Emodin Enhances Arsenic Trioxide-Induced Apoptosis via Generation of Reactive Oxygen Species and Inhibition of Survival Signaling

Jing Yi,1 Jie Yang,1 Rong He,2 Fei Gao,1 Hairong Sang,2 Xueming Tang,1 and Richard D. Ye2

1Department of Cell Biology, Shanghai Second Medical University, Shanghai, People’s Republic of China, and 2Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois

ABSTRACT

Although arsenic trioxide (As2O3) induces apoptosis in a relatively wide spectrum of tumors, the sensitivity of different cell types to this treatment varies to a great extent. Because reactive oxygen species (ROS) are critically involved in As2O3-induced apoptosis, we attempted to explore the possibility that elevating the cellular ROS level might be an approach to facilitate As2O3-induced apoptosis. Emodin, a natural anthraquinone derivative, was selected because its semiquinone structure is likely to increase the generation of intracellular ROS. Its independent and synergistic effects with As2O3 in cytotoxicity were studied, and the plausible signaling mechanism was investigated in HeLa cells. Cell Proliferation Assay and flow cytometry were used to assess cell viability and apoptosis. Electrophoretic mobility shift assay, luciferase reporter assay, and Western blotting were performed to analyze signaling alteration. The results demonstrated that coadministration of emodin, at low doses of 0.5–10 μM, with As2O3 enhanced As2O3-rendered cytotoxicity on tumor cells, whereas these treatments caused no detectable proproliferative or proapoptotic effects on nontumor cells. ROS generation was increased, and activation of nuclear factor-κB and activator protein 1 was suppressed by coadministration. All enhancements by emodin could be abolished by the antioxidant N-acetyl-cysteine. Therefore, we concluded that emodin sensitized HeLa cells to As2O3 via generation of ROS and ROS-mediated inhibition on two major prosurvival transcription factors, nuclear factor-κB and activator protein 1. This result allows us to propose a novel strategy in chemotherapy that uses mild ROS generators to facilitate apoptosis-inducing drugs whose efficacy depends on ROS.

INTRODUCTION

Arsenic trioxide (As2O3), as a therapeutic agent for acute promyelocytic leukemia and a variety of other human tumors, has been a topic of increasing interest (1–3). Although As2O3 induces apoptosis in a relatively wide spectrum of tumors, the sensitivity of different cell types to this treatment varies to a great extent (4, 5). For instance, among human myeloid leukemic cell lines, NB4 cells are highly sensitive, whereas HL60 and U937 cells are relatively resistant to the same dose of As2O3. Most of the less sensitive cancer cell lines can still be rendered apoptotic by higher doses of As2O3; however, these concentrations are not practical in the clinical setting (6, 7). Sensitization of the less sensitive or even resistant tumor cells to As2O3 may expand the therapeutic spectrum of this agent and reduce toxic side effects. This represents a challenge to investigators working on the mechanisms underlying As2O3-induced apoptosis.

An increasing number of studies show that cellular reductive-oxidative (redox) state might be critically relevant in the mechanism that influences cellular sensitivity to As2O3. For instance, cells exhibiting a low content of reduced glutathione (GSH) or low activities of glutathione S-transferase π, glutathione peroxidase, superoxide dismutase, and catalase are more sensitive to As2O3 (2, 5, 8, 9). Agents that function as either antioxidants or inhibitors and scavengers of reactive oxygen species (ROS), such as DTT and N-acetyl-cysteine (NAC), can inhibit As2O3-induced apoptosis (2, 5, 8, 9), whereas buthionine sulfoximine, which depletes cellular GSH, can enhance the effect of As2O3 (2, 5, 8, 9). Nevertheless, it has not been consistently shown that there is a direct correlation between the cellular content or activity of individual antioxidants and sensitivity to As2O3-induced apoptosis (5, 8, 9).

