Retinoids Act as Multistep Modulators of the Major Histocompatibility Class I Presentation Pathway and Sensitize Neuroblastomas to Cytotoxic Lymphocytes

Simona Vertua^1, Anna De Geer^4, Victor Levitsky^2, Per Kogner^1, Rolf Kiessling^1, and Jelena Levitskaya^1

^1Department of Oncology-Pathology, and ^2Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden

ABSTRACT

The current therapeutic modalities achieve low response rates in human neuroblastoma, a frequent extracranial malignancy of the early childhood. We have assessed the effect of retinoids, used presently for the treatment of neuroblastoma, on the discrete steps of the MHC class I processing machinery and susceptibility of neuroblastoma cells to CTL-mediated killing. We demonstrate that retinoic acid derivatives induce the expression of proteolytic and regulatory subunits of the immunoproteasome, increase the half-life of MHC class I complexes, and enhance the sensitivity of neuroblastoma cells to both MHC class I-restricted peptide-specific and HLA nonrestricted lysis by CTLs. Importantly, effects of retinoids on the MHC class I pathway appear to be independent of IFN-γ and/or TNF-α as intermediate messengers. To our knowledge, this is the first demonstration of an inflammation-unrelated biological molecules that induce systemic modulation of antigen presentation in nonprofessional antigen presenting cells. Our findings suggest that the application of retinoids and T cell-based immunotherapy may be an effective combination for the treatment of neuroblastoma.

INTRODUCTION

Neuroblastoma is a frequent extracranial malignancy of the early childhood. Current standard approaches to the treatment of neuroblastoma include surgery, chemotherapy, and radiation, whereas immune-based therapies are limited to immunotherapy directed at minimal residual disease (1, 2). Treatment modalities of neuroblastoma based on tumor-specific cytotoxic T-lymphocytes have not yet been developed.

Several lines of evidence support the critical importance of the CD8+ subset of T cells in the clearance of tumors or prevention of their development (3, 4). Mature cytotoxic T-cells (CTLs) are specific for peptides displayed on MHC class I molecules. The MHC class I presentation pathway involves proteolytic generation of antigenic peptides followed by peptide transport into the ER^1 where MHC complex-peptide association takes place (reviewed in Refs. 5, 6). The main enzymatic complex that degrades ubiquitin-tagged proteins is the 26S proteasome (7). The proteolytically active sites are present in adjacent pairs of identical β-subunits (β1, β2, and β5), and represent trypsin-like, chymotrypsin-like and postglutamyl peptidyl hydrolytic activities. After stimulation of the antigen-presenting cell with IFN-γ, β1, β2, and β5 subunits are substituted by LMP2, MECL1, and LMP7, respectively. This leads to alterations in the cleavage site preferences of the proteasome, and an increase in the production of peptides with basic and hydrophobic COOH termini (8), better uptake of peptides by TAPs, and better binding to the MHC class I molecule. The latter results in an increased level of expression and higher stability of MHC class I complexes at the surface of target cells that promotes more efficient T cell-mediated recognition.

Physiological signals able to increase and stabilize the pool of surface MHC class I molecules in tumor cells are of special interest. Data available on this subject mainly concern effector obtained with proinflammatory cytokines, such as IFN-γ (reviewed in Ref. 9) and TNF-α (10). Vitamin A derivatives (retinoids) were reported to increase the total pool of surface HLA class I complexes in mammalian cells; however, the molecular basis underlying this phenomenon was not studied in detail (11–13). Retinoids are known as potent modifiers of proliferation and differentiation in different cell types, including neuroblastoma (14, 15). In vitro studies that demonstrated retinoid-induced growth arrest and differentiation of neuroblastoma, several clinical trials revealed the ability of retinoids to increase survival in neuroblastoma patients. However, preclinical studies in neuroblastoma indicate that all-trans-RA or 13-cis-RA can antagonize cytotoxic chemotherapy and radiation. Therefore, the use of RA derivatives in neuroblastoma is limited to the maintenance therapy after completion of these treatment modalities (reviewed in Ref. 16).

In view of the fact that the currently available therapeutic modalities induce low response rates in human neuroblastomas, we have evaluated the potential usefulness of retinoids in combination with T cell-based therapy of neuroblastoma. We have assessed the effect of retinoids on the discrete steps of the MHC class I processing machinery and analyzed the outcome of RA treatment on the susceptibility of neuroblastoma cells to the effector mechanisms of CTLs and NK cells.

MATERIALS AND METHODS

Cell Lines

Tumor Cell Lines. The neuroblastoma cell lines CHP-212, SK-N-DZ, SK-N-BE (2), SH-SY5Y, MC-IXC, SK-N-AS, SK-N-SH, and IMR-32 were purchased from American Type Culture Collection. The neuroblastoma cell lines Lan1 and Lan5 were kindly provided by Dr. Marie Henriksson-Arzenen (Karolinska Institutet, Stockholm, Sweden). The FL-2 cell line, a subclone of SH-SY5Y, was provided by Dr. Marianne Ifversen (Rigshospitalet, Copenhagen, Denmark).

