Inducible Prostate Intraepithelial Neoplasia with Reversible Hyperplasia in Conditional FGFR1-Expressing Mice

Kevin W. Freeman,1,2 Bryan E. Welm,2,3 Rama D. Gangula,1 Jeffrey M. Rosen,2,3 Michael Ittmann,4 Norman M. Greenberg,2,3 and David M. Spencer1,2

1Department of Immunology, 2Program in Cell and Molecular Biology, 3Department of Molecular and Cellular Biology, and 4Department of Pathology, Baylor College of Medicine, Houston, Texas

ABSTRACT

Accurate determination of the contributions of oncogenes toward tumor progression requires their regulation. Herein, we created transgenic mice with prostate-specific expression of ligand-inducible FGFR1 or FGFR2, based on lipid-permeable dimerizing molecules, called chemical inducers of dimerization. Despite extensive homology and equivalent expression by both chimeric receptors in the ventral prostate gland, only FGFR1 triggers detectable nuclear translocation of Erk and progression to prostatic intraepithelial neoplasia (PIN). Induction of PIN grade I-II, indicated by multiple layers of atypical cells, is seen consistently by 12 weeks of chemical inducers of dimerization treatment. By 6 months, more extensive nuclear atypia, thickened “reactive” stroma, and basement membrane herniation occurs, corresponding to PIN IV. By timed removal of FGFR1 signaling, we show that induced hyperplasia is reversible until extensive intraductal vascularization occurs, but continued progression requires prolonged FGFR1 signaling. Additionally, by highlighting differences between the two receptors and creating the foundation for controlling FGFR1 signaling during prostate cancer progression, a model of early stage prostate cancer is established for developing targeted intervention directed toward the FGFR signaling axis.

INTRODUCTION

Despite improvements in the management of organ-confined disease, CaP5 will claim ~30,000 lives in the United States in 2003 (1), largely due to the absence of effective treatment for metastatic disease. More accurate modeling of CaP is required to better understand the molecular signaling events and pathological stages associated with disease progression, and to facilitate development of more effective therapeutics. Several mouse models of CaP have been developed previously (2). These models fall into two broad categories, the more aggressive SV40 T antigen-based models, such as TRAMP (3) or “Lady” (4) that target multiple tumor suppressor genes, and a variety of other less aggressive models that target a single proto-oncogene or tumor suppressor molecule, such as FGF-8 (5) or PTEN (6). Whereas the single-gene models tend to highlight the early stages of progression, TRAMP mice consistently develop metastatic CaP by 28 weeks of age, allowing for therapeutic studies that span a relatively short time (7, 8). Whereas both sets of models can help determine genetic lesions capable of contributing to disease, neither permits temporal ordering of deleterious genetic events or highlights whether those genetic changes only initiate disease or are also required for disease maintenance, and may, therefore, be targeted for therapeutic intervention.

To achieve temporal control of the FGFR axis implicated in early changes associated with CaP (9) we used CID technology, which allows rapid activation of target proteins, such as growth factor receptors, that are naturally activated by oligomerization (10). CID-inducible growth factor receptors are engineered by substituting the ligand-binding extracellular domain of the receptor with a cytoplasm-localized drug-binding domain (e.g., FKBP12 variants), which, on binding of a lipid-permeable dimeric drug (e.g., AP20187), causes receptor oligomerization, transphosphorylation, and activation of downstream signaling cascades (11–14). Because the investigator dictates the schedule of AP20187 administration, temporal control in the activation and inactivation of the receptor is possible, highlighting the pathological features dependent on the growth factor receptor for both initiation and maintenance of phenotype. Additionally, unlike biogenic transcription switch (e.g., tet) -regulatable systems or conditional lesions based on recombination (e.g., Cre/lox), this approach requires only a single transgenic change, greatly simplifying breeding strategies.

