reagent (Pierce Chemical Co., Rockford, IL). Equal amounts of total protein (50 μg) were loaded and run on a 10% SDS-polyacrylamide stacking gel with a Tris/glycine running buffer system and then transferred to a polyvinylidene difluoride membrane (0.2 μm) in a mini electrottransfer unit (Bio-Rad, Hercules, CA). The blots were probed with anti-AR, anti-RelA, and antiactin antibodies. Immunoblot analysis was performed with horseradish peroxidase-conjugated antirabbit and antimouse IgG antibodies using enhanced chemiluminescence Western blotting detection reagents (Amersham Biosciences).

EMSA. Nuclear extracts of cells were prepared as described previously (30). 32P-Radiolabeled duplex oligonucleotide probes containing the NFκB consensus binding site 5′-AGTTGAGGGGACTTTCCCAGGC-3′ and the mutant sequence 5′-AGGTGAGGAGATTTCCTCAGGC-3′ were used as templates for EMSA experiments (Santa Cruz Biotechnology). DNA binding reaction mixtures (20 μl) were prepared on ice and contained 10 μg of nuclear extract, 2 μg of double-stranded probe, poly(dI-dC) (Amersham Pharmacia Biotech), and 10 μg of BSA in 20 mm HEPES (pH 7.9), 5% glycerol, 1 mm EDTA, and 5 mm DTT. Nuclear protein complexes were resolved on a native 5% polyacrylamide gel in 1× Tris-borate EDTA (pH 8.0) and detected by autoradiography (30).

JNK Assay. For the JNK kinase assay, subconfluent LNCaP cells were incubated for 24 h in RPMI medium containing 10% charcoal dextran-feral bovine serum and then stimulated with 10 ng/ml TNF-α for 15 min. Total cell lysates were prepared as described previously (31), and JNK activity was determined using an anti-phospho-JNK antibody and JNK assay kit according to the manufacturer’s instructions (New England Biolabs). Briefly, GST-c-Jun (aa 1–89) fusion protein bound to glutathione-Sepharose beads was incubated with cell lysates for 2 h at 4°C and then centrifuged at 15,000 rpm for 15 min to pull down JNK. The samples were subjected to SDS-PAGE and transferred to a nitrocellulose membrane. The kinase activity was determined by Western blot analysis of phosphorylated c-Jun using a rabbit anti-phospho-c-Jun antibody.

RESULTS

AR Facilitates TPA Induction of Apoptosis in LNCaP Cells. Previous studies have shown that 10 or 100 nm TPA are able to induce apoptosis in the androgen-sensitive cell line LNCaP but not in the androgen-independent cell lines PC-3 and DU145 (31, 32), suggesting that androgen/AR signaling may be involved in TPA-induced apoptosis in LNCaP cells. To confirm the previous findings in our experimental system, we first treated LNCaP cells with either vehicle (ethanol; Fig. 1Aa) or 10 nm DHT (Fig. 1Ab) for 24 h and then treated with 1 nm TPA for another 24 h (Fig. 1A, c and d). Cells were then observed under light microscopy and photographed.

Treatment for 24 h with 10 nm DHT alone (Fig. 1Ab) or 1 nm TPA alone (Fig. 1Ac) does not induce apoptosis. However, treatment with 10 nm DHT for 24 h, followed by 24-h treatment with 1 nm TPA induced substantial apoptosis as determined by cell morphology (Fig. 1Ad) and DNA fragmentation (Fig. 1B, Lane 4). The percentage of cells undergoing apoptosis was determined by TUNEL assay, as described in “Materials and Methods” and shown in Fig. 2A. These results indicate that androgen/AR enables a lower concentration of TPA to induce apoptosis in LNCaP cells.

