The Proteolytic Processing of Pro-Platelet-derived Growth Factor-A at RRKR\(^{86}\) by Members of the Proprotein Convertase Family Is Functionally Correlated to Platelet-derived Growth Factor-A-induced Functions and Tumorigenicity\(^1\)

Géraldine Siegfried, Abdel-Majid Khatib, Suzanne Benjannet, Michel Chrétien, and Nabil G. Seidah\(^2\)

Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal, Montreal, Quebec, H2W 1R7 [G. S., A.-M. K., S. B., N. G. S.], and Regional Protein Chemistry Centre, Diseases of Ageing Program, Ottawa Health Research Institute, Ottawa, Ontario, K1Y 4E9 [A.-M. K., M. C.] Canada

ABSTRACT

Although altered expression of platelet-derived growth factor (PDGF)-A is a hallmark of many cancers, the importance of pro-PDGF-A conversion to PDGF-A in tumorigenesis and the cognate protease(s) is unknown. Pro-PDGF-A processing occurs at pairs of basic residues, likely involving the proprotein convertases (PCs). In the colon carcinoma cell line LoVo, we found that Furin is the most potent PDGF-A convertase. Mutation of the PC-site RRKR\(^{86}\) to ARKA\(^{86}\) inhibited pro-PDGF-A processing, its receptor tyrosine phosphorylation, and cell proliferation. This processing is also blocked by the PC preprosegments (pps) ppFurin, ppPC5, and ppPACE4, and by the Furin-variants of α2-macroglobulin and α1-antitrypsin. Chinese hamster ovary cells overexpressing pro-PDGF-A (ARKA\(^{86}\)) failed to induce tumors in nude mice. Thus, PDG-F-directed inhibitors might represent new agents for therapy in neoplasia induced by PDGF-A.

INTRODUCTION

Many reports have cited the coexpression of PDGF\(^3\) and its receptors in various tumor cells, suggesting both autocrine and paracrine mechanisms for PDGF-mediated tumor growth and invasion (1–3). The expression of PDGF and its receptors is up-regulated in diverse cancer cells (1–3), and has been associated directly with metastases (4) and angiogenesis (5). PDGF is a disulfide-linked dimer composed of two polypeptide chains, denoted A and B, and represented in vivo by three PDGFs, PDGF-AA, PDGF-AB, and PDGF-BB (6–9). These isoforms bind to and activate two tyrosine kinase receptors, PDGF receptor-α and PDGF receptor-β (6–9). The α-receptor binds both the A and B chains of PDGF, but the β-receptor binds only the B chain. Two new members of the PDGF family, PDGF-C and PDGF-D were identified as the two nonbasic specific convertases SKI-1 (16, 17) and NARC-1 could be implicated in this process (16). The mammalian subtilisin-like PCs constitute a family of seven known dibasic-specific proteinases, namely, Furin, PC1, PC2, PC4, PACE4, PC5, and PC7, as well as the two nonbasic specific convertase SKI-1 (16, 17) and NARC-1 (18). The PCs are implicated in the processing of multiple protein precursors, including proteases, growth factors, and receptors at multiple basic recognition sites exhibiting the general motif (K/R)-(X)n-(K/R) (\(n = 0, 2, 4, 6\) or 6; Refs. 16, 17). The enzyme SKI-1 recognizes the motif (R/K)-X-(L,V)-Z \(n\), where \(Z\) is any aa except Pro, Cys, Glu, and Val (17) and NARC-1 prefers the motif Y-X-(V/I)-X-(L/M) \(n\) (18). The purpose of this study was to identify the protease(s) involved in the processing of PDGF-A, and to evaluate the importance of this cleavage in PDGF-A-mediated \(ex vivo\) functions and \(in vivo\) tumor growth.

