Keratinocyte Growth Factor Produced by Gastric Fibroblasts Specifically Stimulates Proliferation of Cancer Cells from Scirrhous Gastric Carcinoma

Kazunori Nakazawa, Masakazu Yashiro, and Kosei Hirakawa

Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan

ABSTRACT

It has been previously reported (M. Yashiro et al., Jpn. J. Cancer Res., 84: 883–886, 1994) that a growth factor secreted by human gastric fibroblasts stimulated proliferation of human scirrhous gastric carcinoma cells in vitro, suggesting a similar paracrine action in the gastric submucosa. The present study established the identity of the growth factor as keratinocyte growth factor (KGF). Increase in numbers and incorporation of [3H]thymidine in scirrhous gastric carcinoma cell lines (OCUM-2M and OCUM-11) in response to culture medium from a gastric fibroblast line (NF-8 and NF-21) were duplicated by substitution of KGF and inhibited by addition of anti-KGF antibody. Effects were specific for scirrhous carcinoma cells in distinction to well-differentiated gastric carcinoma cell lines. Fibroblasts, especially gastric fibroblasts, expressed KGF mRNA, whereas gastric cancer cells did not. Conversely, scirrhous gastric cancer cells expressed more KGF receptor mRNA than well-differentiated gastric adenocarcinoma cell, whereas gastric fibroblasts did not express this mRNA. ELISA detected high concentrations of KGF in medium from gastric fibroblasts, much lower concentration in medium from other fibroblasts, and no KGF in medium from gastric cancer cells. Western analysis indicated that KGF in gastric fibroblasts lysates had a molecular weight of M, 19,000, within the range suggested in our previous report. Thus, gastric fibroblasts secretion of KGF is likely to underline the remarkable proliferation of scirrhous gastric cancer cells in a paracrine manner.

INTRODUCTION

Human scirrhous gastric carcinoma (diffusely infiltrating carcinoma, limitis plastica, or Borrmann type 4) is characterized by cancer cell infiltration and proliferation accompanied by extensive stromal invasion. Scirrhous gastric carcinoma, linitis plastica, or Borrmann type 4) is characterized by cancer cell infiltration and proliferation accompanied by extensive stromal invasion. Scirrhous gastric carcinoma cells proliferate extensively in association with fibrosis in the gastric submucosa. Mechanisms responsible for such rapid submucosal cancer cell proliferation are not clearly understood. Yashiro et al. (4) previously reported interactions between scirrhous gastric cancer cells and orthotopic fibroblasts, suggesting that proliferation of scirrhous gastric carcinoma is related to growth factor production of gastric fibroblasts. This factor had a molecular weight between M, 2,600 and M, 25,000 according to gel filtration chromatography (5). Apart from this, the growth factor had not been identified. The present investigation is the first to determine that the growth-stimulating factor from gastric fibroblasts that acts upon scirrhous gastric cancer cells is keratinocyte growth factor (KGF).

MATERIALS AND METHODS

Cell Culture and Cell Lines. The culture medium was composed of DMEM with addition of 2% heat-inactivated FCS (Life Technologies, Inc., Grand Island, NY), 100 IU/ml penicillin (ICN Biomedicals, Costa Mesa, CA), 100 μg/ml streptomycin (ICN Biomedicals), 2 mM glutamine (Bioproducts, Walkersville, MD), and 0.5 mM sodium pyruvate (Bioproducts). Human gastric cancer cell lines (Table 1), including OCUM-2M (poorly differentiated adenocarcinoma), OCUM-11 (poorly differentiated adenocarcinoma), MKN-28 (well-differentiated adenocarcinoma), and MKN-74 (well-differentiated adenocarcinoma) were seeded in a 100-mm dish (Falcon, Lincoln Park, NJ) and cultured in 10 ml of medium at 37°C in a humidified atmosphere containing 5% CO₂ in air. OCUM-2M and OCUM-11 were derived from scirrhous gastric carcinomas. Human fibroblast cell lines were obtained from various organs (Table 1). NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from stomach, esophagus, duodenum, and the skin of a single patient, respectively. Gastric fibroblasts NF-8 and scirrhous gastric cancer cell lines OCUM-2M were obtained from a same patient. NF-21 and OCUM-11 were also obtained from another patient. WI-38, embryonic lung fibroblasts, was used as a positive control because KGF was purified from WI-38 (6).