In the currently accepted model of FGF signaling in the normal prostate, stromal-derived FGF7/keratinocyte growth factor and FGF10 help maintain epithelial differentiation and survival through glandular epithelium-confined FGFRII-IHb, contributing to epithelial dependence on the stroma. During progression to malignancy, the observed molecular changes in the FGF signaling axis that occur in the epithelium include loss of normal FGF2 signaling (by isoform changes that alter ligand binding or by loss of FGF2 expression), acquisition of FGFR1 expression, and up-regulation of distinct FGF family members. These changes likely allow autocrine signaling via FGFR1 and possibly FGFR2, permitting independence from stromal-derived FGFs and, thus, deregulated growth of the epithelium (9, 15). In addition to observed changes in CaP, these alterations are common in bladder and salivary adenocarcinomas, where up-regulation of FGFR1 is associated with tumor progression, and ectopic expression of FGFR2 inhibits progression and growth of transplanted tumors (16, 17). Despite accumulating data in model tumor systems, the effects of these two receptors have not been investigated before in a normal prostate epithelium, although overexpression of FGFs in the prostate has led to the development of prostatic hyperplasia and PIN (5, 18–20).

In this study we focused on the hyperplasia-stimulating effects of ectopic FGFR1 signaling on normal prostatic epithelium, demonstrating diverse effects of iFGFR1 and iFGFR2 in a normal prostate background, and showing dependence of hyperplasia and proliferation on continued iFGFR1 signaling. Whereas the profound hyperplasia that is seen after only 1 month of FGFR1 stimulation is completely reversible, neovascularization, which is well established by 2 months, is associated with hyperplastic cells becoming largely independent of iFGF1 signaling for their survival. Moreover, moderate-term (i.e., <6 months) iFGFR1 signaling can promote high-grade (i.e., type IV) PIN that is associated with a thickened stroma, fulminant glandular hyperplasia, nuclear atypia, and basement membrane herniation. This
MATERIALS AND METHODS

Construction of Transgene. The plasmid construct pSH1/M-FGFR2-FvFvls-E was created by PCR amplifying the cytoplasmic domain of FGFR2 using forward primer 5'-AATTAACCTGAGGATCTACGACGAGC-GACGCT-3' and reverse primer 5'-AGTTGTCGAGTGTATTTAACCTGTCG-CTTTATGTTGTT-3', following the same procedure for making pSH1/M-FGFR1-FvFvls-E as described previously (21). Briefly, the cytoplasmic signaling domains of FGFR1 and FGFR2 were PCR amplified with XhoI and SalI flanking sites, and cloned into parent expression vector pSH1/M-FvFvls-E (22). The XhoI-BamHI fragment of the ARR_pb promoter was subcloned into the Clal-BamHI site of expression vector, KBPA, to create ARR_pb-KBPA. The NotI-MunI fragments from pSH1/M-FGFR1-FvFvls-E and pSH1/M-FGFR2-FvFvls-E were subcloned into the EcoRI site of ARR_pb-KBPA to create ARR_pb-KBPA-iFGFR1 and ARR_pb-KBPA-iFGFR2. Both transgene constructs were cleaved with NotI and KpnI, and fragments were isolated by agarose gel and purified by Qiagen (Valencia, CA) spin columns for injection into FVB strain-derived embryonic stem cells.

Mice and Reagents. All of the mice were FVB (bred in-house) background and kept pathogen free in the Texas Mouse Facility under veterinary supervision. AP20187 was dissolved in 16.7% propanediol, 22.5% PEG400, 1.25% ethanol, and kept pathogen free in the Texas Mouse Facility under veterinary supervision. Mice were housed in the Texas Mouse Facility under veterinary supervision.

Immunoprecipitation and Western Blot Analysis. Organs were harvested, frozen, pulverized, and then lysed in 200–300 μl of radioimmunoprecipitation assay buffer [0.01 M Tris-Cl (pH 8.0), 0.14 M NaCl, 1% Triton X-100, 1% sodium deoxycholate, and 0.1% SDS] with 1 mM phenylmethylsulfonyl fluoride and protease inhibitor mixture (Sigma-Aldrich, St. Louis, MO) and incubated on ice for 2 h. SDS-PAGE was performed as described previously (22). Membranes were incubated with primary antibody HA.11 (Covance, Richmond, CA) at 1:5000 or 2–5 μg/ml. Membranes were washed 5X with Tris Buffered Saline plus 0.1% Tween-20 (TBST) for 5–15 min after each antibody step. Bands were visualized with SuperSignal chemiluminescence substrate (Pierce, Rockford, IL). Immunoprecipitation was carried out using the IMMUNO-catcher kit (Cytosign Research Products, Irvine, CA) following the manufacturer’s protocol using 2 μg antiphosphotyrosine antibody 4G10 (Upstate, Lake Placid, NY) for immunoprecipitation and HA.11 immunoblotting as above. Phosphatase inhibitor I and II (Sigma) were added to lysates.