MATERIALS AND METHODS

Pro-PDGF-A Constructs. The human pro-PDGF-A cDNA was kindly provided by Dr. Carl Henrik Heldin (Ludwig Institute for Cancer Research, Uppsala, Sweden). Pro-PDGF-A-V5 (with a COOH-terminal V5-tag) was cloned into XhoI/BamHI-digested pIRE2-EGFP vector (Clontech, Palo Alto, CA) to generate pIRE2-EGFP-PDGF-A-V5. Mutagenesis was done by PCR using the primers: 5' CCCATTGGGAGAAGCGACAT3' and 5' GATGCTTGCTCTCCCTTCGAATTGG3' for the mutant RRKR\(^{86}\) into ARKA\(^{86}\), 5' CCCATTGGGAGAAGCGACAT3' and 5' GATGCTTGCTCTCCCTTCGAATTG3 for the mutant RRKR\(^{86}\) into ARKA\(^{86}\), 5' CCCATTGGGAGAAGCGACAT3' and 5' GATGCTTGCTCTCCCTTCGAATTG3' for the mutant RRKR\(^{86}\) into ARKA\(^{86}\). The PDGF-A cDNA mutants were transferred into the pIRE2-EGFP-V5 vector and their integrity confirmed by DNA sequencing.

Transfections and Cell Culture. The Furin-deficient LoVo-C5 human colon adenocarcinoma cells were transiently cotransfected with the empty vector pIRE2-EGFP-V5, pIRE2-EGFP-PDGF-A-V5 construct or with the pIRE2-EGFP-PDGF-A-V5 and pIRE2-EGFP vector that expresses either full-length Furin, PACE4, PC5A, PC5B, PC7, or SKI-1 cDNAs (19). The human embryonic kidney (HK293) cells were transiently cotransfected with the pIRE2-EGFP-V5 empty vector, pIRE2-EGFP-PDGF-A-V5 construct, or with the pIRE2-EGFP-PDGF-A-V5 and pIRE2-EGFP vector that expresses PC5 inhibitors including ppFurin, ppPACE4, ppPC5, ppPC7, ppSKI-1, wild-type or mutated α2-MG-F, and α1-PDX (19). In several experiments HK293 cells or CHO cells lacking SKI-1 (20) or the same cells stably expressing SKI-1 (18) expressing wild-type or mutated PDGF-A cDNAs. Wild-type CHO-K1 cells were stably transfected with pIRE2-EGFP-V5 vector expressing wild-type or mutant PDGF-A cDNAs. Wild-type CHO-K1 cells were stably transfected with pIRE2-EGFP-V5 vector containing wild PDGF-A or mutated PDGF-A (ARKA\(^{86}\)) cDNAs. Cells of stably transfected cells were selected using G418 resistance, and controlled by Western blotting for wild-type and mutant PDGF-A expression. All of the transfections were carried out using the Effectene transfection reagent (Qiagen Inc., Mississauga, Ontario, Canada) as recommended by the manufacturer. Cells were grown in DMEM supplemented with 10% FCS, 100 units/ml penicillin, and 100 μg/ml streptomycin (Life Technologies, Inc., Burlington, Ontario, Canada). For the stably transfected CHO cells 400 μg/ml G418 were added.

Biiosynthetic Labeling and Immunoprecipitation. Two days after transfection, the cells were washed and then pulse-labeled for 2–3 h with 200 μCi/ml [\(^{14}S\)]Cys. After the pulse period, cells were lysed in buffer containing...
150 mM NaCl, 50 mM Tris-HCl (pH 6.8), 0.5% NP40, and 0.5% sodium deoxycholate (Roche Molecular Biochemicals), and prepared for immunoprecipitations as described previously (19). Anti-V5 (1:1000 dilution; Invitrogen) was used as the primary antibody.

Western Blotting. Twenty-four h after transfection, the cells were lysed in PBS containing 2% NP40. Lysates were subjected to SDS-PAGE on 8% gels, and proteins were blotted onto nitrocellulose membranes. The primary antibodies used were: monoclonal antibodies directed against either the V5 epitope (1:1000 dilution; Invitrogen) or antiphosphotyrosine (2 μg/ml; Sigma-Aldrich Ltd., Oakville, Ontario, Canada).

Tyrosine Phosphorylation Assay. Confluent fibroblast NIH BALB/c-3T3 cells grown in 75-cm² flask dishes were maintained in serum-free DMEM for 24 h and incubated with or without medium derived from the indicated cells. Cells were washed twice in ice-cold PBS and lysed with lysis buffer [50 mM HEPES (pH 7.6), 150 mM NaCl, 1% Triton X-100, 2 mM vanadate, 100 mM NaF, and 0.40 mg/ml phenylmethylsulfonyl fluoride], and proteins were analyzed by Western blotting.