Preparation of Serum-Free Conditioned Medium (SC-FM). SF-CM from fibroblasts was prepared as follows. Gastric fibroblasts and NF-skin (5.0 × 10⁴ cells/ml) were seeded into 100-mm plastic dishes with 10 ml of DMEM containing 2% FCS and incubated for 3 days. The number of fibroblasts in each dish was ∼2.5 × 10⁵ cells after 3 days of incubation. To obtain SF-CM, fibroblasts were washed twice with Dulbecco’s PBS and then incubated for 3 days in 3 ml of DMEM in each dish and centrifuged at 1000 × g for 5 min. The supernatant was stored as SF-CM at −20°C until use. As a control, DMEM was used instead of SF-CM.

Effect of Fibroblasts on the Growth of Scirrhous Gastric Cancer Cells. Proliferation of cancer cells or fibroblasts was determined by calculating the number of cancer cells or fibroblasts in each dish and centrifuged for 3 days. The number of fibroblasts in each dish was ∼2.5 × 10⁵ cells after 3 days of incubation. To obtain SF-CM, fibroblasts were washed twice with Dulbecco’s PBS and then incubated for 3 days in 3 ml of DMEM in each dish and centrifuged for 5 min. The supernatant was stored as SF-CM at −20°C until use. As a control, DMEM was used instead of SF-CM.

Preparation of Serum-Free Conditioned Medium (SC-FM). SF-CM from fibroblasts was prepared as follows. Gastric fibroblasts and NF-skin (5.0 × 10⁴ cells/ml) were seeded into 100-mm plastic dishes with 10 ml of DMEM containing 2% FCS and incubated for 3 days. The number of fibroblasts in each dish was ∼2.5 × 10⁵ cells after 3 days of incubation. To obtain SF-CM, fibroblasts were washed twice with Dulbecco’s PBS and then incubated for 3 days in 3 ml of DMEM in each dish and centrifuged for 5 min. The supernatant was stored as SF-CM at −20°C until use. As a control, DMEM was used instead of SF-CM.

Effect of Fibroblasts on the Growth of Scirrhous Gastric Cancer Cells. Proliferation of cancer cells or fibroblasts was determined by calculating the number of cancer cells or fibroblasts in each dish and centrifuged for 3 days. The number of fibroblasts in each dish was ∼2.5 × 10⁵ cells after 3 days of incubation. To obtain SF-CM, fibroblasts were washed twice with Dulbecco’s PBS and then incubated for 3 days in 3 ml of DMEM in each dish and centrifuged for 5 min. The supernatant was stored as SF-CM at −20°C until use. As a control, DMEM was used instead of SF-CM.

Effect of KGF on the Growth of Gastric Cancer Cells and Fibroblasts. Proliferation of cancer cells or fibroblasts was determined by calculating the number of cancer cells or fibroblasts in each dish and centrifuged for 3 days. The number of fibroblasts in each dish was ∼2.5 × 10⁵ cells after 3 days of incubation. To obtain SF-CM, fibroblasts were washed twice with Dulbecco’s PBS and then incubated for 3 days in 3 ml of DMEM in each dish and centrifuged for 5 min. The supernatant was stored as SF-CM at −20°C until use. As a control, DMEM was used instead of SF-CM.

Received 5/7/03; revised 9/20/03; accepted 9/29/03.

Grant support: Grants-in-Aid for Scientific Research (C) 13671329 and (B) 13470260 from the Ministry of Education, Science, Sports, Culture and Technology of Japan and by a Grant-in-Aid for the Osaka City University Medical Research Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Expression of KGF and KGFR mRNA by Gastric Cancer Cells and Fibroblasts. We investigated degree of expression of KGF and KGFR mRNA in gastric cancer cells and fibroblasts. KGF mRNA of scirrhous gastric cancer cell lines (OCUM-2M and OCUM-11) was significantly stimulated DNA synthesis of OCUM-11 cells by 21% of synthesis in the control group (Fig. 1B). In contrast, SF-CM from NF-skin cells did not affect the growth of OCUM-11 cells.