The cell lines were maintained in IMDM supplemented with 10% heat-inactivated FCS (Life Technologies, Inc., Grand Island, NY), 100 IU/ml penicillin, and 100 µg/ml streptomycin (complete medium).

Treatment with RA derivatives was performed at a final concentration of 10 µM in complete medium. Cells kept in complete medium containing the corresponding amount of DMSO are thereafter referred to as “control.”

Effectors. The generation and characterization of the CD8+ HLA A11-restricted CTL clone BK289, specific for the EBV nuclear antigen-4-derived peptide IVT, were described previously (17).

Purification of NK cells and generation of polyclonal NK cell cultures was performed from peripheral blood lymphocytes of healthy donors by density gradient centrifugation on Ficoll-Hypaque with subsequent elimination of cells.
adherent to plastic. The remaining cell population was incubated on ice with the mixture of monoclonal antibodies including anti-CD3 (JT3A), anti-CD4 (HP.2.6), and anti-HLA-DR (D1.12) followed by goat antimouse IgG-coated Miltenyi Microbeads (Miltenyi Biotech GmbH). After immunomagnetic depletion, FACS analysis of the resulting cell pool was performed demonstrating that 90–95% of these cells were CD3⁺, CD4⁺, and HLA-DR⁺ (data not shown). Cells were cultured with irradiated allogeneic feeders in the presence of 200 units/ml of recombinant interleukin 2 and 1.5 ng/ml phytohemagglutinin (Life Technologies Inc., Paisley, Scotland).

Antibodies and Chemicals. RA derivatives 9-cis-RA and all-trans-RA were purchased from Sigma (St. Louis, MO) and Ro 13–6007 (Ro13) was obtained from Hoffmann-La Roche (Basel, Switzerland), dissolved in DMSO as 100 mM stocks, and stored at −70°C in small aliquots.

The HLA ABC-specific antibody (clone W6/32) conjugated with R-phycocerythrin (RPE), RPE-conjugated mouse IgG2a isotype antibodies, and FITC-conjugated rabbit antimouse F(ab)² fragments were obtained from DAKO-PATTs AB (Alvsjö, Sweden). Hybridomas producing the HLA A1-specific antibody A11.1M (clone HB-164) and HLA-A2-specific antibody MA2.1 (clone HB-54) were from the American Type Culture Collection. Total mouse serum was prepared by the animal facility at the Microbiology and Tumorbiology Center, Karolinska Institutet.

Antibodies specific to LMP2, LMP7, MECL-1, and PA28α subunits were purchased from Affinity Research Products Ltd. (Mamhead Castle, Exeter, United Kingdom). Rabbit polyclonal serum specific to human class I heavy chain was a kind gift from Dr. Hidde Ploegh (Department of Pathology, Harvard Medical School, Boston, MA). Human recombinant TNF-α was obtained from Cetus Corporation (Emeryville, CA) and IFN-γ (Imukin) from Boehringer Ingelheim International GmbH (Ingelheim, Germany). BFA and actin-specific antibodies were purchased from Sigma (Sigma Chemical Co.). IFN-γ blocking antibodies were from Nordic Biosite (Täby, Sweden). Soluble recombinant TNF-receptor 2 (Enbrel) was a kind gift of Prof. Lars Klareskog (Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden).

Western Blot Analysis. All of the procedures were performed using Multiphor II Electrophoresis System and ExcelGel SDS homogeneous precast gels (Amersham Pharmacia Biotech AB, Uppsala, Sweden). Neuroblastoma cells cultured in complete medium containing DMSO (1 μl in 10 ml) or in the presence of 9-cis-RA (10 μM) for 48 h at 37°C were harvested and lysed in electrophoresis sample buffer. Aliquots of total cell lysates corresponding to 10⁴ cells were separated by SDS-PAGE followed by transfer onto polyvinylidene difluoride membrane (Millipore, Bedford, Massachusetts). Membranes were blocked in PBS containing 5% milk and 0.1% Tween 20, and probed with the indicated specific antibody at the dilution recommended by the manufacturer. The following secondary antibodies conjugated with horseradish peroxidase (Amersham Pharmacia Biotech AB) were used: antirabbit for LMP2, LMP7, MECL-1, and PA28α. The reaction was visualized by enhanced chemiluminescence according to the manufacturer’s protocol (Amersham Pharmacia Biotech AB).

Cytotoxicity Assays. Standard 4 h ³Cr release assays were performed as described previously (18). Briefly, HLA-A11-positive neuroblastoma cell lines were preincubated with the IVT-peptide at a range of peptide concentrations described previously (18). Briefly, HLA-A11-positive neuroblastoma cell lines were preincubated with the IVT-peptide at a range of peptide concentrations described previously (18). Briefly, HLA-A11-positive neuroblastoma cell lines were preincubated with the IVT-peptide at a range of peptide concentrations described previously (18). Briefly, HLA-A11-positive neuroblastoma cell lines were preincubated with the IVT-peptide at a range of peptide concentrations described previously (18).