In agreement with other studies, our data show that neither 1 nm TPA alone nor the combination of 10 nm DHT and 1 nm TPA are able to induce apoptosis in the androgen-independent, AR-negative cell lines PC-3 and DU145 (Fig. 2A; Refs. 9, 31). To show that TPA-induced apoptosis in LNCaP cells is dependent on signaling through the AR, we used the AR antagonist bicalutamide (Casodex) to block the effect of AR signaling. Pretreatment of cells with 1 μM bicalutamide (Casodex) significantly reduced apoptosis induced by the com-

3 S. Altuwaijri, unpublished results.
Caspase-3 dependent. In the androgen-independent prostate cell lines PC-3 and DU145, the activity of NFκB is capable of protecting cells from apoptosis (37). In the androgen-sensitive prostate cell line LNCaP (19). It also has been shown that cross-talk between NFκB signaling pathways and steroid receptor signaling pathways, such as those of the glucocorticoid receptor and AR, occurs in LNCaP cells (20–22). To determine the effect of treatment with 10 nM DHT, followed by 1 nM TPA, on NFκB activity, we performed a transactivation assay using a Luc reporter construct responsive to active NFκB. Treatment with 1 nM TPA alone shows significant activation of NFκB (Fig. 4A, Lane 3). Pretreatment with 10 nM DHT abrogated this activation (Fig. 4A, Lane 4), indicating an interaction between AR signaling and TPA-induced NFκB activation.

To further establish the effects of DHT on TPA-induced NFκB activation, we performed EMSA. The results show that 1 nM TPA activated NFκB (Fig. 4B, Lane 1) and that pretreatment with 10 nM DHT decreased the amount of binding activity (Fig. 4B, Lane 2). Expression of the IκB-α protein has been used as a marker for the activity of NFκB. Therefore, we performed Western blot analyses on protein extracts from treated LNCaP cells to determine the levels of IκB-α under various treatment conditions, as shown in Fig. 4C. Treatment with 10 nM DHT alone caused an increase in the expression of IκB-α protein, suggesting that AR might play a role in regulating IκB-α expression (Fig. 4C, Lane 2). IκB-α protein expression decreased after 1 nM TPA treatment (Fig. 4C, Lane 3) and was restored when the cells were pretreated with 10 nM DHT (Fig. 4C, Lane 4). Western blot analyses of AR expression shows that DHT treatment increases AR protein expression (Fig. 4C, Lanes 2 and 4) and that TPA treatment alone had no effect on the AR level (Fig. 4C, Lane 3). Taken together, these results suggest that androgen suppresses NFκB activity (Fig. 4, B, Lane 2, and C, Lanes 2 and 4).

DHT/TPA-induced Apoptosis in LNCaP Cells Is Caspase-3 Dependent. A number of studies have shown that exposure to radiation in the presence of TPA enhances caspase-dependent apoptosis (8, 9, 33). We tested whether apoptosis induced by the combination of DHT and TPA involves activation of the apoptotic caspase cascade. Caspase-3 plays a major role in apoptosis, and detection of the activated form of caspase-3 represents apoptotic activity within the cell. We used zVAD-fmk, a general caspase inhibitor, and Ac-DEVD-CHO, a caspase-3 inhibitor, to show the role of caspase activation in the observed apoptotic response. Cells were treated with 10 nM DHT for 24 h and then incubated with either zVAD-fmk or Ac-DEVD-CHO for 30 min, followed by 24-h treatment with 1 nM TPA. Cells were then assayed for apoptosis using a TUNEL assay. The results show that apoptosis was reduced at least 50% by zVAD-fmk and 60% by Ac-DEVD-CHO (Fig. 3A), suggesting DHT/TPA-mediated apoptosis is a caspase-3 dependent pathway.

To confirm that the observed apoptosis was associated with caspase activation, we used Western blot analyses to detect levels of caspase-3 and its active cleavage product. The combination of DHT and TPA increases caspase-3 activity as seen in the cleavage of the procaspase-3 (M, 37,000) into two fragments of M, 17,000 and M, 12,000 (Fig. 3B, Lane 4). These data show that the majority of apoptosis generated by the combination of DHT before treatment and TPA is caspase-3 dependent.