Effect of KGF on the Growth of MKN-28, MKN-74, OCUM-2M, and OCUM-11. To investigate relationships between cell types and growth effects of KGF, we compared the effect of KGF on growth of scirrhous gastric cancer cell lines (OCUM-2M and OCUM-11) with that on growth of well-differentiated adenocarcinoma cell lines (MKN-28 and MKN-74) and gastric fibroblasts (NF-8 and NF-21). Although KGF did not affect growth of MKN-28 or MKN-74 cells (Fig. 2), 10 ng/ml KGF significantly increased the number of OCUM-2M cells and OCUM-11 cells by 19% and 24%, respectively, after 96 h (Fig. 2). KGF at 1 ng/ml also significantly increased the number of OCUM-2M cells by 16%. KGF did not affect the growth of fibroblasts and NF-8 and NF-21 cells (data not shown).

Effect of Anti-KGF Antibodies on Growth-Stimulating Activity of CM from Gastric Fibroblasts. To examine the relationship between the growth activity of SF-CM from gastric fibroblasts and KGF, we tested whether neutralizing antibodies against KGF could neutralize the growth-stimulating activity of SF-CM. The stimulating effect of SF-CM from gastric fibroblasts on the growth of OCUM-2M cells or OCUM-11 cells (Fig. 3, A and B) was significantly inhibited by addition of anti-KGF antibody in a dose-dependent manner, compared with a standard group with IgG1 instead of antibody. Bioactivity of the neutralizing antibody against KGF had been characterized in a preliminary experiment (data not shown).

Expression of KGF and KGFR mRNA by Gastric Cancer Cells and Fibroblasts. We investigated degree of expression of KGF and KGFR mRNA in gastric cancer cells and fibroblasts. KGF mRNA of GASTRIC FIBROBLASTS SECRETED KGF IN SCIRRHOUS CANCERS

Statistical Analysis. Data are expressed as the means ± SD from at least three independent determinations. Significance of difference was analyzed using unpaired Student’s t tests. Values of \(P < 0.05 \) were considered to indicate statistical significance.

RESULTS

Effect of KGF on the Growth of MKN-28, MKN-74, OCUM-2M, and OCUM-11. To investigate relationships between cell types and growth effects of KGF, we compared the effect of KGF on growth of scirrhous gastric cancer cell lines (OCUM-2M and OCUM-11) with that on growth of well-differentiated adenocarcinoma cell lines (MKN-28 and MKN-74) and gastric fibroblasts (NF-8 and NF-21). Although KGF did not affect growth of MKN-28 or MKN-74 cells (Fig. 2), 10 ng/ml KGF significantly increased the number of OCUM-2M cells and OCUM-11 cells by 19% and 24%, respectively, after 96 h (Fig. 2). KGF at 1 ng/ml also significantly increased the number of OCUM-2M cells by 16%. KGF did not affect the growth of fibroblasts and NF-8 and NF-21 cells (data not shown).

Effect of KGF on the Growth of MKN-28, MKN-74, OCUM-2M, and OCUM-11. To investigate relationships between cell types and growth effects of KGF, we compared the effect of KGF on growth of scirrhous gastric cancer cell lines (OCUM-2M and OCUM-11) with that on growth of well-differentiated adenocarcinoma cell lines (MKN-28 and MKN-74) and gastric fibroblasts (NF-8 and NF-21). Although KGF did not affect growth of MKN-28 or MKN-74 cells (Fig. 2), 10 ng/ml KGF significantly increased the number of OCUM-2M cells and OCUM-11 cells by 19% and 24%, respectively, after 96 h (Fig. 2). KGF at 1 ng/ml also significantly increased the number of OCUM-2M cells by 16%. KGF did not affect the growth of fibroblasts and NF-8 and NF-21 cells (data not shown).