Histology and Immunohistochemistry. Microdissected prostates were placed overnight in 10% neutral phosphate-buffered formalin, transferred to 50% neutral phosphate-buffered formalin/50% ethanol for 1 h and then 70% ethanol until paraffin embedding. After sectioning (5 μm) and mounting onto ProbeOn-Plus slides (Fisher, Pittsburgh, PA), slides were deparaffinized and hydrated with progressive xylene washes followed by a gradient of ethanol and PBS. Slides were either directly stained with H&E or immunostained. For antigen retrieval, slides were either placed into boiling 10 mM citric acid for 30 min and allowed to cool at 25°C or were protease K-treated. Both sets were quenched in 3% H2O2, blocked with Power Block (Biogenex Laboratories, San Ramon, CA) for 10 min at 25°C, and incubated with either anti-Ki-67 antibody (Novacabra, Newcastle upon Tyne, United Kingdom) at 1:1000, anti-CD31/PECAM (BD Pharmingen, San Diego, CA) at 1:100, or anti-phospho-Erk (Cell Signaling Technology, Beverly, MA) at 1:100 in Power Block overnight at 4°C, followed by incubation with biotin-conjugated goat antirabbit antibody (Vector Laboratories, Burlingame, CA) at 1:2000 or goat antiantibody (Santa Cruz Biotechnology) at 1:100 for 1 h. After each incubation, slides were washed with PBS plus 0.1% Tween 20 for 5 min.

RESULTS

Targeting Conditional FGFR1 and FGFR2 to the Prostate. In these studies iFGFR1 and iFGFR2 transgenes were placed under the transcriptional control of the prostate epithelium-targeted composite probasin promoter, ARR_pb (23). The iFGFR constructs each contain an NH2-terminal myristoylation-targeting signal sequence for membrane localization, followed by the intracellular signaling domains of FGFR1 or FGFR2, two-antidom AP20187 drug binding domains (F,2) and a COOH-terminal HA epitope tag introduced into an expression vector, KBPA, backbone (Fig. 1A). FVB blastocysts were injected separately with both constructs, leading to two founder lines of iFGFR1, collectively named JOCK-1, and one founder line expressing iFGFR2, named JOCK-2. All three of the lines expressed detectable transgene by Western blotting of prostate tissue, and the highest expressing JOCK-1 line was chosen for additional study (data not shown). To determine the tissue-specificity of the transgenes, multiple organs from 12-week-old transgenic mice were homogenized, and tissue lysates were separated by SDS-PAGE followed by anti-HA immunoblotting. This analysis revealed that ARR_pb-driven transgene expression was primarily prostate-specific, consistent with previous reports (Refs. 23, 24; Fig. 1B). Furthermore, to determine expression within the various distinctive lobes of the murine prostate, microdissected anterior (coagulating gland), ventral, dorsal, and lateral lobes were also analyzed for specific transgene expression. In ventral lobes, relatively high-level transgene expression was comparable between JOCK-1 and JOCK-2, and in lateral and anterior lobes, weak but equivalent expression was also seen. However, significantly higher transgene expression was seen in the dorsal prostate of JOCK-2 (Fig. 1C). In both JOCK-1 and JOCK-2 mice, immunohistochemistry with antibodies to HA shows equivalent localization and transgene expression in the luminal epithelial cells of the ventral prostate (Fig. 1, D and E), as well as higher transgene expression in the luminal epithelial cells of the dorsal prostate of JOCK-2 mice (data not shown), matching the expression levels observed by anti-HA immunoblotting. Thus, due to high-level comparable transgene expression, we focused most comparative studies on the ventral prostate lobes of JOCK-1 and JOCK-2 mice.

