Caspase-8 and Apoptosis-inducing Factor Mediate a Cytochrome c-independent Pathway of Apoptosis in Human Colon Cancer Cells Induced by the Dietary Phytochemical Chlorophyllin

G. Darío Díaz, Qingjie Li, and Roderick H. Dashwood

ABSTRACT

Chlorophyllin (CHL), an antimitogenic and anticarcinogenic water-soluble derivative of chlorophyll, was recently found to be highly effective as a chemopreventive agent in a high-risk population exposed unavoidably to aflatoxin B1 in the diet (P. A. Egner et al., Proc. Natl. Acad. Sci. USA, 98: 14601–14606, 2001). The current study examined the response of HCT116 human colon cancer cells to CHL treatment. Cells exposed to concentrations in the range 0.0625–0.5 mM CHL underwent growth arrest and apoptosis after 24 h, with the formation of a sub-G1 peak in the attached cell population and nuclear condensation in the floating cell population. There was a concentration-dependent attenuation of mitochondrial membrane potential (ΔΨm) without the release of cytochrome c or activation of the caspase-9/caspase-3/poly(ADP-ribose) polymerase pathway. However, apoptosis-inducing factor was released from mitochondria into the cytosol and translocated to the nucleus, leading to concentration-dependent cleavage of nuclear lamins. The upstream mediators of the CHL-induced apoptosis pathway were identified as caspase-8/caspase-6 and truncated Bid, acting in conjunction with other proapoptotic members of the Bcl-2 family, such as Bak. These findings suggest that CHL might trigger apoptosis via interaction with putative “death receptors” in the plasma membrane of cancer cells, leading to initial cleavage of procaspase-8 and activation of downstream events, resulting in the destruction of nuclear lamins. Importantly, E-cadherin and alkaline phosphatase, which are indicators of cell differentiation, were strongly induced at all concentrations of CHL. Thus, in addition to being an effective blocking agent during the initiation phase, these findings support a role for CHL as a suppressing agent and as a possible novel therapeutic strategy directed toward aberrant cell proliferation in the colon.

INTRODUCTION

Apoptosis is a form of programmed cell death characterized by stereotypic morphological changes executed by cysteine-aspartate proteases (caspases) and regulated by the Bcl-2 family of proteins (1). Diverse death signals activate downstream “effector proteases” via one of two broad mechanisms, namely, an extrinsic pathway involving cell death receptors and an intrinsic pathway resulting from alterations at the level of the mitochondrion and involving cytochrome c release and activation of the apoptosome (2). In the latter case, cytochrome c and Apaf-1, in the presence of ATP or dATP, facilitate the cleavage of procaspase-9 and generate active caspase-9 cleavage products (3). Caspase-9, in turn, activates executioner caspases, such as caspase-3 and caspase-7, via the so-called “caspase cascade” (4). The hierarchical activation of these caspases ultimately results in the cleavage of key nuclear, cytoplasmic, and membrane-associated proteins, as well as the activation of DNases in many cases, leading to the morphological and biochemical changes characteristic of apoptotic cell death (5, 6). Although these are regarded as central features of apoptosis, several studies have revealed “variations on a theme,” including Bcl-2-regulated caspase activation independent of the cytochrome c/Apaf-1/caspase-9 apoptosome (7). In the course of investigating the mechanisms by which dietary phytochemicals inhibit colon carcinogenesis in rodent models and in human colon cancer cells, we identified a pathway of cell death involving the release of AIF3 from mitochondria without the concomitant release of cytochrome c.

The phytochemical that induced this cytochrome c-independent pathway of apoptosis, CHL, is a clinically used water-soluble derivative of chlorophyll. Chlorophyll and CHL are known to exhibit potent antimitogenic activity in vitro, and they have been reported as anticarcinogens in various animal models (8–10). As a “blocking agent,” CHL forms molecular complexes with aromatic carcinogens, such as heterocyclic amines, polycyclic aromatic carbons, and aflatoxins, and reduces carcinogen uptake and bioavailability from the gut (10). Postinitiation mechanisms have received much less attention, although recent work showed that CHL altered the spectrum of β-catenin mutations in carcinogen-induced colon tumors in the rat (11) and that this involved changes in cell proliferation and apoptosis rates in the colonic crypt (12). The ability of CHL to alter tissue homeostasis in the colon suggested an investigation of apoptosis mechanisms in human colon cancer cells.

Previously, chemopreventive agents such as butyrate, salicylate, and vitamin D were shown to induce apoptosis in colorectal cancer cells with the involvement of the cytochrome c/Apaf-1/caspase-9 apoptosome (13–16). In marked contrast, the present investigation shows that CHL induces apoptosis in HCT116 cells without the release of cytochrome c from mitochondria or activation of the Apaf-1/caspase-9 pathway. As an alternative mechanism, CHL activated a pathway involving caspase-6 and the release of AIF from mitochondria, resulting in the cleavage of nuclear lamins. CHL also induced changes in the expression of Bcl-2 family proteins, including tBid and Bak, and apoptosis occurred subsequent to the induction of colonic cell differentiation, as evidenced by the increased expression of differentiation markers such as E-cadherin and ALP.