Cell Growth Assay. This assay was monitored as described previously elsewhere (21). Briefly, serum-starved BALB/c-3T3 cells were incubated for 24 h in medium derived from transfected HK293 cells. For the last 6 h of incubation, 0.5 μCi/well of [3 H]methyl-thymidine (Amersham) was added, and cells were harvested onto glass-fiber filters using a cell harvester (Pharmacia, Wallac Oy, Turku, Finland), and radioactivity was counted. Results were expressed as percentages of the values obtained for cells incubated with medium derived from HK293 cells transfected with empty vectors and medium derived from HK293 cells transfected with wild or mutated PDGF-A cDNAs.

In Vivo Tumorigenicity Assays. For tumor growth measurement, pools of control CHO-K1 cells or CHO-K1 cells expressing wild-type or mutant PDGF-A cDNA (RRKR^86^ to ARKA^86^) were assessed for their ability to proliferate as indicated above and injected s.c. into 4–6-week-old male athymic mice. Animals were monitored for tumor formation every 7 days as described previously (21), and tumors were cryosectioned and stained with H&E.

RESULTS

Processing of pro-PDGF-A by the PCs. To determine which PC cleaves pro-PDGF-A, we transiently coexpressed in LoVo cells, a Furin-deficient cell line, both pro-PDGF-A C-terminally tagged with a V5-epitope (Fig. 1A) and each of the PCs. After transfection the cells were pulse-labeled for 2 h with [35S]Cys, and the medium was immunoprecipitated with anti-V5 mAb (Fig. 1B). In parallel, supernatants collected 24 h after transfection were also analyzed for pro-PDGF-A processing by immunoblotting (Fig. 1C). As illustrated in Fig. 1B, LoVo cells cotransfected with pro-PDGF-A recombinant and the empty vector (Control) exhibited only one band with an apparent
molecular weight of $M_r\sim 25,000$ corresponding to the intact monomer PDGF-A precursor. Cotransfection of pro-PDGF-A with vectors encoding each of the PCs revealed that Furin, and to a much lesser extent PC5A and PC7, could process the $M_r\sim 15,000$ product, corresponding to the mature form of monomeric PDGF-A. Western blot analysis of conditioned medium derived from LoVo cells cotransfected with pro-PDGF-A, and each of the PCs revealed that aside from Furin, PC5A $>$ PACE4 and PC7 but not SKI-1 can process pro-PDGF-A under steady-state conditions (Fig. 1C).

Blockade of PDGF-A Processing by PC Inhibitors. To assess the possibility that PDGF-A is proteolytically activated by endogenous PC-like endoproteases, we cotransfected HK293 cells with vectors encoding pro-PDGF-A and each of the PC-inhibitors including the prosegments of PCs, namely, ppFurin, ppPACE4, ppPC5, ppPC7, and ppSKI-1, the Furin-motif variants of α_2-MG-F, and of the serpin α_1-PDX (19). Both biosynthesis (Fig. 1D) and Western blot (Fig. 1F) analyses concur that endogenous convertase(s) of HK293 cells are capable of complete processing of pro-PDGF-A into PDGF-A (Control). Cotransfection of cells with PC inhibitors revealed that processing of pro-PDGF-A is blocked by ppFurin (100%), ppPC5 (~60%), and ppPACE4 (~50%), as well as by α_2-MG-F (~40%) and α_1-PDX (100%). In contrast, ppSKI-1 and ppPC7 or wild-type α_1-AT failed to inhibit processing. Because close to complete inhibition of pro-PDGF-A cleavage occurred only with ppFurin and α_1-PDX, these results suggest that most of the PDGF-A-converting activity found in HK293 cells is related to Furin, and that ppPC5 and ppPACE4 can partially inhibit Furin (19, 22, 23).