FGFR1, but not FGFR2, Signaling Leads to Hyperplasia and Dysplasia. To determine the cumulative effects of iFGFR1 and iFGFR2 signaling, 12-week-old male JOCK mice were treated for a period of 1–12 weeks with biweekly i.p. injections of AP20187 (2 mg/kg), which should permit signaling in target prostate tissue for up to 2–3 days after CID administration (see “Materials and Methods”). After drug treatment, prostates were isolated, microdissected, fixed, and processed for histology. In JOCK-1 mice, after 2 weeks of AP20187 treatment, staining with H&E revealed development of low-grade PIN (type I and II; Ref. 25) in the ventral, dorsal-lateral, and anterior prostate (Fig. 2, C and D), and anterior prostate (data not shown). In contrast, similarly treated JOCK-2 mice showed no obvious phenotypic changes in any lobe, including the ventral and dorsal-lateral prostate (Fig. 2, E and F), suggesting that these homologous receptors have fundamental differences. Furthermore, AP20187 had no effect on wild-type mice treated for 12 weeks (Fig. 2, A and B), consistent with Phase I clinical trials of AP20187 analogue, AP1903 (26).

Because no phenotype was observed in the JOCK-2 mice, tyrosine phosphorylation of the iFGFR2 was analyzed by immunoprecipitation with antiphosphotyrosine-specific antibodies and immunoblotting with antibodies specific to the HA epitope tag of iFGFR2. From
lysates of total prostate, we observed comparable CID-mediated receptor tyrosine phosphorylation 24 h after CID treatment for both JOCK-1 and JOCK-2 mice, verifying that iFGFR2 was functional (data not shown). Additional previous studies demonstrate that this receptor is functional in mammary epithelium (21) and TRAMP-derived cell lines (30). However, because transgene expression was variable between the different lobes of the prostates of JOCK-1 and JOCK-2 mice, we repeated the above experiment on individual prostate lobes. Although iFGFR1 tyrosine phosphorylation was observed in the ventral lobe of JOCK-1 mice, no receptor tyrosine phosphorylation was observed in the ventral lobe of JOCK-2 mice. Nevertheless, when lysates are immunoblotted for HA, we did observe a CID-induced shift in protein migration of iFGFR2, possibly due to Ser/Thr phosphorylation (Fig. 2G). This suggests that iFGFR2 is activated in the ventral prostate, leading to indirect or indirect modification. Also, phenotypic differences between the ventral prostates of CID-treated JOCK-2 mice versus JOCK-1 mice may still be due to quantitatively lower FGFR2 activation.

Because iFGFR2 tyrosine phosphorylation was observed in intact JOCK-2 prostates, we wanted to determine whether this phosphorylation was localized to the dorsal lobe where JOCK-2 mice show much higher transgene expression than JOCK-1 mice. As predicted, tyrosine phosphorylation of iFGFR2 was detected in the dorsal prostate (Fig. 2H). This suggests that FGFR2 activation is insufficient to induce phenotypic changes in the dorsal prostate after 12 weeks of CID treatment, whereas much lower levels of iFGFR1 are capable of driving the dorsal prostate to PIN II. This demonstrates for the first time that these two receptors can have broadly different effects on normal prostatic epithelial proliferation (Fig. 2, C and D, versus Fig. 2, E and F).

To determine the progressive effects of continuous (or semicontinuous) iFGFR1 signaling over time, we focused on phenotypic changes in the ventral lobe due to the consistent changes we observed in preliminary experiments. Within the first week of AP20187 treatment, increased vacuolization, a marker for increased metabolic activity, and modest hyperproliferation were already apparent (data not shown). From 2 to 4 weeks of CID treatment, JOCK-1 mice showed pronounced hyperproliferation in all lobes of the prostate. (Fig. 3B) By 8 weeks of AP20187 administration, iFGFR1 activation led to the establishment of extensive intraductal vascularization (Fig. 3F), which was not evident in hyperplastic acini at 4 weeks (Fig. 3E). Additionally, increased nuclear atypia, chromatin condensation, and formation of papillary structures were observed (Fig. 3, C and F). By 12 weeks of activation, mice were determined to have low-grade PIN in all of the lobes examined, characterized by epithelial “piling-up,” elongated and hyperchromatic nuclei, and cribriform glandular structures (Fig. 3D), as well as stromal thickening in the dorsal lobes of some mice. Longer-term treatments of 24 and 30 weeks led to the widespread development of “reactive” thickened stroma (Fig. 3J). Additionally, more extensive dysplastic nuclei and herniated acini with extraglandular extension were observed at 24 (Fig. 3, G and H) and 30 weeks (Fig. 3J), consistent with grade IV PIN (25). As an
additional indication of PIN, we observed increases in cytokeratin-8 as early as 12 weeks of age with more profound increases appearing by 24 weeks (data not shown; Ref. 25). These results demonstrate iFGFR1-driven progression of normal epithelial cells to high-grade PIN and show a strong oncogenic effect of FGFR1 on normal prostate epithelium that is not shared by FGFR2.