Stability of MHC Class I Complexes

Surface Stability. SK-N-SH cells were cultured in complete medium in the presence or absence of 9-cis-RA (10 μM) for 96 h. Cells were removed from the plastic surface by a cell scraper, washed twice in ice-cold PBS, and incubated with 10 μg/ml of BFA in AIM-V medium (Life Technologies Inc.). After 1 h of BFA treatment, cells were washed twice in PBS. An aliquot of cells was fixed with 1% paraformaldehyde in PBS and placed on ice (indicated as time zero). Remaining cells were incubated in AIM-V at 37°C and aliquots collected and subsequently fixed in paraformaldehyde at the indicated time points (2, 4, and 6 h) were kept on ice until the termination of the experiment. All of the subsequent procedures were carried out on ice. The samples were stained with an excess of W6/32 antibody specific to HLA ABC or an isotype (IgG2a) antibody control, both directly conjugated with R-phycocerythrin, and after extensive washing in ice-cold PBS analyzed on a FACScan flow cytometer (Becton Dickinson).

Stability of the Total Pool of MHC Class I Heavy Chain. One × 10⁷ cells were incubated in methionine-free medium for 30 min and subsequently pulsed with 100μg/ml[^3]methylamine (Amersham Pharmacia Biotech, Buckinghamshire, United Kingdom) in FCS-free methionine-free medium at 37°C. After 4 h of labeling, the complete medium containing excess of cold methionine was added, and an aliquot of cells was frozen. The remaining cells were incubated at 37°C and harvested at indicated time points (6, 12, 18, and 24 h). Pellets containing equal amount of cells were lysed in a buffer containing 10 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, and 1 mM phenylmethylsulfonyl fluoride. All of the subsequent procedures were carried out on ice. After centrifugation at 15,000 × g, recovered supernatants were precleared with total mouse serum and protein A-Sepharose for 1 h, followed by incubation with W6/32 antibody for 2 h and protein A-Sepharose for 1 h. After extensive washing, beads were boiled in electrophoresis sample buffer. Eluates corresponding to lysates from 10⁶ cells collected at each indicated time point were separated by SDS-PAGE, and gels were then dried and visualized in a PhosphorImager (Molecular Dynamics/Amersham Biosciences, Buckinghamshire, United Kingdom). The intensity of bands corresponding to the MHC class I heavy chain was measured using ImageQuant software (Molecular Dynamics/Amersham Biosciences).

Cytokine Blocking Experiments

IFN-γ Blocking Experiments. SK-N-SH cells were treated with either IFN-γ (5 IU/ml) or 9-cis-RA (10 μM) alone or in the presence of IFN-γ-suppressed rabbit polyclonal antibodies at the concentration 100 ng/ml sufficient to neutralize 5 IU/ml of the lymphokine. The corresponding amounts of rabbit IgG were used as a control. After 96 h cells were collected and assessed for the expression of HLA ABC at the cell surface by flow cytometry. The levels of MHC class I expression in IFN-γ- or RA-treated samples were compared with that of cells kept in complete medium or medium containing DMSO, respectively.

TNF-α Blocking Experiments. SK-N-SH cells were treated with either TNF-α (30 ng/ml) or 9-cis-RA (10 μM) alone or in the presence of 100 ng/ml of recombinant soluble TNF-R2 (Enbrel). After 96 h cells were assessed for the expression of HLA ABC at the cell surface by flow cytometry. The levels of MHC class I expression in TNF-α- or RA-treated samples were compared with that of cells kept in complete medium or medium containing DMSO, respectively.

RESULTS

RA Derivatives Increase the Levels of HLA ABC Complexes at the Cell Surface of Neuroblastoma Cells. The density of specific ligand at the surface of target cells is one of the main parameters determining the degree of CTL activation. Therefore, the ability to induce MHC class I complexes at the cell surface was chosen to assess the immunomodulating capacity of RA on different cell lines used in our study.

We found that ~50% of neuroblastomas (thereafter referred to as...
“responders”) responded to 9-cis-RA treatment by up-regulating (more than 1.5 fold) the HLA class I at the cell surface (Table 1; Fig. 1). In agreement with this observation, the total pool of MHC class I heavy chain in cell lysates of RA-treated cells was also increased (Fig. 3). The induction of class I molecules in neuroblastomas was not specific for one RA-derivative only and could also be seen with all-trans-RA and Ro 13–6307 (Fig. 2).

A proportion of neuroblastomas (thereafter referred to as “nonresponders”) did not change the levels of surface MHC class I on RA treatment (Table 1) and failed to induce the total pool of class I heavy chain (Fig. 3). This nonresponsiveness was affected by neither the increased concentrations nor the repeated treatment with different retinoids for a period of 6–8 days (data not shown). This phenomenon could not be explained by the general resistance of these cells to RA treatment, because morphological changes compatible with RA-induced cell differentiation were observed upon culturing of nonresponders in the presence of different RA derivatives, such as 9-cis-RA, all-trans-RA, and R0 13–6307 (data not shown).