Cleavage Site Specificity of PDGF-A Processing in HK293 Cells. To assess the cleavage site specificity of PDGF-A processing we analyzed whether Arg for Ala or Lys substitutions at the P1 and/or P4 positions at the PC-motif RRRK86 will affect processing of pro-PDGF-A by endogenous or exogenous Furin-like activity. The results of expression of these constructs in HK293 cells and their processing by endogenous enzymes or after overexpression of Furin are shown in Fig. 2. As described previously in Fig. 1, when wild-type pro-PDGF-A (RRRK86) and EGFP vector are cotransfected in HK293 cells, one major band corresponding to mature PDGF-A is detected in the conditioned medium (Fig. 2A). When the PDGF-A mutant ARKA86 is transfected in these cells, the processing of pro-PDGF-A is completely blocked. These results highlight the importance of Arg at positions P1 and P4 for the processing of pro-PDGF-A. Transfection of HK293 cells with the pro-PDGF-A mutants RRKL86 or RRLL86 revealed that the processing of these mutants is not completely blocked (Fig. 2A). Overexpression of Furin in the presence of these pro-PDGF-A constructs revealed that only the processing of the mutant RRKL86 was increased from 25% to 100%. This suggested that Furin could process this mutant, possibly at the alternative dibasic RR84|KL site, containing a favorable Leu at P2’ (17). However, because Furin cannot process precursors with a P1’ Leu (17), it is not surprising that the RRLL86 mutant is not processed by Furin. However, expression of these PDGF-A cDNA constructs in STKI-1 (+) cells mainly increased the processing of the pro-PDGF-A mutant RRRK86 and much less so of the RRKL86 one, without affecting that of the wild-type86 or ARKA86 mutant (data not shown).

Tyrosine Phosphorylation of the PDGF-A Receptor. To examine whether pro-PDGF-A processing by PCs is required for the mediation of its functions, conditioned media from transfected HK293 cells were tested for tyrosine phosphorylation of the PDGF-A receptor (PDGF-AR) and mitogenic activity. Fig. 3A shows that media derived from HK293 cells transfected with wild-type or mutants PDGF-A RRRK86 and RRKL86 enhanced the tyrosine phosphorylation of PDGF receptors and $[^{3}H]$methyl-thymidine incorporation (Fig. 3B) in NIH/BALB-c 3T3 cells. In contrast, media derived from cells transfected with the ARKA86 mutant were not effective.

PDGF-A Processing and Tumorigenesis. Before any analysis, pools of CHO-K1 tumor cells stably expressing wild-type and mutant (ARKA86) pro-PDGF-A were selected, and shown to efficiently produce and secrete the expected proteins, as verified by Western blotting of the media. Thus, whereas the mature PDGF-A is secreted from wild-type PDGF-A cell-pools, mostly unprocessed pro-PDGF-A is secreted from the ARKA86-expressing cell pool (Fig. 3C). To assess the importance of pro-PDGF-A processing on the tumorigenicity of CHO cells, three groups of 6 male nude mice were s.c. inoculated with 4×10^{5} cell pools of control CHO-K1 (empty vector), CHO-K1 cells expressing pro-PDGF-A, or the pro-PDGF-A mutant ARKA86. As illustrated in Fig. 3D, expression of pro-PDGF-A in these cells increased tumor growth. Whereas tumor cells expressing mutant pro-PDGF-A developed tumors with reduced size as compared with CHO-K1 controls, analysis of the cell morphology using H&E staining revealed that tumors derived from either control or CHO-K1-PDGF-A (ARKA86) cells showed increased apoptosis, and the tumor tissue exhibited necrotic areas (Fig. 3E).
DISCUSSION