We recently found that, in several leukemic and digestive tumor cell lines, there exists an inherent difference in total amount of ROS. The inherent ROS level was positively correlated with cellular apoptotic sensitivity to As2O3. Moreover, through intervention with 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), an agent that generates ROS intracellularly, we demonstrated that an elevation of the ROS level would sensitize cells to As2O3-induced apoptosis (10, 11). These results have led to the hypothesis that elevation of the cellular ROS level might be an approach to facilitate As2O3-induced apoptosis. In an attempt to explore this possibility, we carried out the present study. Emodin, a natural anthraquinone derivative, was selected because the derived semiquinone structure is likely to increase the generation of intracellular ROS. Its independent and synergistic effects with As2O3 were studied on HeLa, a human cervical epithelioid cell line. A comparison was made with the human leukemia cell line U937 and nontumor human fibroblast cells. The possible signaling mechanism was investigated. The results demonstrated that emodin, at doses causing no detectable proproliferative or proapoptotic effects on non-tumor cells, sensitized tumor cells to As2O3 via generation of ROS and ROS-mediated inhibition of two transcription factors, nuclear factor-κB (NF-κB) and activator protein 1 (AP-1).

MATERIALS AND METHODS

Cell Culture and Compounds. HeLa and U937 cells were obtained from American Type Culture Collection (Manassas, VA). Primary human skin fibroblast cells were isolated from surgically resected disposed tissue using institutionally approved protocols. HeLa and fibroblast cells were maintained in DMEM (GibcoBRL, Gaithersburg, MD), and U937 cells were maintained in RPMI 1640 (GibcoBRL), all supplemented with antibiotics and 10% fetal bovine serum. Cells were grown in a humidified atmosphere with 5% CO2 at 37°C.

As2O3, emodin (6-methyl-1,3,8-trihydroxyanthraquinone), phorbol 12-myristate 13-acetate (PMA), and NAC were purchased from Sigma (St. Louis, MO). Emodin was prepared by first dissolving it in DMSO to 100 mM and then diluting it with HBSS to 1 mM. SB203580 was obtained from Calbiochem (La Jolla, CA).

Cell Viability Assay. Cells were seeded in 96-well plates at 1 × 104 cells/ml and exposed to As2O3, emodin, or the two-drug combination for 2–3 days, with daily change of drug-containing medium. Cell viability was assayed using CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay (MTS) Kit (Promega, Madison, WI), following the manufacturer’s instructions. Absorbance at 490 nm was directly proportional to the number of living cells in culture.

Apoptosis Analysis. Apoptotic rates were analyzed by flow cytometry using Annexin V-fluorescein isothiocyanate (FTTC)/propidium iodide (PI) kit (BD PharMingen, San Diego, CA), in which Annexin V bound to the apoptotic cells with exposed phosphatidylserine. Staining was performed according to the manufacturer’s instructions, and flow cytometry was conducted on an
EMODIN ENHANCES ARSENIC TRIOXIDE-INDUCED APOPTOSIS

Epics Elite ESP (Coulter) flow cytometer. Statistical analysis was performed using WinMDI software v. 2.8.

ROS Detection. 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA, Sigma) was used for ROS capture (5). DCFH-DA is cleaved intracellularly by non-specific esterases and turns to highly fluorescent 2,7-dichlorofluorescein (DCF) upon oxidation by ROS. DCFH-DA working solution was added directly to the medium to reach 10 μM and then incubated at 37°C for 15 min. Cells were then washed with PBS once and kept on ice for immediate DCF detection by flow cytometer.

GSH/Oxidized Glutathione (GSSG) Ratio Assay. GSH, a tripeptide with a free thiol group, is a major antioxidant in cells. The GSH/GSSG ratio reflects the cellular redox state. Cells were trypsinized 1 h after drug treatment and prepared according to the instructions of the GSH/GSSG Ratio Assay Kit (Calbiochem). Briefly, for GSSG sample, the thiol-scavenging reagent 1-methyl-2-vinylpyridinium trifluromethanesulfonate was immediately mixed with cell suspension to eliminate GSH. Cells were frozen and thawed and then extracted with metaphosphoric acid. The cell lysates were added to GSSG or GSH assay buffers, respectively. Samples were mixed sequentially with the chromogen 5,5′-dithiobis-2-nitrobenzoic acid, glutathione reductase, and NADPH. Absorbance at 412 nm was recorded for 3 min, and the reaction rate was determined. A standard curve was constructed using a known quantity of GSH. GSH and GSSG concentrations were calculated by linear regression against the standard curve using SAS software. GSH/GSSG ratio was obtained [ratio = (GSH – 2GSSG)/GSSG].