The antibody specific for HLA ABC (clone W6/32) used in our experiments recognizes classical as well as nonclassical HLA molecules, such as HLA-E and HLA-G. Therefore, we checked whether the up-regulation of individual alleles, such as HLA-A2 or HLA-A11, known to be important restriction elements in CTL-mediated tumor recognition (19), contributed to the increase of class I complexes on RA treatment. Indeed, both HLA-A11 (Fig. 1C) and HLA-A2 (Fig. 1D) were efficiently induced by 9-cis-RA in SK-N-SH and CHP-212 cell lines, respectively.

RA Increases the Stability of MHC Class I Complexes in Neuroblastoma Cells. The increased amounts of heavy chain on RA treatment may result from the induction of transcription and/or translation of this molecule, or may reflect the increased half-life of MHC class I complexes. The latter is favorable for recognition of tumors by CTLs (20–22). We monitored the effect of RA on the stability of class I complexes in total cell lysates (Fig. 4, A and B) and at the cell surface of neuroblastoma cells (Fig. 4C). We found that the half-life of class I molecules in lysates of 35S-labeled SK-N-SH cells increases from 8–10 h to 18–20 h on RA treatment. In agreement with this observation, the MHC class I complexes were more stable at the cell surface of RA-treated as compared with control SK-N-SH cells (Fig. 4C). Not more than 6–8% of the initial amount of MHC I complexes were lost from the cell surface during 6 h after BFA treatment in neuroblastoma cells.

Table 1 RA derivatives increase the expression of MHC class I complexes at the surface of neuroblastoma cells

Neuroblastoma cell lines were treated with 9-cis-RA for 72 h, and surface expression of MHC class I complexes was monitored by FACS using W6/32 antibody specific to HLA ABC. The MFI obtained with the isotype control (MFI isotype) and W6/32 (MFI MHC class I) antibody are shown for each cell line. The ratio between the mean fluorescence intensity obtained in the control and RA-treated samples was calculated and expressed as fold change in MHC class I expression. Data of one representative of three to six performed experiments.						
Control	RA					
Cell line	MHC change (fold)	Responder (+/−)	MFI* isotype	MFI MHC class I	MFI isotype	MFI MHC class I
SK-N-BE(2)	1.1	−	8	44	14	49
Lan5	0.9	−	5	925	5	813
SH-SYSY	2.0	+	6	81	6	159
MC-1X6	6.5	+	4	320	10	2073
SK-N-AS	1.7	+	3	1267	8	2173
FL2	1.1	+	4	913	4	989
SK-N-SH	6.4	+	4	189	9	1203
SK-N-DZ	1.1	−	3	21	5	23
IMR32	1.1	−	3	60	6	32
Lan1	0.8	−	9	339	8	285
CHP-212	3.1	+	6	340	8	1038

* MFI, mean fluorescence intensity.

Fig. 1. The expression of total HLA class I and individual alleles is induced by RA at the surface of neuroblastoma cells. SK-N-SH and CHP-212 cell lines were treated with 9-cis-RA for 72 h and checked for the surface expression of HLA-ABC (A and B), HLA-A11 (C), and HLA-A2 (D) using immunostaining with W6/32, HB164, and HB54, respectively, with subsequent FACS analysis. Filled histogram indicates isotype control, and ———untreated and RA-treated cells, respectively. Numbers in C and D indicate mean fluorescence intensity. Data obtained from one representative of three performed experiments.

Fig. 2. Different derivatives of RA increase the total pool of HLA class I at the surface of neuroblastoma cells. SK-N-SH (A) and CHP-212 (B) cell lines were treated with 9-cis-RA, all-trans RA, or Ro 13–6307 for 72 h and checked for the surface expression of HLA ABC using immunostaining with W6/32 antibody with subsequent FACS analysis. Data obtained from one representative of three performed experiments.

9-cis-RA-treated samples, whereas HLA ABC levels in control cells were already reduced by 20%. Additional comparative analysis of the surface complex stability appeared to be thwarted due to high toxicity of BFA for neuroblastoma cells.

RA Induces Expression of the Immunoproteasomal Subunits in Neuroblastoma Cells. Presentation of most MHC class I-restricted peptide epitopes is proteasome-mediated and TAP-dependent (23, 24). Therefore, we investigated the effects of RA on the expression of the immunoproteasomal subunits in neuroblastoma cells. The expres-
The expression of the MHC class I heavy chain in total cell lysates of neuroblastoma cell lines was monitored by Western blot before and after RA-treatment. Expression of actin was used as a control of loading.