MATERIALS AND METHODS

Cell Culture. The human colorectal cancer cell line HCT116 was obtained from the Cell Culture Facility Core of the Environmental Health Sciences Center, Oregon State University. Cells were grown in McCoy’s 5A (Life Technologies, Inc.) containing 10% fetal bovine serum (batch-selected; Life Technologies, Inc.), glutamine (2 mM), penicillin (100 units/ml), and streptomycin (100 μg/ml; Sigma, St. Louis, MO). Cells were grown in T25 flasks and routinely passaged using 0.1% trypsin (Difco)/0.1% EDTA (Fisher).

Treatment of Cells with CHL. The CHL used in these studies was from Sigma. Concentrations were adjusted for total chlorin content (53%), of which the major components were chlorin-e6 (63%) and isochlorin-e4 (16%). Chlorin-e6 was determined by high-performance liquid chromatography (HPLC; Applied Biosystems) using a Bio-Rad Aminex HPX-87H column with 95% methanol as the mobile phase. The mobile phase was filtered through a Pall颇尔 Membrane System 0.1-μm filter. The equipment was controlled by the Waters Millennium Chromatography Manager using an ABMicrowave Analytical System. The CHL was tested for its purity by HPLC using a C18 Waters Nova-Pak column with ultraviolet detection at 400 nm. The mobile phase was 50% methanol in water. The equipment was controlled by the Waters Millennium Chromatography Manager using an ABMicrowave Analytical System. The CHL was tested for its purity by HPLC using a C18 Waters Nova-Pak column with ultraviolet detection at 400 nm. The mobile phase was 50% methanol in water. The equipment was controlled by the Waters Millennium Chromatography Manager using an ABMicrowave Analytical System.
ins were identified using high-performance liquid chromatography methods reported elsewhere (17, 18). Stock solutions of 40 mM CHL in double-distilled water were made immediately before use, and serial dilutions were performed in the cell culture media just before addition to the cells. All of the solutions containing CHL were protected from light. Cells were seeded at a density of 1 × 10^5 cells/T25 flask, and they were treated with CHL 3 days later, when each of the flasks contained a similar number of cells, and cells were in the exponential growth phase. Cultures were treated in triplicate with CHL, and the cells were harvested after 24 h, unless stated otherwise.

**Identification of Apoptosis.** The induction of apoptosis by CHL was determined by morphological and biochemical criteria, as follows. Acridine orange/ethidium bromide dual staining was used to identify apoptotic cells by staining the condensed chromatin. Unfixed cells were stained with 5 µg/ml acridine orange together with 5 µg/ml ethidium bromide in PBS for 10 min and then viewed by fluorescence microscopy. Acridine orange stains early-stage apoptotic cells, whereas late-stage apoptotic cells that have lost membrane permeability stain with ethidium bromide. Ethidium bromide also allows for the identification of cells that are necrotic, due to loss of membrane permeability without the presence of condensed chromatin. At least 200 cells were scored for each sample in three independent experiments. Cells were scored as positive based on visual evidence of nuclear condensation, membrane blebbing, or cytoplasmic condensation. The floating cells were also assessed using a TACS Apoptotic DNA Laddering kit, according to the manufacturer’s instructions (Trevigen, Gaithersburg, MD). Briefly, genomic DNA was isolated from 10^6 floating cells and loaded onto a 1.0% TreviGel 500 gel in a 1× TAE buffer [40 mM Tris, 5 mM sodium acetate, and 1 mM EDTA (pH 8.1)], containing 0.5 µg/ml ethidium bromide. The gel was run at 100 V until the bromophenol blue dye front reached the lower third of the gel. As a positive control for DNA laddering, HCT116 cells were treated with 4 mM sodium butyrate (Sigma) for 24 h.

**Cell Cycle Analysis.** One million adherent cells were trypsinized and washed in PBS, fixed in 70% ethanol, and stored at −20°C overnight. In preparation for cell cycle analysis, the cells were pelleted, resuspended in 1 ml of PBS containing 0.2 mg/ml propidium iodide (Sigma) and 0.15 µg/ml RNase (Boehringer Mannheim), and incubated at 37°C for 30 min in the dark. Cells were then left overnight at 4°C in the dark, before analysis on a fluorescence-activated cell sorter (Couler FACS). Cells were excited with a single 488 nm argon laser, and the fluorescence was detected through a 585 ± 22 nm filter. Linear red-orange fluorescence (FL3) data were collected in list format to 10,000 total events, and the distribution of cells within the cell cycle was determined using a MultiCycle software program.