Hyperplasia Is Reversible Until Neovascularization. In contrast to conditional genetics based on tissue-specific activation of dominant-negative or constitutive alleles (e.g., using Cre/lox technology), a distinct feature of the JOCK model is the ability to remove signaling by withholding CID. After demonstrating the degree to which iFGFR1 signaling could alter normal prostate epithelial cells in <6 months, we wanted to determine at which stages of progression, if any, changes would become irreversible. Therefore, we first investigated the effects of CID withdrawal on the prostate after ~4 weeks of AP20187 treatment, which is before initiation of obvious intraepithelial vascularization. Mice were treated biweekly with CID for 4 weeks, and then AP20187 administration was terminated for various times up to 8 weeks. Although dramatic changes in proliferation were apparent within days (Fig. 5A), loss of supernumerary epithelial cells was gradual over the 8-week period, resulting in a prostate almost indistinguishable from untreated tissue (Fig. 4A versus B; data not shown). Thus, before extensive neovascularization, iFGFR1 signaling is required for maintenance of hyperplasia.

Because newly vascularized tissue might be able to support greater cellularity even in the absence of ectopic signaling, we wanted to determine whether later stages of hyperplasia associated with intraglandular vascularization were also reversible. Therefore, JOCK-1 mice were treated for 8 weeks with CID, when extensive intraglandular vascularization is consistently observed, and treatment was stopped for an additional 8 weeks before histological examination. In contrast to animals treated for only 4 weeks, we observed no loss of hyperplasia in the ventral prostate (Fig. 4, C versus D). Although regression was not observed in the ventral prostate, there was a decrease in proliferation, and additional progression to low-grade PIN was not observed (Fig. 4, E versus F; data not shown). Thus, hyperplasia is reversible until established neovascularization, whereas prolonged iFGFR1 activation is required for continued proliferation and additional progression.

Increased Hyperplasia in JOCK-1 Is Driven Largely by Hyperproliferation. Because hyperplasia can be caused by increased proliferation or decreased apoptosis, we wanted to determine the contributions of both to hyperplasia, as well as the mechanism(s) responsible for reversion to a normal phenotype after AP20187 re-
The vasculature is indicated by black arrows. Herniated acini with cells extending into the stroma (G–I) is indicated by black arrows. Magnification = ×200 (A–D, G, I, and insert), ×400 (E, F, and H), ×100 (J).

DISCUSSION

Although the importance of FGFR1 and FGFR2 in CaP progression has been claimed frequently, published reports of the direct effects of these receptors within the context of a normal prostate gland are only beginning to be reported (20, 27). As an essential step toward better understanding the role of FGFRs in CaP progression, we have developed the first conditionally inducible and reversible CaP model, based on CID and FGFR1 signaling, called JOCK-1. The ability to control growth factor receptor signaling both spatially and temporally has both confirmed previous ideas that FGFR1 promotes CaP progression (28) and has led to new insights into how FGFR1 signaling affects the normal prostate epithelium. The JOCK-1 model demonstrates the dependence of CaP progression on continuous iFGFR1 signaling. This is shown by the reversibility of hyperplasia after early (4-week) CID removal and the termination of progression after later (8-week) CID removal (7 K. W. Freeman and D. M. Spencer, unpublished observations).
removal. Additionally, FGFR1 signaling is necessary for both the initiation and maintenance of proliferation. In contrast, because detectable neovascularization trails hyperproliferation by several weeks, FGFR1 does not appear to directly stimulate angiogenesis, nor does CID removal lead to its reversal. Overall, in our model angiogenesis and stromal thickening appear to be secondary responses to increased epithelial cell numbers. This likely occurs via paracrine signaling from the epithelial cells and is not apparently due to the direct continuous action of iFGFR1 signaling, implying that the response of normal tissue (e.g., increased vasculature) to pathological proliferation is not as reversible as the hyperproliferation itself.