RA

Heavy chain

Actin

Fig. 4. RA increases the stability of MHC class I complexes in neuroblastoma cells. A, MHC class I complexes in the total cell lysate of metabolically labeled SK-N-SH cells either untreated (control) or treated with 9-cis-RA were monitored in pulse-chase experiments using immunoprecipitation with subsequent autoradiography as described in “Materials and Methods.” B, percentage of MHC class I expression at each time point of the pulse-chase experiment shown in A was calculated from densitometric analysis as follows: intensity of the specific band at the indicated time point/albumin intensities of the specific band at time zero × 100. C, stability of MHC class I complexes at the cell surface of SK-N-SH cells. The amount of class I molecules at the cell surface of RA-treated (light bars) and control cells (dark bars) was monitored after 2, 4, and 6 h after exposure to BFA. Mean fluorescence intensity for each sample was calculated as a difference between the values obtained with W6/32 and isotype control antibody. The resulting intensity of fluorescence at each time point is shown as a percentage decrease relative to the intensity of fluorescence in cells before BFA-treatment (indicated as % MHC decrease). One representative experiment of three performed. The following designations are used in the figure: RA (cells pretreated with 10 μM of RA for 72 h), control (DMSO-treated cells).
the CTL assay (Fig. 7A). However, MC-IXC cell line did not significantly up-regulate HLA-A11 in response to RA treatment, probably due to the relatively high steady-state expression level of this molecule at the cell surface (Fig. 7D). We surmised that in this situation the modulation of the expression of adhesion molecules may affect the outcome of CTL-mediated cytotoxicity. In fact, the adhesion molecule ICAM-1 was significantly (up to 10-fold) up-regulated in both neuroblastoma cell lines on RA-treatment (Fig. 7, E and F), thus correlating with the increased lysis by CTLs.

RA Increases Susceptibility of Neuroblastoma Cells to the By-stander Cytotoxic Activity of CTLs. Activated CTLs express a number of effector molecules capable of inducing apoptosis in the target in a HLA-nonrestricted manner. These include: Fas-L, TRAIL, IFN-γ and TNF-α (26–28). The CTL clone BK 289 used in our study possesses the phenotype of activated memory T cells, and expresses Fas-L and TRAIL (data not shown). We investigated whether RA can interfere with the sensitivity of tumors to death receptor-mediated apoptosis induced by CTLs in a bystander fashion. Neuroblastoma cells, either untreated or treated with 9-cis-RA, were coincubated with BK 289, and 51Cr release was measured after 16 h. Only relatively weak lysis of SK-N-SH was detected (at maximum 20% at 5:1 E:T ratio), whereas MC-IXC cells were not recognized. Pretreatment of tumor cells with 9-cis-RA resulted in a 3–4-fold more efficient killing by CTLs (Fig. 9).

RA Treatment Facilitates Tumor Lysis by NK Cells Despite the Up-Regulation of MHC Class I at the Cell Surface. High density of HLA class I at the surface of neuroblastoma cells may serve as an inhibitory signal preventing activation of NK cells. For that reason we examined the sensitivity of RA-treated targets to NK-mediated recognition. Two types of effectors, NK cell line Nishi (Fig. 10A) and polyclonal NK cultures obtained from the blood of healthy donors (Fig. 10B), were used against either untreated or RA-treated SK-N-SH cells as targets in a 4-h 51Cr release assay. Despite 5-fold up-regulation of HLA class I at the cell surface in RA-treated samples (data not shown), these cells were either equally sensitive to recognition by Nishi cells (Fig. 10A) or appeared to be more efficiently lysed by freshly isolated NK cultures at a range of E:T ratios (Fig. 10B).

DISCUSSION

Tumor-specific responses mediated by CD8+ CTLs provide an example of highly specific recognition of the unique peptide structures associated with HLA molecule at the surface of malignant cells followed by the rapid and directed release of cytolytic granules (26), induction of ligands for death receptors, such as Fas-ligand and TRAIL (27), and production of cytokines that either facilitate the CTL effector functions mentioned above, or serve as inducers of apoptosis in the tumor target (28, 29). Development of new methods for improving MHC class I-restricted antigen presentation in malignant cells represent one of the major tasks of tumor immunology. A few biological molecules are known to act as positive regulators of the MHC class I presentation machinery. These include IFN-γ and TNF-α (9, 10) mainly produced by the effector cells of the immune system at the sites of inflammation. Here we demonstrate that RA derivatives induce the expression of different components of the MHC class I presentation machinery in neuroblastoma cells (Figs. 3 and 5), increase the half-life of MHC class I complexes (Fig. 4), and enhance the sensitivity of neuroblastoma cells to lysis by CTLs, both in the MHC class I-restricted (Fig. 7) and HLA-nonrestricted fashion (Figs. 9 and 10). Importantly, the effects of retinoids on the MHC class I pathway in neuroblastomas did not involve IFN-γ and/or TNF-α as intermediate messengers (Fig. 6). To our knowledge, this is the first demonstration of inflammation unrelated, naturally produced biological molecules that induce systemic modulation of antigen presentation in nonprofessional antigen-presenting cells.