AR Interrupts NFκB Signaling in LNCaP Cells. It is known that TPA is a potent activator of IKK (34–36). It is also known that NFκB is capable of protecting cells from apoptosis (37). In the androgen-independent prostate cell lines PC-3 and DU145, the activity of NFκB is higher compared with the androgen-sensitive prostate cell line LNCaP (19). It also has been shown that cross-talk between NFκB signaling pathways and steroid receptor signaling pathways, such as...
expression of NFκB during apoptosis. Because of the relationship between JNK and NFκB signaling pathways (25, 26). It has also been proposed that JNK activity may be able to suppress NFκB activity.

To determine whether activation of JNK activity is linked to suppression of NFκB activity, we used inhibitors of NFκB. Fig. 7A shows the effect of NFκB inhibitors on NFκB luc activity in a transactivational model.}

Fig. 3. The combination of DHT/TPA-induced apoptosis in LNCaP cells is caspase-3 dependent. A, LNCaP cells were treated with ethanol (Lanes 1, 3, 5, 7, 9, and 11), 10 mM DHT (Lanes 2, 4, 6, 8, 10, and 12), 10 μM Z-VAD-fmk (Lanes 5-8), or 10 μM DEVD-cho (Lanes 9-12) for 24 h, followed by treatment with 1 nM TPA (Lanes 3, 4, 7, 8, 11, and 12). Apoptosis was detected by TUNEL assay. B, LNCaP cells were treated with ethanol (Lanes 1 and 3) or 10 mM DHT (Lanes 2 and 4) for 24 h, followed by treatment with 1 nM TPA (Lanes 3 and 4). Expression levels of caspase-3 were determined by Western blot with a polyclonal antibody against caspase-3. Equal amounts of lysates were resolved by 10% SDS-PAGE. The arrows indicate the active subunits of caspase-3 after activation.

Ectopic Expression of RelA Protects LNCaP Cells from Androgen/AR and TPA-induced Apoptosis. To investigate further the role of NFκB in DHT/TPA-induced apoptosis, we hypothesized that overexpression of NFκB would protect cells from apoptosis induced by DHT/TPA treatment. LNCaP cells were transfected with the pcDNA3 vector or with pcDNA3 containing the major activation subunit of NFκB, known as RelA p65. Several independent transfected cell lines were established, and protein extracts from each were subjected to Western blot analyses with anti-p65 (RelA) antibody (Fig. 5A). The clonal line LNCaP-RelA (6) was chosen for additional analysis.

LNCaP-RelA (6) cells were treated with 10 nM DHT for 24 h, followed by 24-h treatment with 1 nM TPA. Compared with vector-only transfected LNCaP cells, the LNCaP-RelA (6) cells were protected from apoptosis as determined by TUNEL staining (Fig. 5B and C). These results indicate that overexpression of RelA protects cells from apoptosis induced by the combination of DHT and TPA.

Induction of Apoptosis by Androgen/AR and TPA Is Mediated by JNK Activity. Reports have shown that when cells undergo apoptosis, JNK activity is increased (24, 25), and recent studies have demonstrated that cross-talk exists between the JNK and NFκB signaling pathways (25, 26). It has also been proposed that JNK activity is an upstream event relative to the activation of caspase cascades during apoptosis. Because of the relationship between JNK and NFκB, we tested whether the combination of DHT and TPA has an effect on JNK activation in LNCaP cells. The p38/JNK inhibitor SB202190 blocks both p38 and JNK activation (26). SB202190 was used to determine the effect of 10 mM DHT treatment, followed by 1 nM TPA, on JNK activity. Fig. 6A and B, shows the suppressive effect of SB202190 on TPA-induced apoptosis after DHT pretreatment. Inhibition of p38/JNK by SB202190 results in a >50% decrease in the induction of apoptosis as shown by TUNEL assay (Fig. 6B). These experiments suggest that induction of apoptosis in LNCaP cells by DHT/TPA is mediated through JNK activity. Western blot analyses of protein extracts, using an antibody for the activated (phosphorylated) form of JNK, show an increase in the detectable level of activated JNK in treated LNCaP cells (Fig. 6C, Lane 4) but not in LNCaP-RelA cells (Fig. 6C, Lane 8), suggesting that NFκB may be able to suppress JNK activity.