**Subcellular Fractionation and Immunoblot Analysis.** Nuclear protein extraction was performed as follows. Briefly, PBS-washed cells were resuspended in extraction buffer [10 mM Tris-HCl (pH 7.6), 10 mM KCl, and 5 mM MgCl₂] with protease inhibitors (0.2 mM PMSF, 10 µg/ml aprotinin, 10 µg/ml leupeptin). After incubation on ice for 10 min, cells were lysed by digitonin (Sigma-Aldrich). Nuclei were removed by centrifugation, and nuclear protein was extracted with radioimmunoprecipitation assay buffer [10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% NP40, 0.1% SDS, 0.5% sodium deoxycholate, and 1 mM DTG] supplemented with protease inhibitors [30 µg/ml aprotinin, 10 µg/ml leupeptin, and 10 µg/ml PMSF (Sigma)]. For cytochrome c determination, PBS-washed cells were lysed in isotonic buffer A (10 mM HEPES, 0.3 mM mannitol, and 0.1% BSA) plus 0.1 µg/ml digitonin with protease inhibitors. After incubation on ice for 5 min, the cytosolic fraction was collected by centrifugation, and the insoluble fraction was disrupted by sonication in sonication buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2 mM EDTA, and 0.5% Tween 2] supplemented with protease inhibitors. For whole cell extractions, samples were washed with 1 ml of PBS, and cooled radio-immunoprecipitation assay lysis buffer (2 ml) was added to the cell monolayer followed by gentle scraping on ice. Cell lysates were transferred to a micro-centrifuge tube, and a mixture of inhibitors was added [30 µg/ml aprotinin, 10 µg/ml leupeptin, and 10 µg/ml PMSF (Sigma)]. Samples were left on ice for 30 min and centrifuged at 15,000 × g for 15 min. Supernatants were taken for protein quantification, determined as described by Peterson (19). Protein (100 µg) was mixed with 60 µl of gel sample buffer [0.125 mM Tris-HCl (pH 6.8; Sigma), 20% (w/v) glycerol, 2% (w/v) SDS, 10% (v/v) β-mercaptoethanol, and 0.25% (w/v) bromophenol blue], and the tubes were placed in a hot plate at 95°C for 5 min.

For SDS-PAGE, the stacking gel was 4.5%, and resolving gels were made up at 10%, 12.5%, or 15% as required. Gels were run in a buffer solution containing 192 mM glycine (Sigma), 25 mM Tris (Sigma), and 1% SDS and then electrophoresed onto Immobilon polyvinylidene difluoride membrane in a transfer buffer of 192 mM glycine (Sigma), 10 mM Tris (Sigma), and 20% (v/v) methanol (Fisher).

Immunoblotting was performed with the following antibodies: (a) Bel-2 mouse monoclonal clone 65111A (PharMingen), 1:400 dilution; (b) Bak rabbit polyclonal clone G-23 (Santa Cruz Biotechnology), 1:300 dilution; (c) Bax mouse monoclonal clone 66241A (PharMingen), 1:400 dilution; (d) caspase-3 rabbit polyclonal clone 65906E (PharMingen), 1:400 dilution; (e) PARP mouse monoclonal clone 556494 (PharMingen), 1:400 dilution; (f) Bel-C118 rabbit polyclonal clone (L-19; Santa Cruz Biotechnology), 1:400 dilution; (g) cytochrome c mouse monoclonal clone 556433 (PharMingen), 1:400 dilution; (h) AIF goat polyclonal clone D-20 (sc-9416; Santa Cruz Biotechnology), 1:400 dilution; (i) Bid rabbit polyclonal (#2002; Cell Signalling), 1:500 dilution; (j) lamin A rabbit polyclonal (#2032; Cell Signalling), 1:500 dilution; (k) caspase 6 rabbit polyclonal (#9761; Cell Signalling), 1:500 dilution; (l) caspase 8 mouse monoclonal (#9746; Cell Signalling), 1:500 dilution; (m) caspase 9 rabbit polyclonal (#9505; Cell Signalling), 1:500 dilution; (n) lamin A rabbit polyclonal (#2031; Cell Signalling), 1:500 dilution; and (o) E-cadherin mouse monoclonal clone HEC-1 (Zeneca), 1:1000 dilution. Membranes were incubated in milk block buffer [10 mM Tris-HCl (pH 7.4), 150 mM NaCl, and 4% nonfat dried milk] for 1 h at room temperature. Incubations with primary antibody were conducted for 4 h at room temperature or overnight at 4°C. Membranes were rinsed in distilled water, washed twice for 10 min in milk block buffer, and then washed twice for 10 min in Tween buffer [10 mM Tris (pH 7.4), 150 mM NaCl, 0.2% Tween 20 (w/v; Sigma)], followed by milk block buffer for an additional 10 min. Secondary antibodies were antimouse or antirabbit horseradish peroxidase-conjugated antibodies (Bio-Rad). Membranes were incubated in the appropriate secondary antibody (1:3000 dilution) for 45 min at room temperature or at 4°C. Membranes were washed for 20 min in milk block buffer and for 10 min in Tween buffer. After rinsing in distilled water, peroxidase activity was detected using ECL Chemiluminescence Reagent Plus (New England Nuclear) according to the protocol supplied with the kit. Equal protein loading was confirmed by Ponceau S staining.