Many normal and tumor cells express PDGF-A that stimulates their own growth in an autocrine and/or paracrine manner (1–6). The importance of these PDGF-A functions is reinforced by the selective expression of PDGF-A and its receptor (PDGF-AR) tyrosine phosphorylation, or with medium derived from HK293 cells transfected with empty vector, vector containing wild-type pro-PDGF-A (RRKR86), or mutated pro-PDGF-A (ARKA86, RRLL86, and RRKL86) cDNAs and cell lysates were analyzed by Western blotting for tyrosine phosphorylation. B, starved NIH 3T3/ BALB-c cells were incubated for 24 h in medium derived from HK293 cells transfected with empty vector, or a cDNA vector containing wild-type or mutants of pro-PDGF-A in the presence of 2% FCS. [3H]Thymidine was added for the final 6 h of incubation, and radioactivity was measured as described previously (21). C, CHO tumor cells were stably transfected with empty vector, or vectors containing either wild-type or mutant (ARKA86) PDGF-A cDNA constructs. Pools of stably transfected cells were selected using G418 resistance and analyzed by Western blot using a V5 mAb. D, control CHO cells, expressing wild-type or mutant (ARKA86) PDGF-A were injected s.c. into 4–6-week-old male nude mice (n = 6). The animals were monitored for tumor formation every 3 days as described previously (21). Results shown are representative of four experiments expressed as mean; bars, ± SD. E, tumors developed after 17 days post-s.c. injection were cryosectioned and stained with H&E, and observed under ×200 and ×400 magnifications.

Fig. 3. Pro-PDGF-A processing blockade inhibit in vitro and in vivo cell growth. A, starved NIH 3T3/ BALB-c cells were incubated for 10 min either with the PDGF-AA ligand (10 nM) used as a positive control for PDGF-A receptor (PDGF-AR) tyrosine phosphorylation, or with medium derived from HK293 cells transfected with empty vector, vector containing wild-type pro-PDGF-A (RRKR86), or mutated pro-PDGF-A (ARKA86, RRLL86, and RRKL86) cDNAs and cell lysates were analyzed by Western blotting for tyrosine phosphorylation. B, starved NIH 3T3/BALB-c cells were incubated for 24 h in medium derived from HK293 cells transfected with empty vector, or a cDNA vector containing wild-type or mutants of pro-PDGF-A in the presence of 2% FCS. [3H]Thymidine was added for the final 6 h of incubation, and radioactivity was measured as described previously (21). C, CHO tumor cells were stably transfected with empty vector, or vectors containing either wild-type or mutant (ARKA86) PDGF-A cDNA constructs. Pools of stably transfected cells were selected using G418 resistance and analyzed by Western blot using a V5 mAb. D, control CHO cells, expressing wild-type or mutant (ARKA86) PDGF-A were injected s.c. into 4–6-week-old male nude mice (n = 6). The animals were monitored for tumor formation every 3 days as described previously (21). Results shown are representative of four experiments expressed as mean; bars, ± SD. E, tumors developed after 17 days post-s.c. injection were cryosectioned and stained with H&E, and observed under ×200 and ×400 magnifications.
sis, and underline the requirement for basic residues in the P1, P2, and P4 positions, which are characteristic of the substrate specificity of some members of the PC family including Furin (16, 17). The efficient secretion of the unprocessed pro-PDGF-A mutants indicates that the intracellular proteolytic cleavage is not a prerequisite for PDGF-A secretion. This was additionally confirmed by the accumulation of pro-PDGF-A in media derived from PDGF-A-transfected LoVo cells and HK293 cells transfected with PC inhibitors. The importance of the RRKR46 sequence in pro-PDGF-A processing was reported previously by Mercola et al. (24). They demonstrated that alteration of the pro-PDGF-A cleavage site RRKR46 to RSNG46 resulted in the formation of a stable PDGF-A precursor. In agreement, our results demonstrated that the processing of pro-PDGF-A mutants RRKR46 into ARKA46 is completely blocked. However, transfections with the mutants RRKR46 into RRL46 and RRKR46 into RRKL46 still produce the mature form of PDGF-A. The processing of the RRLL46 mutant is not mediated by a PC-like activity, because overexpression of Furin did not significantly affect its processing (Fig. 2B), suggesting the involvement of another protease(s) in this process. Indeed, cotransfection of these mutants with the novel convertase SKI-1/SIP in CHO cells deficient of this enzyme (20), only the mutants RRLL46 and RRKL46 were processed by SKI-1, suggesting that it is also the enzyme involved in the processing of the PDGF-A mutants RRLL46 and to some extent RRKL46 in HK293 cells. The convertase SKI-1 is a type I membrane-bound subtilisin-prolylase-like enzyme, identified to exhibit a specificity for precursor cleavage at the motif (R/K)-X-(hydrophobic)-(L,K,F,T) ↓, as deduced from its ability to process brain-derived neurotrophic factor, sterol regulatory element binding proteins, and recently the ER stress-induced transcription factor ATF6 (reviewed in Ref. 17). This conclusion cautiously the indiscriminate mutation of processing sites in precursors, as this may result in a switching of the type of convertase involved that normally does not cleave at this site.