To determine whether activation of JNK activity is linked to suppression of NFκB activity, we used inhibitors of NFκB. Fig. 7A shows the effect of NFκB inhibitors on NFκB luc activity in a transactivational model.
The NFκB/H9260B inhibitor parthenolide inhibited NFκB activity in a dose-dependent manner (Fig. 7A, Lanes 4 and 6). As a negative control, we also used a transfected mutant form of IκBα/H9251 (mIκBα/H9251), which cannot be phosphorylated by IKK, to inhibit NFκB activity, as shown in Fig. 7A, Lane 8. To show the effect of NFκB on inhibition of JNK activity, LNCaP cells were transfected with pCMX-mIkBα and treated with 1 nM TPA for 24 h (Fig. 7B, Lanes 2, 4, and 6). Western blot analyses were performed using an antibody for phosphorylated JNK. Levels of phosphorylated JNK were increased in cells transfected with mIkBα (Fig. 7B, Lane 2) or in cells treated with parthenolide (Fig. 7B, Lane 4). These data suggest that an increase in JNK activity is linked to suppression of NFκB.

Suppression of JNK activity by NFκB seems inconsistent with data showing that treatment of LNCaP cells with TPA for 24 h results in the induction of both NFκB (Fig. 4, A and B) and JNK activity (Fig. 6). To clarify the role of NFκB in regulating JNK activity, we determined the activity of JNK over 72 h after treatment with TPA. LNCaP cells were treated with TPA, and the level of phosphorylated c-jun (a JNK substrate) was determined at 24, 48, and 72 h. By 48 h, the level of c-jun phosphorylation declined to basal levels, as shown in Fig. 7C. In another experiment, we determined the levels of activated c-JNK both in the presence and absence of an inhibitor of NFκB. As shown in Fig. 7D, Lane 2, the activity of JNK was elevated at 24 h but had declined to basal levels at 48 h. In the presence of the NFκB inhibitor parthenolide, JNK activity remained elevated at 48 h, showing that the decline in JNK activity is associated with the activity of NFκB.

Overall, our study presents data indicating that androgen/AR facil-
INTERRUPTION OF NF\textsubscript{K}B SIGNALING BY THE AR

![Diagram of NF\textsubscript{K}B signaling by the AR](image)

DISCUSSION

TPA has been used as a tool for studying signal transduction pathways involved in cell proliferation (10) and apoptosis (9). TPA has also been used in low doses in a clinical trial to increase WBC counts in patients treated with cytotoxic drugs and has been shown to be beneficial in the treatment of myelocytic leukemia in patients refractory to standard antileukemic treatments (38). TPA has been reported to sensitize LNCaP cells to the apoptosis-inducing effect of radiation (8, 9, 33). The sensitivity of LNCaP cells to TPA-induced apoptosis led to the hypothesis that androgen/AR could play a role in the signaling pathway, leading to apoptosis. In our study, we show that DHT sensitizes cells to TPA-induced apoptosis in the androgen-sensitive cell line LNCaP. This evidence suggests that androgen/AR influences TPA signaling either through changes in androgen-dependent gene expression or by direct interaction of the AR with signaling proteins affected by TPA.

A potential AR target is the inducible transcription factor NF\textsubscript{K}B (11). It has been shown that the activity of NF\textsubscript{K}B is elevated in androgen-independent prostate cancer cell lines PC-3 and DU145 compared with the androgen-sensitive prostate cancer LNCaP cell line (31, 32), suggesting that AR may suppress NF\textsubscript{K}B activity. AR-mediated suppression of NF\textsubscript{K}B could occur through several mechanisms. Cross-modulation, transcriptional interference, and physical interaction between AR and NF\textsubscript{K}B have been shown (20, 21). A direct interaction between AR and NF\textsubscript{K}B/RelA (data not shown) (21) might prevent RelA (p65) from binding to NF\textsubscript{K}B binding sites or affect the ability of RelA to translocate to the nucleus after activating NF\textsubscript{K}B.