**Mitochondrial Transmembrane Potential (ΔΨm).** Changes in mitochondrial membrane potential were assayed as described elsewhere (20). Briefly, cells were washed twice in PBS containing 1 mM EDTA (PBS-EDTA) and subsequently detached and pelleted in PBS-EDTA buffer. After recovery in complete medium, cells were incubated with 1 µM Rho-123 (Molecular Probes, Eugene, OR) for 30 min at 37°C. Rho-123 is taken up selectively by mitochondria (21, 22), and the extent of relative uptake depends on ΔΨm. Cells were washed in ice-cold PBS, filtered, and resuspended in 1 ml of PBS for immediate analysis. Rho-123 fluorescence was excited at 488 nm, and emission at 530 nm was measured using a fluorescence-activated cell sorter (Couler FACS).

**RNA Isolation.** Total RNA was extracted using Qiagen Rneasy anion-exchange spin columns and the Total RNA Isolation Kit (Qiagen), according to the instructions of the manufacturer. RNA concentration was quantified spectrophotometrically, and the relative content was further confirmed on ethidium bromide-stained gels. Integrity of the RNA was established routinely by agarose gel electrophoresis (data not shown).

**Reverse Transcription-PCR.** Synthesis of first-strand cDNA was performed using the SuperScript preamplification system (Life Technologies, Inc.), and 1 µg of total RNA was reacted with reverse transcriptase using primers as follows: E-cadherin, 5′-GTTATTTCCCCCTCACTGGTCCAGA-3′ (forward) and 5′-CTTGGCT-GAGGATGTTGAAGCCG-3′ (reverse); ALP, 5′-GACCACTAGTGGTCAAA- 8′ (reverse); and GAPDH, 5′-AAGATCTACGACATTGCACTTC-3′ (forward) and 5′-CCTGTTCCACACCTCTTTGTA-3′ (reverse).

Reactions (20 µl) were conducted in a thermal cycler (GeneAmp PCR system 9700; Perkin-Elmer, Foster City, CA), initiated by hot start at 94°C for 3 min. Cycling conditions were as follows: 94°C for 30 s; 62°C for 30 s; and 72°C for 30 s; with 27 cycles for E-cadherin and 40 cycles for ALP. All reactions ended with a 5-min elongation step at 72°C. Seven µl of the reaction volume were electrophoresed through a 1.5% agarose gel and stained with

1255
ethidium bromide, and products were visualized using an Alphaimage 1220 Documentation and Analysis System (AlphaInnotech Corp.).

RESULTS

CHL Treatment Reduces the Attached Cell Yield and Induces Apoptosis. CHL was growth inhibitory and induced apoptosis in HCT116 cells (Fig. 1). In previous studies, the majority of colon cancer cells that were shed into the medium, either spontaneously or by treatment with agents such as butyrate and vitamin D (13, 15, 23, 24), had undergone apoptosis. In the present study, there was a concentration-dependent increase in the proportion of floating cells with each CHL addition (Fig. 1A), and this was matched by a concomitant decline in the attached cell yield (Fig. 1B). All concentrations of CHL reported here produced a statistically significant increase in the percentage of floating cells and reduction in attached cell yield ($P < 0.05$). The highest concentration of CHL used in these studies caused 30% of the cells to be floating 24 h after treatment, and the corresponding attached cell yield was 30% of controls. Even at a concentration of 0.5 mM CHL, floating cells exhibited morphological hallmarks of apoptosis without evidence of necrosis, including nuclear condensation, apoptotic bodies, membrane blebbing, and cytoplasmic condensation (Fig. 1C). Furthermore, cell cycle analysis confirmed the presence of a sub-G$_1$ peak indicative of apoptosis in the attached cell population after treatment with CHL (Fig. 1D). Thus, 8.3% of the cells treated with 0.5 mM CHL were present in a sub-G$_1$ peak compared with 0% of the cells in the control cultures. In addition, CHL

Fig. 1. Induction of apoptosis by CHL in HCT116 human colon cancer cells. A, the percentage of floating cells was determined as a measure of the extent of apoptosis induced 24 h after CHL treatment. B, the corresponding attached cell yield, calculated as a percentage of the control value (cells not treated with CHL). Results in A and B are given as mean ± SD of triplicates and are representative data from three separate experiments. Differences between CHL-treated cells and corresponding controls were significantly different for all CHL concentrations ($P < 0.05$). C, fluorescence microscopy of acridine orange/ethidium bromide dual-stained floating cells demonstrating apoptotic morphology: (i), nonapoptotic cell; (ii), membrane blebbing; (iii), cytoplasmic condensation; and (iv), chromatin condensation. D, FACS analysis showing the presence of a sub-G$_1$ peak in the adherent cell population 24 h after CHL treatment. The sub-G$_1$ peak was confirmed to represent apoptotic cells by examination of ethanol-permeabilized cells containing propidium iodide. MultiCycle software analysis also revealed a decrease in the proportion of cells in G$_0$-G$_1$ and an increase in the DNA content at the S phase of the cell cycle (inset boxes).
treatment caused a decrease in the proportion of cells in G0-G1, from 69.3% to 49.0%, and an increase in the fraction of cells in the S-phase of the cell cycle, from 18.8% to 36.4% (Fig. 1D). We are now studying the dose-response relationship between the induction of apoptosis and the accumulation of cells in the S phase of the cell cycle.