Mitochondrial Membrane Potential (ΔΨm) Detection. Loss of mitochondrial membrane potential was assessed by flow cytometry, using tetramers rhodamine, ethyl ester, perchlorate (TMRE; Molecular Probes, Eugene, OR). The uptake and accumulation of TMRE in mitochondria are driven by depolarization of OR. The uptake and accumulation of TMRE in mitochondria are driven by depolarization of OR. The uptake and accumulation of TMRE in mitochondria are driven by depolarization of OR.

Electrophoretic Mobility Shift Assay (EMSA). After overnight starvation in serum-free medium, cells were exposed to agents, nuclear protein extracts were prepared using a method described previously (15). Briefly, 1 × 10^6 cells were homogenized in NEBA buffer [10 mM HEPES (pH 7.8), 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, and 1 mM DTT] containing 2 μM diisopropylfluorophosphate, protease inhibitors (1× Protease Inhibitor Mixture Set I from Calbiochem), and 1 mM phenylmethylsulfonyl fluoride. Total cytosolic proteins were lysed in NEBA buffer supplemented with 0.6% NP40 and removed after centrifugation at 11,000 × g for 10 s. After homogenization of nuclei in NEBB buffer [20 mM HEPES (pH 7.8), 0.4M NaCl, 1 mM EDTA, and 1 mM EGTA], solubilized nuclear extracts were obtained after removing nuclear debris by centrifugation at 11,000 × g for 30 s. NF-κB and AP-1 oligonucleotide probes (Promega) were labeled with 32P according to the manufacturer’s instruction. Nuclear extract samples bound with labeled probes were loaded onto a 6% acrylamide gel. After electrophoresis, the gel was dried, and autoradiography was exposed using a PhosphorImager cassette for 4 days at room temperature and then scanned and analyzed using ImageQuant software version 3.3 (Molecular Dynamics) as described previously (15).

IκB-α Dominant Negative Mutant Transfection. Overexpression of an IκB-α dominant negative mutant (32/36 serine) unable to be phosphorylated like a wild-type IκB-α will block the activation of NF-κB. Cells were transiently transfected with plasmid expression vectors containing an IκB-α dominant negative mutant [IκB-DM (14, 15)] using the above-mentioned LipofectAMINE method. Nonrelevant plasmid pcDNA3 was used as transfection control. Forty-eight h after transfection, cells were exposed to drugs for another 3 days. Annexin V-phycoerythrin/PI double staining flow cytometry was performed to determine apoptosis and to investigate the role of NF-κB in apoptosis.

Statistics. SAS6.12 software was used for statistical analysis. Student’s t test was applied for comparison of the means of two groups, and ANOVA was used for the means of multiple groups. For all of the value differences, P < 0.05 was considered significant.

RESULTS

Inhibition of Cell Viability in Tumor Cells but not in Nontumor Cells. In HeLa cells, low doses of emodin, ranging from 2 to 10 μM, caused a slight reduction in the number of viable cells in culture (Fig. 1A). Cell number reduction in HeLa cells was attributed mainly to a mild inhibition of cell proliferation because the apoptosis assay did not display discernable cell death when treated with <10 μM emodin (Fig. 2B). Cotreatment with 10 μM emodin apparently sensitized U937 cells to As2O3-induced cytotoxicity. Similar treatment had no effect on fibroblast cells (Fig. 3).

Enhancement of As2O3-Induced Apoptosis. Emodin, at low doses ranging from 0.5 to 10 μM, facilitated As2O3 cytotoxicity in a dose-dependent fashion in HeLa cells (Fig. 1B, Fig. 2, and Fig. 3). Of
interest, emodin at 0.5 μM caused no appreciable change in either cell proliferation or death (Fig. 1A). However, when this dose was coadministered with 2 μM \( \text{As}_2\text{O}_3 \), it enhanced \( \text{As}_2\text{O}_3 \)-induced cytotoxicity (Fig. 1B). This cytotoxicity consists of an inhibition of cell proliferation and an induction of apoptosis, the latter of which is depicted by Annexin V/PI flow cytometry (Fig. 2).