Increased expression of I\textsubscript{k}B induced by DHT (Fig. 4C) could be caused by the stabilization of I\textsubscript{k}B protein or increased mRNA levels. Furthermore, pretreatment with 10 nM DHT, followed by 1 nM TPA, abrogated the TPA-mediated suppression of I\textsubscript{k}B (Fig. 4C, Lane 6 versus Lane 3), thus correlating with the ability of DHT to sensitize the cell to the proapoptotic influence of 1 nM TPA.

We have shown that the combination of TPA/DHT was unable to induce apoptosis in the LNCaP cell line overexpressing Rel A (LNCaP-Rel A; Fig. 5C). NF\textsubscript{K}B normally protects cells from induction of apoptosis by inhibition of signaling through the JNK pathway (9). We show that the combination of DHT/TPA activates the JNK pathway and that the normal protective effect of NF\textsubscript{K}B is suppressed by the actions of androgen/AR in LNCaP cells. In contrast, JNK activity was abrogated in the LNCaP-Rel A cells (Fig. 6C).

Our data show the role of androgen/AR in modulating the induction of apoptosis in LNCaP cells, using low doses of TPA and pretreatment with DHT. This suggests that combining DHT and TPA might result in a more effective proapoptotic response than treatment with androgen alone, particularly in the context of intermittent androgen therapy. The effect of androgen in facilitating low-dose TPA induction of apoptosis was inhibited by the antiandrogen bicalutamide (Casodex, 1

Fig. 8. Schematic illustration of the negative regulation of NF\textsubscript{K}B by androgen/AR by either enhancing expression of I\textsubscript{k}B or inhibiting signaling upstream of NF\textsubscript{K}B. Suppression of the negative effect of NF\textsubscript{K}B on JNK promotes TPA-induced apoptosis. The mechanism of controlling NF\textsubscript{K}B suppression of JNK is unknown.
microtubules (μt), a JNK inhibitor, and by overexpression of NF-κB. Taken together, our results indicate that in androgen-sensitive prostate cancer cells such as LNCaP, androgen/AR facilitates TPA-induced apoptosis by interruption of NF-κB signaling, which allows JNK activation to initiate the apoptotic caspase cascade through caspase-3. A key finding of our study is that androgen enables low concentrations of TPA (1 nM) to induce apoptosis.

Therapeutic approaches to selectively induce apoptosis by manipulating apoptotic pathways are being explored in a variety of clinical circumstances, and such approaches have been suggested as possible strategies to enhance intermittent androgen therapy in the treatment of prostate cancer (3, 6). The apoptotic process is subject to input from many different cell-signaling pathways. Understanding these pathways and their interactions is critical for effective integration of accumulating apoptosis-related information into therapeutic strategies. Here, we show that pretreatment with androgen facilitates induction of apoptosis with low concentrations of TPA. It may be possible that the effects of intermittent androgen therapy could be improved by agents that augment apoptosis (3, 5, 6, 39, 40). The observations described here suggest a mechanism whereby androgen influences the apoptotic propensity of tumor cells.

ACKNOWLEDGMENTS

We are grateful to Drs. Edward M. Schwarz and Valentine B. Andela for reagents. We thank Drs. P. Anthony di Sant’Agnese, Edward M. Messing, J. Edward Puzas, Faith Young, Tia Smith, Loretta Collins, Tony Siniscal, and Erik R Sampson for thoughtful comments on this manuscript. We also thank the members of Dr. Chang’s laboratory for technical support.

REFERENCES

Interruption of Nuclear Factor κB Signaling by the Androgen Receptor Facilitates 12- O-Tetradecanoylphorbolacetate-Induced Apoptosis in Androgen-sensitive Prostate Cancer LNCaP Cells

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/21/7106

Cited articles
This article cites 36 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/21/7106.full#ref-list-1

Citing articles
This article has been cited by 12 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/63/21/7106.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.