Effect of Anti-KGF Antibodies on Growth-Stimulating Activity of CM from Gastric Fibroblasts. To examine the relationship between the growth activity of SF-CM from gastric fibroblasts and KGF, we tested whether neutralizing antibodies against KGF could neutralize the growth-stimulating activity of SF-CM. The stimulating effect of SF-CM from gastric fibroblasts on the growth of OCUM-2M cells or OCUM-11 cells (Fig. 3, A and B) was significantly inhibited by addition of anti-KGF antibody in a dose-dependent manner, compared with a standard group with IgG1 instead of antibody. Bioactivity of the neutralizing antibody against KGF had been characterized in a preliminary experiment (data not shown).

Expression of KGF and KGFR mRNA by Gastric Cancer Cells and Fibroblasts. We investigated degree of expression of KGF and KGFR mRNA in gastric cancer cells and fibroblasts. KGF mRNA of GASTRIC FIBROBLASTS SECRETED KGF IN SCIRRHOUS CANCERS

Statistical Analysis. Data are expressed as the means ± SD from at least three independent determinations. Significance of difference was analyzed using unpaired Student’s t tests. Values of \(P < 0.05 \) were considered to indicate statistical significance.

RESULTS

Effect of Anti-KGF Antibodies on Growth Activity in CM from Gastric Fibroblasts. We used a neutralizing antibody for KGF, antihuman KGF antibody (Genzyme). A OCUM-2M or OCUM-11 cell suspension (10^6 cells/well in 500 µl of DMEM with 2% FCS) was inoculated into each well of a 24-well plate (Falcon). Gastric cancer cells and fibroblasts was counted after 96 h.

Effect of Anti-KGF Antibodies on Growth Activity in CM from Gastric Fibroblasts. We used a neutralizing antibody for KGF, antihuman KGF antibody (Genzyme). A OCUM-2M or OCUM-11 cell suspension (10^6 cells/well in 500 µl of DMEM with 2% FCS) was inoculated into each well of a 24-well plate (Falcon). Next, 250 µl of SF-CM from NF-8 or NF-21 and antibody solution (250 µl) were added to each well for incubation. Final solutions contained SF-CM from NF-8 or NF-21 and antibody concentrations of 0, 100, 250, or 500 ng/ml. Mouse IgG1 (Dako, Carpinteria, CA) in lieu of antibody was used as a standard for comparison. The number of OCUM-2M or OCUM-11 cells was counted after 96 h, and [3H]thymidine incorporation by OCUM-2M or OCUM-11 cells was measured after 72 h.

Reverse Transcription-PCR. Total cellular RNA was extracted from gastric cancer cells and fibroblasts with Trizol (Life Technologies, Inc.) according to the manufacturer’s protocol. The cDNAs were amplified by PCR for 30 cycles with TaqDNA polymerase (Nippon Gene, Tokyo, Japan) on a thermal cycler. The following KGF primers were used: sense, 5'-ACATGGAGAGAGGGATATAAGAG-3' and antisense, 5'-TTCATTCTCCACCCCTTGGATTCG-3'. PCR conditions were as follows: predenaturation, 94°C for 5 min; denaturation, 94°C for 30 s; annealing, 58°C for 30 s; extension, 72°C for 1 min; and final incubation, 72°C for 10 min. PCR products for KGF were 175 bp in length. The following KGF receptor (KGFR) primers were used: sense, 5'-CTCCACCGCCATCCTCACA-3'; and antisense, 5'-ATTCCACAGCTGGGCTTG-3'. PCR conditions were as follows: predenaturation, 94°C for 5 min; denaturation, 94°C for 30 s; annealing, 61°C for 30 s; extension, 72°C for 1 min; and final incubation, 72°C for 10 min. PCR products for KGFR were 255 bp in length; these products were then applied to a 2% agarose gel and electrophoresed. As an internal control, reverse transcription-PCR for glyceraldehyde-3-phosphate dehydrogenase was performed: sense, 5'-ACCTGACCTGGCCGCTTAC-3'; and antisense, 5'-TCCACACCGTTTGCTGTA-3'.