**CHL Causes Attenuation of the Mitochondrial Membrane Potential (Δψm) and Release of AIF, without Loss of Cytochrome c.** To clarify the mechanism(s) of apoptosis by CHL, initial experiments focused on the cytochrome c/caspase-3 pathway and downstream targets that might account for morphological features shown in Fig. 1C. Flow cytometry studies revealed a concentration-dependent decrease in Δψm after CHL treatment, using Rh-123 as a marker of mitochondrial membrane integrity (Fig. 2A). Because these changes occurred without quenching of the fluorescence signal by CHL and were recapitulated using an alternative marker of Δψm, JC-1 (data not shown), we next examined likely candidates that might be released from mitochondria. Cytochrome c was present in mitochondria at all concentrations of CHL, but surprisingly, no cytochrome c was detected in the cytosol, except in positive controls treated with butyrate (Fig. 2B). In contrast, AIF, which is normally localized within the mitochondria, was elevated in both the cytosol and nucleus at all concentrations of CHL (Fig. 2C).

The release of AIF from mitochondria without any detectable increase in cytosolic cytochrome c was unexpected and suggested a detailed study of caspases normally regulated by cytochrome c/cytosolic fraction obtained from HCT116 cells 24 h after CHL treatment. Cytochrome c was present in mitochondria at all concentrations of CHL, but surprisingly, no cytochrome c was detected in the cytosol, except in positive controls treated with butyrate (Fig. 2B). In contrast, AIF, which is normally localized within the mitochondria, was elevated in both the cytosol and nucleus at all concentrations of CHL (Fig. 2C).

**A. Chlorophyllin (mM) + Butyrate (control)**

<table>
<thead>
<tr>
<th>Caspase-9</th>
<th>0</th>
<th>0.062</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**B. Chlorophyllin (mM)**

<table>
<thead>
<tr>
<th>Procaspe-3</th>
<th>0</th>
<th>0.062</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**C. Chlorophyllin (mM)**

<table>
<thead>
<tr>
<th>PARP (cleaved)</th>
<th>0</th>
<th>0.062</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 2. CHL-induced attenuation of mitochondrial membrane potential (Δψm) and release of AIF, without loss of cytochrome c. A. mitochondrial membrane potential Δψm was determined in HCT116 cells 6 h after CHL treatment by flow cytometry using Rho-123. Each histogram was shaded according to the corresponding CHL concentration: 0 mM CHL, white; 0.125 mM CHL, gray; 0.25 mM CHL, dark gray; and 0.5 mM CHL, black. Results are representative of findings from three separate experiments. B. Western blots of cytochrome c expression in mitochondrial and cytosolic fractions obtained from HCT116 cells 24 h after CHL treatment. C. Western blots of AIF expression in cytosolic and nuclear fractions 24 h after HCT116 cells were treated with CHL.**

**CHL Causes Apoptosis by Induction of a Novel Pathway, the Caspase-8 Pathway.** Caspase-8 is an important member of the death receptor pathway, as well as of the mitochondrial pathway. We therefore examined additional members of the Bcl-2 family.

**A. Chlorophyllin (mM) + Butyrate (control)**

<table>
<thead>
<tr>
<th>Caspase-9</th>
<th>0</th>
<th>0.062</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**B. Chlorophyllin (mM)**

<table>
<thead>
<tr>
<th>Procaspe-3</th>
<th>0</th>
<th>0.062</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**C. Chlorophyllin (mM)**

<table>
<thead>
<tr>
<th>PARP (cleaved)</th>
<th>0</th>
<th>0.062</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 3. CHL-induced apoptosis in HCT116 cells does not involve activation of caspase-9, caspase-3, or cleavage of PARP. A. Western blot showing the expression of the active cleavage product of procaspase-9 in cells treated with sodium butyrate and the absence of caspase-9 in cells treated with CHL. B. Expression of procaspase-3 in cells treated with CHL and the absence of caspase-3, the active cleavage product. C. Immunoblot showing the absence of cleaved PARP in cells treated with CHL. Blocks shown in A–C were from cells examined 24 h after treatment with CHL or butyrate and are representative of results from two or more separate experiments.**

**CHL Induces the Activation of Caspase-8 and Caspase-6, with Cleavage of Nuclear Lamins.** Because the mechanism of apoptosis induced by CHL in HCT116 cells apparently did not involve the cytochrome c–caspase-9–caspase-3→PARP pathway, additional caspases were examined, including those implicated in membrane “death receptor” pathways. All concentrations of CHL produced the active, cleaved form of caspase-8 (Fig. 4A), and there was a corresponding increase in the active form of caspase-6 at higher concentrations of CHL (Fig. 4B). Lamin A, a major target of caspase-6 (25), was cleaved in a concentration-dependent manner by CHL, and cleaved lamin A products of 45 and 40 kDa were detected in all treatment groups, as well as in the negative and positive controls (Fig. 4C). Indeed, in the latter case, there was extensive accumulation of lamin A cleavage products (Fig. 4C) and oligonucleosomal fragmentation (Fig. 4D), in marked contrast to the results obtained with CHL, in which no DNA laddering was detected under the assay conditions used here. These results clearly establish that the mechanisms by which CHL and butyrate induce apoptosis in HCT116 cells are quite distinct, despite morphological similarities in the floating cell population (Fig. 1; Refs. 13, 23, and 26).