The JOCK-1 model is reflective of what occurs during carcinogenesis when FGFR1, which is not expressed in adult epithelial cells, becomes expressed in the epithelial compartment. In contrast to FGFR1, FGFR2 signaling did not elicit observable changes in our model even after 12 weeks of CID treatment, consistent with a distinct role for FGFR2 in the normal prostate gland. Previously reported models overexpressing FGFR2-IIIb-binding FGFs (i.e., FGF-3 or FGF-7) slowly develop mild hyperplasia. For example, overexpression of FGF-7 in the prostate, under the control of either mouse mammary tumor virus (18) or minimal probasin promoter (20), leads to hyperplasia after 9 months to a year. Whereas low transgene expression could account for the mild phenotype, an alternative explanation supported by our work is that FGFR2 signaling is insufficient for prostate transformation.

A similar hypothesis may explain the observed hyperproliferative effects of prostate-targeted FGF-3 also under the transcriptional control of the mouse mammary tumor virus promoter. In these mice, FGF-3 expression within the urogenital track led to extensive hyperplasia in all of the prostate glands (19), seemingly at odds with the inability of iFGFR2 to trigger hyperproliferation. However, unlike FGF-7, FGF-3 can also signal through other FGFRs, such as FGFR1-IIIb, which has been found in the tumor vasculature of TRAMP mice (29). Overexpression of FGF-8b, which signals through FGFR2-IIIc, FGFR3-IIIc, and FGFR4, also leads to the development of PIN (5), suggesting that activation of other FGF receptors besides FGFR1 can participate in CaP progression.

Unlike in our model where FGFR2 signaling is targeted to the epithelium, ectopic FGFs likely act as paracrine factors of which the direct effects are harder to pinpoint. Thus, our models help to clarify the unique roles for distinct FGFRs. In this regard, we observed differences previously in osteopontin production and Erk phosphorylation between iFGFR1 and iFGFR2 in TRAMP cell lines (30). Differential phosphorylation of FRS2, the major downstream substrate of FGFR, has also been observed between these two receptors (31).

Together, this suggests that dissection of the signaling differences between iFGFR1 and iFGFR2 should illuminate new targets for therapeutic intervention.

JOCK-1 mice show highly reproducible pathological changes and attain grade PIN IV 3 months to a year earlier than in other single genetic lesion-based CaP models (2, 5, 25). Moreover, the effects of FGFR1 are highly penetrant, as 100% of JOCK-1 mice treated for as little as 12 weeks with AP20187 show PIN in virtually every acinus. Therefore, the JOCK-1 model should be ideal for studying the early
Fig. 5. In JOCK-1 mice, activation of iFGFR1 leads to iFGFR1-dependent hyperproliferation and reversible nuclear translocation of phosphorylated Erk that precedes proliferation. The percent of Ki-67 positive cells for at least 3 mice per time point (except t = 18 week) are summarized graphically (A). Paraffin sections of ventral prostates from JOCK-1 mice treated with diluent for 8 weeks (B), or with AP20187 for 2 h (E), 4 weeks (F), or AP20187 for 4 weeks (C) followed by CID removal for 8 weeks (D) were immunostained with antibodies to p-Erk Insets at B–F). All panels are shown at ×200 with insets at ×400. Black and red arrows represent nuclear and apical p-Erk staining, respectively, with corresponding insets similarly color-coded (E).

ACKNOWLEDGMENTS

We thank Dr. Robert Cardiff for guidance on grading PIN lesions, Julie Zhao for expert technical assistance, Richard Cook for a careful reading of the manuscript, and members of the Spencer, Greenberg, and Rosen labs for helpful advice and discussions. AP20187 was a generous gift from ARIAD Pharmaceutical.

REFERENCES

Inducible Prostate Intraepithelial Neoplasia with Reversible Hyperplasia in Conditional FGFR1-Expressing Mice

Kevin W. Freeman, Bryan E. Welm, Rama D. Gangula, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/23/8256

Cited articles
This article cites 31 articles, 15 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/23/8256.full.html#ref-list-1

Citing articles
This article has been cited by 21 HighWire-hosted articles. Access the articles at:
/content/63/23/8256.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.