ELISA. KGF in conditioned medium from NF-8, NF-21, NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from a same patient. NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from a same patient. NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from a same patient. NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from a same patient. NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from a same patient. NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from a same patient. NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from a same patient. NF-stomach, NF-esophagus, NF-duodenum, and NF-skin were obtained from a same patient.
175 bp was found to be expressed in gastric fibroblasts (NF-8 and NF-21). KGF mRNA was expressed in gastric fibroblasts, esophageal fibroblasts, duodenal fibroblasts, and lung fibroblasts but not in gastric cancer cells and skin fibroblasts (Fig. 4). KGF mRNA of 255 bp was expressed in gastric cancer cells and was not expressed in fibroblasts (Fig. 5).

KGF Amounts in CM. We measured concentrations of KGF in CM from gastric cancer cells and fibroblasts by ELISA. KGF concentrations in CM from NF-8, NF-21, NF-stomach, NF-esophagus, and NF-duodenum were 840, 834, 682, 184, and 31 pg/ml, respectively. In contrast, KGF was undetectable in CM from NF-skin, MKN-28, MKN-74, OCUM-2M, and OCUM-11 (Table 2).

Molecular Weight of KGF. We investigated whether KGF produced by gastric fibroblasts had a molecular weights between \(M_r 2600 \) and \(M_r 25,000 \). Western analysis indicated that gastric fibroblasts, esophageal fibroblasts, duodenal fibroblasts, and lung fibroblasts produced a \(M_r 19,000 \) KGF (Fig. 4).

DISCUSSION

Yashiro et al. (5) previously reported that a protein with a molecular weight from \(M_r 2,600 \) to \(M_r 25,000 \) produced by gastric fibroblasts had a growth-promoting effect on scirrhous gastric carcinoma cells. Fibroblasts have been reported to produce various growth factors (6–11). We previously examined whether any defined growth factors, including epidermal growth factor, vascular endothelial growth factor, transforming growth factor \(\alpha \), basic fibroblasts growth factor, insulin-like growth factor I, platelet-derived growth factor, hepatocyte growth factor, and transforming growth factor \(\beta \), was the active factor in the CM from gastric fibroblasts. None of these growth factors was associated with a protein of molecular weight from \(M_r 2,600 \) to \(M_r 25,000 \) (5). In the present study, we concluded that the growth-stimulating factor from gastric fibroblasts that affected scirrhous gastric cancer cells is KGF. We previously reported that KGF has an especially high growth-stimulating activity in scirrhous gastric cancer cells [OCUM-2M (C), OCUM-11 (E)] after 96 h in culture compared with the control. In contrast, growth of well-differentiated adenocarcinoma cells [MKN-28 (C) and MKN-74 cells (□)] was not increased after addition of KGF. These line graphs are not growth curves but five interventions at a single time point. A single asterisk denotes a statistically significant difference from control values (\(P < 0.05 \)). Data are presented as the mean and SD (bars) of four independent experiments.

![Cell number vs. KGF concentration](image)

Fig. 2. Effect of keratinocyte growth factor on growth of gastric cancer cells. Keratinocyte growth factor (KGF; 1 or 10 ng/ml) significantly increased numbers of scirrhous gastric cancer cells [OCUM-2M (○), OCUM-11 (■)] after 96 h in culture compared with the control. In contrast, growth of well-differentiated adenocarcinoma cells [MKN-28 (C) and MKN-74 cells (□)] was not increased after addition of KGF. These line graphs are not growth curves but five interventions at a single time point. A single asterisk denotes a statistically significant difference from control values (\(P < 0.05 \)). Data are presented as the mean and SD (bars) of four independent experiments.

![Fig. 3. Effect of anti-keratinocyte growth factor neutralizing antibody on growth-promoting activity of gastric fibroblasts](image)

Fig. 3. Effect of anti-keratinocyte growth factor neutralizing antibody on growth-promoting activity of gastric fibroblasts. A, effect of anti-keratinocyte growth factor (KGF) antibody on growth of scirrhous gastric cancer cells. Anti-KGF antibody (■) partly inhibited the growth-stimulating effect of NF-8 or NF-21 on growth of OCUM-2M or OCUM-11 cells, compared with a standard containing IgG (□) instead of neutralizing antibody. B, effect of anti-KGF antibody on the DNA synthesis of scirrhous gastric cancer cells (OCUM-2M and OCUM-11 cells), \([3H] \)Thymidine incorporation of OCUM-2M or OCUM-11 cells was inhibited by anti-KGF neutralizing antibody. ■, anti-KGF antibody; □, standard containing IgG; △, SF-DMEM; ○, serum-free conditioned medium (SF-CM) from gastric fibroblasts without antibody. A single asterisk denotes a statistically significant difference from control values (\(P < 0.05 \)). Data are presented as the mean and SD (bars) of four independent experiments.