**Decrease of Mitochondrial Membrane Potential.** The two-drug combination caused more HeLa cells to undergo a reduction in mitochondrial membrane potential (\( \Delta \Psi_m \)) because the cell population with relatively low TMRE staining became predominant in the samples exposed to both drugs (Fig. 4). This indicates that the effect of emodin in enhancing \( \text{As}_2\text{O}_3 \)-induced apoptosis in HeLa cells involves a decrease of mitochondrial membrane potential, which is the identical event that occurs in \( \text{As}_2\text{O}_3 \)-induced apoptosis (2).

**Dependence on ROS Level and Redox State.** Exposure of HeLa cells to emodin elicited an immediate elevation of cellular ROS level. This elevation occurred more rapidly and to a greater extent than that caused by \( \text{As}_2\text{O}_3 \), but rapidly returned to normal. Cotreatment with emodin and \( \text{As}_2\text{O}_3 \) dramatically augmented ROS level elevation (Fig. 5).

Because emodin has been reported to have fluorescent properties (16), we excluded its background fluorescence when determining ROS by the measurement of DCF fluorescence. Results showed that at the doses used in this study, its fluorescence was below the detectable level (data not shown).

The GSH/GSSG ratio showed that the combination of emodin and \( \text{As}_2\text{O}_3 \) had a remarkable oxidative impact on cellular redox state. Its effect on reduction of the GSH/GSSG ratio involved both an increase of GSSG and a decrease of GSH (Fig. 6).

NAC, an aminothiol and synthetic precursor of intracellular cysteine and GSH, is known as a general antioxidant. Its modes of action include scavenging ROS and increasing the intracellular level of GSH (17, 18). Pre- or cotreatment of cells with 1.5 mM NAC for 24 h partially abolished the elevation of ROS and the decrease of the GSH/GSSG ratio caused by the two-drug combination (Figs. 5 and 6). Cotreatment with NAC also attenuated apoptosis and the collapse of \( \Delta \Psi_m \) caused by emodin in combination with \( \text{As}_2\text{O}_3 \) (Figs. 1, 2, and 4). These data indicated that emodin’s enhancement of \( \text{As}_2\text{O}_3 \)-inducing cytotoxicity was dependent on ROS.

**Inhibition of NF-κB and AP-1 Activation.** To explore whether the activation of transcription factors was altered in emodin/\( \text{As}_2\text{O}_3 \)-induced apoptosis, the activation of NF-κB and AP-1 was evaluated using EMSA and transcription factor-driven luciferase reporter assay. The simple administration of \( \text{As}_2\text{O}_3 \) or emodin failed to visualize a discernable change in NF-κB activation, as displayed by EMSA and luciferase assay (Fig. 7). Luciferase assay for AP-1 activation did not show change either (data not shown). These data excluded the fact that these treatments evoked any significant activation on NF-κB or AP-1. We then proposed to determine whether the drugs had an inhibitory effect on transcription factor activation. To accomplish this experi-

---

**Fig. 2.** Apoptosis rate analysis using Annexin V/propidium iodide flow cytometry in HeLa cells treated with \( \text{As}_2\text{O}_3 \), emodin, the two-drug combination, or the two-drug combination + N-acetyl-L-cysteine. Density plots, A; bar chart, B. Drug-containing medium was changed daily for 2 or 3 days. Cells were trypsinized before incubation with Annexin V and propidium iodide for 15 min at room temperature. Apoptotic cells, represented by Annexin V-positive cells, increased significantly in two-drug combination-treated samples on the third day, compared with samples treated with \( \text{As}_2\text{O}_3 \) only. N-Acetyl-L-cysteine rescued two-drug combination-induced apoptosis. Each sample was duplicated, and the data represent the results of four assays.

**Fig. 3.** Cell viability assay (MTS) in HeLa, U937, and fibroblast cells treated with \( \text{As}_2\text{O}_3 \), emodin, or the two-drug combination. \( \text{As}_2\text{O}_3 \) and emodin, used for 3 days, resulted in a decrease in cell viability in HeLa and U937 cells, and the two-drug combination significantly potentiated \( \text{As}_2\text{O}_3 \)-induced viability reduction in these two cell lines. However, cell viability was not affected in fibroblast cells. Each sample was triplicated, and experiments were repeated twice.
As demonstrated by EMSA, PMA-elicited AP-1 activation was remarkably suppressed by cotreatment with As$_2$O$_3$ + emodin, despite the fact that neither As$_2$O$_3$ nor emodin alone inhibited AP-1 activation at that moment [45 min (Fig. 9A)]. Luciferase assay indicated that, by 4 h of treatment, emodin caused a slight inhibition of PMA-stimulated AP-1 activation, and two-drug combination showed a stronger inhibition (Fig. 9B). Similar to the case of NF-kB, the inhibition on AP-1 activation by emodin + As$_2$O$_3$ could be abolished by the antioxidant NAC (Fig. 9).