**CHL-induced Apoptosis Involves the Cleavage of Bid to Form tBid and Additional Changes in Bcl-2 Family Members.** Previous studies showed that caspase-8 cleaves Bid to form tBid, which, through direct association with antiapoptotic members of the Bcl-2 family, releases proapoptotic Bax or Bak to generate pores in the mitochondrial membrane, leading to activation of the cytochrome c–caspase-9–caspase-3→PARP pathway (27, 28). In addition, tBid may homodimerize as an alternative mechanism for inducing mitochondrial dysfunction and apoptosis (29, 30). Interestingly, tBid was detected at the higher concentrations of CHL in the present study (Fig. 5A). We therefore examined additional members of the Bcl-2 family...
CHL INDUCES APOPTOSIS IN HCT116 CELLS

Fig. 4. CHL-induced apoptosis in HCT116 cells involves the activation of procaspase-8 and procaspase-6, with cleavage of nuclear lamins. A, Western blot showing the presence of cleaved caspase-8 (active form) at all concentrations of CHL. NS, nonspecific band (putative cleavage product). B, immunoblot showing the presence of cleaved caspase-6 at higher concentrations of CHL. C, concentration-dependent cleavage of lamin A by CHL and the presence of cleaved lamin A fragments. D, ethidium bromide-stained agarose gel showing a lack of oligonucleosomal DNA fragmentation in the floating cell population collected after treatment with CHL. The positive control for DNA laddering was 4 mM sodium butyrate (far right lane). Results in A–D are representative of data obtained from three or more separate experiments, 24 h after cells had been treated with CHL (or butyrate).

Fig. 5. CHL-induced apoptosis in HCT116 cells involves the cleavage of Bid to form tBid and other changes in pro- and antiapoptotic Bcl-2 family members. A, immunoblot showing the presence of tBid in cells treated with 0.25 and 0.5 mM CHL. B, immunoblots showing reduced expression of Bcl-2 and Bax proteins and increased levels of Bcl-xL, Bcl-xS, and Bak. Results in A and B are representative of data obtained from two or more separate experiments, 24 h after cells had been treated with CHL (or butyrate).

CHL has been used in a number of clinical situations, including as an oral deodorant (32), and current Food and Drug Administration guidelines allow for ingestion of three 100 mg tablets per day. These doses of CHL have proven effective in a preliminary intervention study against aflatoxin B1 exposure in a high-risk population (33), but little is known about the actual concentrations achieved in situ, either systemically or in the gastrointestinal tract after an oral dose. This is also true in the case of chlorophyll(in) supplements sold in health food stores across the United States, where much higher doses of CHL may be ingested. Previous studies showed no toxic consequences from lifetime exposure of rats to CHL concentrations as high as 1% and 3% of the diet, in which plasma CHL concentrations on the order of 56–116 μg/ml were reported (34). Although the analysis of specific chlorin metabolites was not determined, the reported plasma concentrations would correspond approximately to 80–160 μM CHL. Concentrations of 62.5 and 125 μM CHL in the present study caused a reduction in the attached cell yield (Fig. 1) and marked changes in several of the molecular markers examined, including increased cytosolic and nuclear AIF levels (Fig. 2C), activation of caspase-8 (Fig. 4A), cleavage of lamin A (Fig. 4C), increased expression of Bak (Fig. 5B), and induction of E-cadherin and ALP (Fig. 6). Thus, many of the molecular and morphological changes that were induced at the highest concentrations of 250 and 500 μM CHL were also found in cells that might interact with tBid and modulate its pore-forming activity in the mitochondrial membrane. The prototypical antiapoptotic protein Bcl-2 was decreased in a concentration-dependent manner by CHL (Fig. 5B). There was a marked increase in the expression of both antiapoptotic Bcl-xL and proapoptotic Bcl-xS, and the ratio of these two proteins remained approximately constant with each concentration of CHL treatment. Expression of Bax, the prototypical proapoptotic protein partner of Bcl-2, was reduced by CHL, but there was a marked increase in the expression of the proapoptotic protein Bak [Fig. 5B, (v)]. Indeed, expression of the latter protein most closely paralleled the changes observed in cell growth characteristics of HCT116 cells after CHL treatment (Fig. 1).

Cell Differentiation Is Induced by Concentrations of CHL That Induce Apoptosis. Cell differentiation is a major determinant of invasion and metastasis because poorly differentiated cancer cells may avoid host defenses. Therefore, we examined the expression of E-cadherin, a marker of colonic cell differentiation, in response to differentiating agents such as vitamin D (24) and butyrate (31). In the present investigation, there was a marked 5–7-fold induction of E-cadherin protein expression 24 h after CHL treatment (Fig. 6A), and at the same time, the expression of E-cadherin mRNA was elevated (Fig. 6B). A second indicator of differentiation in human colon cancer cells, ALP, also was induced 3–5-fold at the mRNA level 24 h after CHL treatment (Fig. 6C). These results strongly suggest the involvement of cell differentiation as an integral component of the mechanism by which CHL induces apoptosis in HCT116 cells.