![Fig. 4. Keratinocyte growth factor (KGF) expression by fibroblasts and cancer cells](image)

Fig. 4. Keratinocyte growth factor (KGF) expression by fibroblasts and cancer cells. A, KGF mRNA expression in cell lines. Gastric fibroblasts (NF-8 and NF-21) showed a KGF mRNA band of 175 bp. KGF mRNA was not found in gastric cancer cell lines (OCUM-2M, OCUM-11, MKN-28, and MKN-74). B, KGF production by cell lines. Western analysis indicated that gastric fibroblasts (NF-8, NF-21, and NF-stomach), NF-esophagus, NF-duodenum, and WI-38 produced a \(M_r 19,000 \) KGF. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
GASTRIC FIBROBLASTS SECRETED KGF IN SCIRRHOUS CANCERS

KGF, a member of the fibroblast growth factor (FGF) family, also known as FGF-7 (6, 12), originally was isolated from human embryonic lung fibroblasts (6, 13) and is produced by mesenchymal cells in various tissues (14–17). KGF exerts its effect in a paracrine manner. KGF mRNA was expressed in gastric fibroblasts but not in gastric cancer cells and skin fibroblasts. Western analysis indicated that orthotopic fibroblasts produced a Mr 19000 KGF, whereas KGF was undetectable in gastric cancer cells. These results agree with our previous findings that growth of scirrhous gastric cancer cells was significantly enhanced by SF-CM from orthotopic fibroblasts, but not by SF-CM from ectopic fibroblasts, and that the molecular weight of the growth factor was between Mr 2600 and Mr 25,000 (5). We therefore concluded that the growth factor secreted by gastric fibroblasts to stimulate scirrhous gastric cancer cell growth is KGF.

KGF, a member of the fibroblast growth factor (FGF) family, also known as FGF-7 (6, 12), originally was isolated from human embryonic lung fibroblasts (6, 13) and is produced by mesenchymal cells in various tissues (14–17). KGF exerts its effect in a paracrine manner limited to epithelial cells, whereas other FGF family members also stimulate growth of cultured endothelial cells and fibroblasts (6, 13, 18). Several types of FGF receptors have been reported, FGF receptor 2 or KGFR is identical to the K-sam-II gene product. The K-sam-II gene first was amplified and identified in an extract from the human gastric cancer cell line KATO-III (19). K-Sam-II has been reported to be preferentially expressed in scirrhous gastric cancer (20). The scirrhous gastric cancer cell lines OCUM-2M and OCUM-11 also strongly expressed K-sam-II (21). In our present study, abundant KGF mRNA was amplified from scirrhous gastric cancer cells (OCUM-2M and OCUM-11), whereas the ligands KGF was produced by gastric fibroblasts. These findings suggested that KGF secreted by gastric fibroblasts is important in progression of scirrhous gastric cancer. Liver metastasis is one of frequent types of metastases in scirrhous gastric cancer. In conclusion, the growth of scirrhous gastric cancer cells was closely associated with KGF produced from gastric fibroblasts. This is the first report to identify the growth factor from gastric fibroblasts that stimulated progression of scirrhous gastric carcinoma as KGF.

REFERENCES

Keratinocyte Growth Factor Produced by Gastric Fibroblasts Specifically Stimulates Proliferation of Cancer Cells from Scirrhous Gastric Carcinoma

Kazunori Nakazawa, Masakazu Yashiro and Kosei Hirakawa

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/24/8848

Cited articles
This article cites 20 articles, 7 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/24/8848.full#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/63/24/8848.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.