A number of reasons prompted us to investigate the effects of RA on the MHC class I processing and presentation in neuroblastomas. First, retinoids are currently in use as a treatment modality in neuroblastoma patients. Second, a systematic analysis of the antigen presentation in tumor cells after administration of retinoids was never performed before, thus limiting the possibility to assess the potential of combining RA treatment with T cell-based immunotherapy of neuroblastoma.

During the past decade several reports addressed the effect of RA on the immunogenicity of tumors of various origins but were usually limited to monitoring the expression of surface HLA and adhesion molecules. These studies generated controversial results. Several groups have demonstrated that the exposure to therapeutic doses of RA was able to significantly increase the expression of MHC class I and/or adhesion molecules, such as ICAM-1 and lymphocyte function

Table 1. Effect of RA on the expression of immunoproteasomal subunits in neuroblastoma cells. The expression of LMP2, LMP7, MECL-1, and PA28α in total cell lysates was monitored by Western blot before and after RA treatment.

<table>
<thead>
<tr>
<th>MC-IXC</th>
<th>CHP-212</th>
<th>SK-N-SH</th>
<th>SK-N-BE</th>
<th>SK-N-DZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MECL-1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>LMP2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>LMP7</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>PA28α</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Actin</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 5. Effect of RA on the expression of immunoproteasomal subunits in neuroblastoma cells. The expression of LMP2, LMP7, MECL-1, and PA28α in total cell lysates was monitored by Western blot before and after RA treatment. The expression of actin in samples was used as a control of loading.

Fig. 6. Effect of RA on the MHC class I antigen presentation is independent of the activity of IFN-γ and TNF-α cytokines. A and B, the MHC class I up-regulation in SK-N-SH cells treated with RA is not blocked by IFN-γ-neutralizing antibodies. The levels of the MHC class I expression in control cells (untreated) or cells treated with either IFN-γ (IFN-γ) in A and B were monitored by flow cytometry. Histogram profiles of MHC class I expression in each sample from one representative of two experiments are shown in the figure. C and D, the up-regulation of MHC class I in SK-N-SH cells treated with RA is not blocked by TNF-α-neutralizing antibodies. The levels of MHC class I expression in untreated cells or cells treated with either TNF-α (C) or 9-cis-RA (D) alone or in the presence of soluble recombinant TNF-R (anti-TNFα in C and D) were monitored by flow cytometry. Histogram profiles of MHC class I expression in each sample are shown. One representative of two experiments.
antigen-3 (LFA-3) in human cervical carcinoma (15, 30), melanoma, glioma, teratocarcinoma (11), neuroblastoma cell line SK-N-SH (12), human glioblastoma cell lines (13), and myelocytic leukemia cells (31). Others claimed that RA exhibited no effect on the expression of cell surface molecules, including HLA class I and class II antigens, ICAM-1 and -2, and LFA-3 (13, 32). Moreover, several studies have demonstrated down-regulation of HLA molecules on RA-induced differentiation of a human embryonic stem line (33).

The density of specific peptide:MHC complex at the surface of the target is one of the crucial parameters determining the efficacy of CTL activation. For that reason, surface expression of total HLA ABC in neuroblastomas was chosen by us as a parameter of responsiveness of the MHC class I presentation pathway to RA treatment (Table 1). The up-regulation of the total pool of MHC class I molecules in 5 of 11 neuroblastoma lines varied from 1.6- to 6.5-fold. Importantly, an increase of individual HLA alleles such as HLA-A2 and HLA-A11 was also observed (Fig. 1), additionally validating the results obtained with the W6/32 antibody cross-reacting with nonclassical HLA alleles. The W6/32 antibody used in our study recognizes class I heavy chains in association with β2m; therefore, our results contradict a previously published observation that differentiation of neuroblastomas with RA mainly induces MHC class I molecules not bound to the light chains (34). We failed to detect significant changes in the expression of surface MHC I complexes in 6 of 11 neuroblastoma lines even at the late time points of observation. The absence of MHC class I induction in these neuroblastoma lines could not be accounted for by a general nonresponsiveness to retinoids, because these cell lines exhibited morphological and biochemical changes compatible with growth arrest and/or apoptosis (data not shown). The mechanisms preventing the modulation of MHC class I in this group of neuroblastomas remain unclear.