DISCUSSION

CHL has been used in a number of clinical situations, including as an oral deodorant (32), and current Food and Drug Administration guidelines allow for ingestion of three 100 mg tablets per day. These doses of CHL have proven effective in a preliminary intervention study against aflatoxin B1 exposure in a high-risk population (33), but little is known about the actual concentrations achieved in situ, either systemically or in the gastrointestinal tract after an oral dose. This is also true in the case of chlorophyll(in) supplements sold in health food stores across the United States, where much higher doses of CHL may be ingested. Previous studies showed no toxic consequences from lifetime exposure of rats to CHL concentrations as high as 1% and 3% of the diet, in which plasma CHL concentrations on the order of 56–116 μg/ml were reported (34). Although the analysis of specific chlorin metabolites was not determined, the reported plasma concentrations would correspond approximately to 80–160 μM CHL. Concentrations of 62.5 and 125 μM CHL in the present study caused a reduction in the attached cell yield (Fig. 1) and marked changes in several of the molecular markers examined, including increased cytosolic and nuclear AIF levels (Fig. 2C), activation of caspase-8 (Fig. 4A), cleavage of lamin A (Fig. 4C), increased expression of Bak (Fig. 5B), and induction of E-cadherin and ALP (Fig. 6). Thus, many of the molecular and morphological changes that were induced at the highest concentrations of 250 and 500 μM CHL were also found in cells that might interact with tBid and modulate its pore-forming activity in the mitochondrial membrane. The prototypical antiapoptotic protein Bcl-2 was decreased in a concentration-dependent manner by CHL (Fig. 5B). There was a marked increase in the expression of both antiapoptotic Bcl-xL and proapoptotic Bcl-xS, and the ratio of these two proteins remained approximately constant with each concentration of CHL treatment. Expression of Bax, the prototypical proapoptotic protein partner of Bcl-2, was reduced by CHL, but there was a marked increase in the expression of the proapoptotic protein Bak [Fig. 5B, (v)]. Indeed, expression of the latter protein most closely paralleled the changes observed in cell growth characteristics of HCT116 cells after CHL treatment (Fig. 1).

Cell Differentiation Is Induced by Concentrations of CHL That Induce Apoptosis. Cell differentiation is a major determinant of invasion and metastasis because poorly differentiated cancer cells may avoid host defenses. Therefore, we examined the expression of E-cadherin, a marker of colonic cell differentiation, in response to differentiating agents such as vitamin D (24) and butyrate (31). In the present investigation, there was a marked 5–7-fold induction of E-cadherin protein expression 24 h after CHL treatment (Fig. 6A), and at the same time, the expression of E-cadherin mRNA was elevated (Fig. 6B). A second indicator of differentiation in human colon cancer cells, ALP, also was induced 3–5-fold at the mRNA level 24 h after CHL treatment (Fig. 6C). These results strongly suggest the involvement of cell differentiation as an integral component of the mechanism by which CHL induces apoptosis in HCT116 cells.
treated at lower concentrations, within the range that might reasonably be anticipated to occur in situ. Importantly, several of the key molecular markers of apoptosis altered by CHL treatment also responded to purified chlorins, such as chlorin-e6, with corresponding changes in cell growth characteristics and apoptosis.4

The present study has shown that in HCT116 cells treated with CHL, there was a marked increase in the proportion of floating cells, and that these cells exhibited morphological hallmarks of apoptosis, including nuclear condensation and formation of a sub-G1 peak during FACS analysis (Fig. 1). Although CHL treatment produced changes in the mitochondrial membrane potential (ΔΨm) and release of AIF, no cytochrome c was detected in the cytosolic fraction (Fig. 2), and downstream players such as caspase-9, caspase-3, and PARP were not affected, in marked contrast to the results obtained with butyrate (Fig. 3). Interestingly, in a recent study, tumor necrosis factor α-induced cell death in HeLa cells was augmented by rottlerin through a cytochrome c-independent pathway, and this involved release of mitochondrial AIF into the cytosol (35). In addition, rottlerin enhanced the activation of caspase-8 and cleavage of Bid (35), as found in the present studies with CHL (Figs. 4 and 5).

Thus, it is possible that the major route for CHL-induced apoptosis involves caspase-8-mediated destruction of nuclear lamins via caspase-6, with concomitant cleavage of Bid to form tBid, the release of AIF from mitochondria, and additional elimination of nuclear lamins (36). Although tBid can interact with antiapoptotic Bcl-2 proteins and displace Bax, initiating pore formation in mitochondria (37), the present study has shown that Bax was markedly reduced by CHL treatment (Fig. 5B). The reduced expression of Bax might explain, in part, the apparent lack of cytochrome c release from mitochondria in response to CHL treatment. However, tBid has also been reported to induce the oligomerization of proapoptotic Bak, as well as form homo-oligomers, resulting in cytochrome c release from mitochondria (30). The fact that tBid and Bak were increased in response to CHL treatment raises the question as to why AIF but not cytochrome c was released from mitochondria. Clearly, the involvement of specific Bcl-2 family members in the apoptotic mechanism and the nature of the ΔΨm transition remain to be clarified, and we are investigating the time course for tBid formation and AIF appearance in the cytosol and nucleus.