Like the other PDGFs, PDGF-A elicits its biological activity through interactions with transmembrane high-affinity receptors. Binding of PDGF-AA ligand to its receptor results in the autophosphorylation of the latter (9). In turn, the PDGF receptor activates an enzyme cascade that includes various phosphorylating enzymes, e.g., protein kinase C, Ras, Raf, and mitogen-activated protein kinase, and ultimately triggers cell division (6–9). Similar to vascular endothelial growth factor and basic fibroblast growth factor, PDGF acts as a “competence” factor enabling cells to enter the G1 phase, and participates with “progression” factors such as insulin-like growth factor I to move cells from the G1 into S phase, ultimately resulting in cell division. Our studies demonstrate that complete inhibition of PDGF-A processing by mutagenesis (mutant ARKA46) blocked the ability of PDGF-A to mediate PDGF-A receptor tyrosine phosphorylation and [3H]thymidine incorporation in 3T3 cells. In contrast, although the processing the PDGF-A mutants RRL46 and RRKL46 is dramatically reduced, the low level of the produced mature PDGF-A was enough to mediate PDGF-A receptor tyrosine phosphorylation and to stimulate [3H]thymidine incorporation. To investigate the biological role of PDGF-A processing in vivo in tumor growth, we used CHO-K1 cells (that do not produce endogenous PDGF-A) to study the effects of wild and mutant PDGF-A (ARKA46) on tumor growth in nude mice. Our results demonstrated that expression of PDGF-A in these cells increased the incidence and growth rate of the developed tumors. These results are in agreement with a previous report showing that PDGF-A overexpression in various tumor cells including mesothelioma increased tumor formation (28). In contrast, s.c. inoculation of tumor cells expressing the PDGF-A mutant ARKA46 cDNA induced tumors with reduced size as compared with tumors obtained from control or wild-type PDGF-A transfected cells. This in vivo tumor growth inhibition by the PDGF-A mutant expressed in CHO-K1 cells could be explained by the action of pro-PDGF-A as a dominant negative (29). Like the other PDGF ligands, interaction of PDGF-A with their receptors induces the dimerization of the subunits and induces the formation of PDGFα-PDGFα homodimers. The absence of fully processed PDGF-A may affect the dimerization of the corresponding receptors leading to a loss of biological activity. In addition, the possible antagonist role of the PDGF-A mutant that may compete with the active PDGF-A for the PDGF receptors is not ruled out; however, additional studies are required to fully verify these hypotheses.

In conclusion, we have demonstrated that Furin, and to a lower extent PC5, PACE4, and PC7 are the cognate members of the PC family involved in the processing of pro-PDGF-A, and demonstrated that the biological functions of PDGF-A ex vivo and in vivo in tumors are critically dependent on the processing of pro-PDGF-A by the PCs. Our findings support the notion that targeting PDGF-A cleavage may provide a pharmacological complement that could be used for treatment of malignancies induced by this growth factor.

ACKNOWLEDGMENTS

We thank Jadwiga Marcinkiewicz and Aida Mammabassi for technical help, and Brigitte Mary for secretarial assistance.

REFERENCES

The Proteolytic Processing of Pro-Platelet-derived Growth Factor-A at RRKR^86 by Members of the Proprotein Convertase Family Is Functionally Correlated to Platelet-derived Growth Factor-A-induced Functions and Tumorigenicity

Géraldine Siegfried, Abdel-Majid Khatib, Suzanne Benjannet, et al.

Updated version Access the most recent version of this article at:

http://cancerres.aacrjournals.org/content/63/7/1458

Cited articles This article cites 28 articles, 14 of which you can access for free at:

http://cancerres.aacrjournals.org/content/63/7/1458.full#ref-list-1

Citing articles This article has been cited by 17 HighWire-hosted articles. Access the articles at:

http://cancerres.aacrjournals.org/content/63/7/1458.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/63/7/1458.

Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.