Limited data are available on the nature of signals augmenting the half-life of MHC complexes in nonprofessional antigen-presenting cells. The ability of IFN-γ and TNF-α to increase the stability of MHC class I complexes was demonstrated in both mouse and human cells (reviewed in Ref. 5). Here we report a >2-fold increase in the stability of MHC class I complexes after RA treatment that is independent of proinflammatory cytokines. The precise mechanisms of these changes remain to be investigated. It is tempting to speculate that formation of the “immunoproteasome” and induction of PA28α Fig. 7. RA treatment increases MHC class I-restricted peptide-specific lysis of neuroblastoma cells by CD8+ CTLs. The HLA-A11+ neuroblastoma cell lines SK-N-SH (A) and MC-IXC (B), either untreated (□) or treated with RA (●) for 96 h were prepulsed with the IVT peptide at the indicated concentrations and tested for sensitivity to lysis by the peptide-specific HLA-A11-restricted CD8+ CTL clone BK289 in a standard 4 h 51Cr release assay at 1:1 E:T ratio. Surface expression of HLA-A11 (C and D) and ICAM-1 (E and F) was determined by immunostaining with relevant antibodies (see “Materials and Methods”) and FACS analysis. G, DMSO- or RA-treated SK-N-SH and MC-IXC cell lines either prepulsed with the 10−7 M of the IVT peptide or left unpulsed, were tested for sensitivity to lysis by the peptide-specific HLA-A11-restricted CD8+ CTL clone BK289 in a standard 4 h 51Cr release assay at 2:1 E:T ratio. Mean in each panel represent % specific lysis obtained from at least four experiments performed with each cell line; bars, ±SD.
observed in RA-treated neuroblastomas (Fig. 5) may alter the peptide repertoire that is available for binding. Moreover, changes in the expression of MHC class I-associated chaperones and altered recycling of class I complexes may also contribute to this phenomenon. Notably, we failed to observe a detectable improvement in the expression of the TAP heterodimer after RA treatment (data not shown). This could be a result of remodeling of the ER influencing the expression of the ER-anchored proteins as observed in some models in the course of terminal differentiation induced by RA (35). Nevertheless, despite the absence of detectable changes in the expression of peptide transporters, some neuroblastomas exposed to retinoids had higher density and stability of the MHC class I complexes at the cell surface consistent with the sufficient supply of “optimal peptides” available for loading onto HMC (36).

The amount and quality of surface MHC class I complexes determine the outcome of recognition of tumor targets by different effector cells of the immune system. The main T-cell subset dependent on these parameters is CD8+ CTLs. The data on the sensitivity of neuroblastomas to recognition and elimination by specific CTLs is limited. We found that RA treatment results in the enhanced lysis of neuroblastomas by peptide-specific MHC class I-restricted CTL clones at many peptide concentrations (Fig. 7, A and B). This correlated with the enhanced levels of the restriction element (HLA-A11) at the cell surface of RA-treated neuroblastoma (Fig. 7C) and/or elevated levels of the ICAM-1 molecule (Fig. 7, E and F). Although relatively weak (about 10–15%) up-regulation of HLA A11 was usually induced by RA in MC-IXC (Fig. 7D), this line became more sensitive to killing by CTLs (Fig. 7B), which may be explained by the significant induction of ICAM-1 (Fig. 7F). To our knowledge, this is the first demonstration of the effect of retinoids on the CD8+ CTL lysis of neuroblastomas, suggesting that treatment with retinoids and CTL-based immunotherapy may have a synergistic effect.

In contrast to CTLs, NK cells can be inhibited, rather than activated by high levels of MHC class I at the surface of tumor targets (37). It was also reported that all-trans RA decreases the susceptibility of a gastric cancer cell line, hepatic cancer, and promyelocytic leukemia cell lines to lymphokine-activated killer cytotoxicity (32). However, this was not the case for RA-treated neuroblastomas, because freshly isolated polyclonal NK cultures recognized RA-treated neuroblastomas more efficiently as compared with untreated cells (Fig. 10B). Several factors could contribute to this phenomenon; first, the elevated levels of adhesion molecules induced by RA (data not shown). Second, the RA-inducible molecule MICA that serves as a ligand for activating NKG2D receptors of human natural killer cells (reviewed in Ref. 38) has been shown to override the inhibiting signal induced by high levels of MHC class I. MICA is expressed by neuroblastoma cell lines used in our study (data not shown), which may provide another explanation for the enhanced sensitivity of neuroblastoma cells to NK-mediated lysis. This assumption is in accordance with the previously published finding that RA-induced increase in the ICAM-1 levels were only partly responsible for the increase in susceptibility of tumor cells to LAK cells (39).

Characterization of the immune phenotype and cytotoxic activity of neuroblastoma-associated tumor-infiltrating lymphocytes has shown the presence of CD8+ and CD4+ T cells. Both T-cell populations were polyclonal, and cytokine production by CD4+ clones was of the T-helper I profile and similar to that observed for CD8+ CTLs (40). The contact of tumor cells with tumor-infiltrating lymphocytes may result in the induction of apoptosis in an MHC class I-independent fashion via death receptors, such as FAS, TRAIL, and/or TNF receptors I and II. The MHC class I nonrestricted “bystander” recognition of neuroblastoma cells by T cells was induced (Fig. 9B) or additionally up-regulated (Fig. 9A) by pretreatment of targets with 9-cis RA. Moreover, RA-treated neuroblastomas exhibited higher sensitivity to apoptosis induced by either soluble recombinant TRAIL or by the FAS-agonistic antibody CH11 (41) that was additionally enhanced when these molecules were applied in combination with TNF-α and IFN-γ (data not shown).