**Prosurvival Role of NF-kB.** To determine the role of NF-kB activation in emodin/As$_2$O$_3$-induced apoptosis, we first studied the effect of PMA on these drugs. Cell viability assay showed that cotreatment of PMA with the drugs increased cellular resistance to the cytotoxic effect of these drugs (Fig. 10A). This indirectly indicated a prosurvival role of NF-kB activation because PMA stimulated NF-kB activation. We further verified this role by transient transfection of a dominant negative IκB-α mutant to block the activation of NF-kB. Annexin V/PI flow cytometry showed that cells transiently transfected with dominant negative IκB-α mutant were more sensitive to apoptosis induced by As$_2$O$_3$ and the emodin + As$_2$O$_3$ combination (Fig. 10B). These results suggested that NF-kB activation plays a prosurvival or antiapoptotic role.

**Activation of Stress Response Kinases.** To determine the signal transduction pathway between ROS elevation and transcription factor inhibition, we investigated the activation patterns of p38 kinase, JNK, and extracellular signal-regulated kinase 1/2, all three of which are known to be activated in response to oxidative stress. Results showed that p38 was mildly activated by As$_2$O$_3$, but not by emodin, whereas coadministration of the two drugs resulted in a potentiated activation. Antioxidant NAC could attenuate this potentiated activation (Fig. 11A). Therefore, p38 activation was involved in As$_2$O$_3$-induced and emodin-enhanced apoptosis. Surprisingly, JNK activation was not affected by either treatment (Fig. 11B). The extracellular signal-regulated kinase 1/2 activation was not influenced by drug treatment either (data not shown).

To investigate preliminarily whether p38 activation is required for the cytotoxicity of the two-drug combination, we use SB203580, a
As 2 O 3-induced apoptosis (10, 11), we tried to search for a natural to As 2 O 3 and that a naphthroquinone, DMNQ, sensitizes cells to ROS may be positively related to the susceptibility of the tumor cells.

**DISCUSSION**

Cinhibition of p38 activation did not protect cells from cytotoxicity. Western blot assessment (data not shown). Results showed that the chosen as an effective inhibitory dose for p38 activation, based on a combination

P(H11001) versus As 2 O 3 alone or the GSH/GSSG ratio. Two-drug combination raised the GSSG concentration and caused a dramatic decrease in the GSH/GSSG ratio. * indicates that the value differences of the two-drug combination versus As 2 O 3 alone or versus the two-drug combination + NAC were significant (P = 0.0025). Each sample was quadruplicated, and the figure is representative of two assays.

EMODIN ENHANCES ARSENIC TRIOXIDE-INDUCED APOPTOSIS

Specific and cell-permeable inhibitor of p38 kinase, as the cotreatment with the drugs before the assessment of cell viability. Twenty µM was chosen as an effective inhibitory dose for p38 activation, based on a Western blot assessment (data not shown). Results showed that the inhibition of p38 activation did not protect cells from cytotoxicity (Fig. 11C).

**DISCUSSION**

Based on our previous studies that the inherent cellular level of ROS may be positively related to the susceptibility of the tumor cells to As 2 O 3 and that a naphthroquinone, DMNQ, sensitizes cells to As 2 O 3-induced apoptosis (10, 11), we tried to search for a natural anthraquinone that may exert an effect similar to that of DMNQ. We proved in the present study that emodin, at doses causing no detectable proproliferative or proapoptotic effects on nontumor cells, sensitized tumor cells to As 2 O 3-induced apoptosis through elevation of intracellular ROS level and inhibition of the survival mechanisms, *i.e.*, activation of NF-κB and AP-1.