An important observation from the present study was the finding that CHL increased the expression of E-cadherin and ALP, which are markers of cell differentiation. In tissues undergoing continuous regeneration, such as the colon, homeostatic mechanisms seek to balance the birth of cells in the lower half of the crypt with programmed cell death in the upper half of the crypt. Dysregulation of this homeostatic balance, via a relative increase in the rate of cell proliferation or a decrease in the rate of apoptosis, provides a mechanism for tumorigenesis, and many chemopreventive agents in the colon act by enhancing apoptosis (12, 23, 31). However, at later stages, it is the differentiation status of the cancer that frequently dictates the response to chemopreventive and chemotherapeutic agents (13, 15, 24). The present study indicates, for the first time, that human colon carcinoma cells respond to CHL treatment by undergoing differentiation and that this occurred at all concentrations in the range 62.5–125 μM CHL. Additional work is now in progress to define the low-dose threshold for induction of cell differentiation by CHL and determine whether such changes occur before the induction of apoptosis. However, the results presented here for E-cadherin and ALP suggest the

CHL INDUCES APOPTOSIS IN HCT116 CELLS

 Activation of death receptors by CHL results in the initial cleavage of precaspase-8 to generate caspase-8. Caspase-8 represents a branch point, activating caspase-6 in one direction and cleaving Bid to form tBid in another direction. Increased levels of tBid and other proapoptotic Bcl-2 family members (e.g., Bak) facilitate a change in mitochondrial membrane potential (ΔΨm), leading to the release of AIF (but not cytochrome c). As a consequence, nuclear lamins are cleaved, leading to nuclear condensation and apoptosis.

In the mechanism of CHL-induced apoptosis but that the interaction of CHL with putative death receptors activates the caspase-8–caspase-6–nuclear lamin pathway, resulting in nuclear condensation. Activation of caspase-8 also leads to the formation of tBid, which, in conjunction with changes in Bak and other Bcl-2 family members, facilitates the release of AIF from mitochondria via a ΔΨm transition that does not release high levels of cytochrome c. Subsequently, AIF enhances the cleavage of nuclear lamins and activates the process of nuclear condensation, although the specific timing and relative contributions of AIF versus the caspase-8/caspase-6 pathway remain to be determined.

ACKNOWLEDGMENTS

We thank Professor George S. Bailey and Margaret Pratt of the Department of Environmental and Molecular Toxicology (Oregon State University, Corvallis, OR) for high-performance liquid chromatography analyses of CHL samples and characterization of chlorins. We also thank Julie Oughton of the Environmental Health Sciences Center (Oregon State University) for assistance with the FACS analyses.

REFERENCES


Finally, an interesting feature of the apoptotic mechanism induced by CHL after 24 h was the apparent lack of oligonucleosomal DNA fragmentation, in contrast to the results obtained with butyrate (Fig. 4D). This finding indicates that under certain circumstances, HCT116 cells can detach and undergo many of the morphological changes characteristic of apoptosis, without evidence of DNA laddering. It is possible that DNA fragmentation might be detected with prolonged CHL treatment, as in prior studies in vivo that identified an increase in the colonic crypt terminal deoxynucleotidyl transferase-mediated nick end labeling index in rats after 16 weeks of CHL exposure (12). However, it is also possible that the apoptotic mechanisms induced by CHL in normal cells differ from the mechanisms induced in colon cancers, due, for example, to the nature of key death receptors in cancer cells. In the latter situation, activation of nuclear condensation without extensive nucleic DNA fragmentation may suffice to trigger the elimination of carcinomas from the colon. A major focus of current investigation is to identify the putative death receptors for CHL on colon cancer cells, as well as establishing possible cross-talk with apoptotic pathways involving death receptors such as Fas/CD95, TNFR1, DR3/APO-3, and DR4/5 (37–39).

In summary, CHL was shown for the first time to induce apoptosis in HCT116 human colon cancer cells, and this was accompanied by a marked increase in cell differentiation. Based on the results obtained to date, our working hypothesis (Fig. 7) is that the cytochrome c–caspase-9–caspase-3–PARP pathway is unlikely to be involved in the mechanism of CHL-induced apoptosis but that the interaction of CHL with putative death receptors activates the caspase-8–caspase-6–nuclear lamin pathway, resulting in nuclear condensation.


Caspase-8 and Apoptosis-inducing Factor Mediate a Cytochrome c-independent Pathway of Apoptosis in Human Colon Cancer Cells Induced by the Dietary Phytochemical Chlorophyllin

G. Dario Diaz, Qingjie Li and Roderick H. Dashwood


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/63/6/1254

Cited articles
This article cites 39 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/63/6/1254.full#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/63/6/1254.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.