Collectively, our data suggest that treatment of neuroblastoma cells with RA derivatives facilitates tumor lysis by different subsets of effector lymphocytes.

Fig. 7. Bystander T cell-mediated cytolysis of neuroblastoma cells treated with RA is higher than that of untreated tumors. SK-N-SH (A) and MC-IXC (B) cells either untreated (○) or treated with RA (■) for 96 h were preincubated with the IVT peptide at the indicated concentrations and tested for sensitivity to lysis by the peptide-specific HLA-A11-restricted CD8+ CTL clone BK289 in a standard 4 h 51Cr release assay at 2:1 E:T ratio. Data from one of two performed experiments.

Fig. 8. RA treatment does not affect MHC class I-restricted peptide-specific lysis of “nonresponder” neuroblastoma cells by CD8+ CTLs. The HLA-A11+ neuroblastoma cell lines SK-N-BE (A) and SK-N-FI (B), either untreated (○) or treated with RA (■) for 96 h were preincubated with the IVT peptide at the indicated concentrations and tested for sensitivity to lysis by the peptide-specific HLA-A11-restricted CD8+ CTL clone BK289 in a standard 4 h 51Cr release assay at 2:1 E:T ratio. Data from one of two performed experiments.

Fig. 9. Bystander T cell-mediated cytolysis of neuroblastoma cells treated with RA is usually induced by RA in MC-IXC (Fig. 7D), this line became more sensitive to killing by CTLs (Fig. 7B), which may be explained by the significant induction of ICAM-1 (Fig. 7F). To our knowledge, this is the first demonstration of the effect of retinoids on the CD8+ CTL lysis of neuroblastomas, suggesting that treatment with retinoids and CTL-based immunotherapy may have a synergistic effect.

In contrast to CTLs, NK cells can be inhibited, rather than activated by high levels of MHC class I at the surface of tumor targets (37). It was also reported that all-trans RA decreases the susceptibility of a gastric cancer cell line, hepatic cancer, and promyelocytic leukemia cell lines to lymphokine-activated killer cytotoxicity (32). However, this was not the case for RA-treated neuroblastomas, because freshly isolated polyclonal NK cultures recognized RA-treated neuroblastomas more efficiently as compared with untreated cells (Fig. 10B). Several factors could contribute to this phenomenon; first, the elevated levels of adhesion molecules induced by RA (data not shown). Second, the RA-inducible molecule MICA that serves as a ligand for activating NKG2D receptors of human natural killer cells (reviewed in Ref. 38) has been shown to override the inhibiting signal induced by high levels of MHC class I. MICA is expressed by neuroblastoma cell lines used in our study (data not shown), which may provide another explanation for the enhanced sensitivity of neuroblastoma cells to NK-mediated lysis. This assumption is in accordance with the previously published finding that RA-induced increase in the ICAM-1 levels were only partly responsible for the increase in susceptibility of tumor cells to LAK cells (39).

Characterization of the immune phenotype and cytotoxic activity of neuroblastoma-associated tumor-infiltrating lymphocytes has shown the presence of CD8+ and CD4+ T cells. Both T-cell populations were polyclonal, and cytokine production by CD4+ clones was of the T-helper I profile and similar to that observed for CD8+ CTLs (40). The contact of tumor cells with tumor-infiltrating lymphocytes may result in the induction of apoptosis in an MHC class I-independent fashion via death receptors, such as FAS, TRAIL, and/or TNF receptors I and II. The MHC class I nonrestricted “bystander” recognition of neuroblastoma cells by T cells was induced (Fig. 9B) or additionally up-regulated (Fig. 9A) by pretreatment of targets with 9-cis RA. Moreover, RA-treated neuroblastomas exhibited higher sensitivity to apoptosis induced by either soluble recombinant TRAIL or by the FAS-agonistic antibody CH11 (41) that was additionally enhanced when these molecules were applied in combination with TNF-α and IFN-γ (data not shown).

Collectively, our data suggest that treatment of neuroblastoma cells with RA derivatives facilitates tumor lysis by different subsets of effector lymphocytes.

Fig. 10. Effect of RA treatment on killing of neuroblastomas by NK cells. SK-N-SH cells either untreated (○) or treated with RA (■) and K562 cell line (●) were used as targets for the NK lymphoma cell line Nishi (A) or polyclonal NK cultures established from healthy donor (B) in a standard 4 h 51Cr release assay. One representative experiment is shown in the figure.
The response rates in human neuroblastomas are low with available therapeutic modalities. Our findings suggest that the combined application of RA and T cell-based immunotherapy may be a promising and effective combination for the treatment of neuroblastoma.

REFERENCES

Retinoids Act as Multistep Modulators of the Major Histocompatibility Class I Presentation Pathway and Sensitize Neuroblastomas to Cytotoxic Lymphocytes

Simona Vertuani, Anna De Geer, Victor Levitsky, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/22/8006

Cited articles
This article cites 38 articles, 10 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/22/8006.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/63/22/8006.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.