It has been known that emodin had some effects on inhibition of cell proliferation or induction of cell death (19–21), thus it may function in suppression of tumor growth or inflammation (22, 23), although the underlying mechanisms are not well elucidated. Two recent findings on emodin’s antitumor effect are that it can selectively work on neuroectodermal tumors (16) and preferentially suppress the transformation of HER2/neu-overexpressing breast cancer cells by inhibiting HER2/neu tyrosine kinase activity (24).

We noticed that in the literature, emodin, when used alone, requires a high dose (approximately 40 µM or higher) to achieve its inhibitory effect on cell proliferation or induction of cell death. Our preliminary test showed that emodin alone exerted a significant proapoptotic effect on HeLa cells at a dose starting from 30 µM, and these doses showed cytotoxicity to normal fibroblast cells (data not shown). We thereby selected a dose range that caused no appreciable effect on nontumor cells. Emodin alone at these doses (*i.e.*, 0.5–10 µM) induced mild inhibition of tumor cell proliferation in a dose-dependent fashion, whereas the effect on cell death was negligible at concentrations below 10 µM. However, when emodin at these doses (typically at 10 µM) was coadministered with 2 µM As 2 O 3, it enhanced As 2 O 3-induced apoptosis in HeLa and U937 cells. Of note, the apoptosis rate achieved by the two-drug combination was similar to that achieved by 5 µM As 2 O 3 (data not shown), whereas this high dose of As 2 O 3 is not clinically acceptable (7). Pecere et al. (16), in their studies of aloe-
Fig. 8. Assays for nuclear factor κB (NF-κB) activation in HeLa cells pretreated with As₂O₃, emodin, the two-drug combination, or the two-drug combination + N-acetyl-L-cysteine (NAC) and stimulated with phorbol 12-myristate 13-acetate (PMA). Electrophoretic mobility shift assay (EMSA), A; Western blotting for IκB-α, B; luciferase assay, C. Cells were starved overnight. NAC, when applied, was added 16 or 24 h before other agents. In EMSA, after pretreatment with As₂O₃, emodin, the two-drug combination, or the two-drug combination + NAC for 30 min, cells were stimulated with PMA (500 nM) for 45 min. Results of EMSA (A) showed that NF-κB binding to DNA (i.e., activation of NF-κB) was induced by PMA (Lane 2). Whereas this activation was slightly inhibited by As₂O₃ (Lane 3), but not by emodin (Lane 4), the two-drug cotreatment rendered a remarkable inhibition (Lane 5). NAC abolished the two-drug-rendered inhibition of NF-κB activation (Lane 6). In the luciferase assay, cell treatments were given at 48 h posttransfection. After overnight starvation and pretreatment with the drugs for 30 min, PMA was added for a 4-h incubation. Results (C) showed that PMA-stimulated NF-κB activation (bar 2) was inhibited by emodin alone (bar 4) and significantly further inhibited by the two-drug combination (bar 5). In Western blot for IκB-α, after the 30-min pretreatment, cells were stimulated with PMA for 30 min before harvest. Results (B) showed that the decrease of IκB-α was accompanied by PMA-induced NF-κB activation (Lane 2). Whereas this decrease of IκB-α was slightly inhibited by As₂O₃ (Lane 3), but not by emodin (Lane 4), the two-drug cotreatment rendered a remarkable inhibition (Lane 5). NAC abolished the two-drug-rendered inhibition on IκB-α decrease (Lane 6). Experiments were repeated two to four times. * indicated that the value differences of bar 5 versus bar 4 or versus bar 6 were significant (P = 0.0006).

EMODIN ENHANCES ARSENIC TRIOXIDE-INDUCED APOPTOSIS

Emodin cytotoxicity on a variety of cell lines, considered HeLa cells to be insensitive to this drug (used at 50 μM). However, our results show that treatment of HeLa cells with a relatively lower dose of emodin (10 μM) + As₂O₃ rendered HeLa cells as sensitive to apoptosis as the neuroectodermal tumor cells and other sensitive cells classified in the study of Pecere et al. (16). Exposure of U937 cells to As₂O₃ + emodin made this originally “insensitive” cell line sensitive to As₂O₃ and therefore further confirmed the synergistic efficacy of emodin.

Emodin, a component of plant extracts used to make laxative products, is a type of natural anthraquinone with a molecular structure similar to that of DMNQ (20). DMNQ is considered a ROS generator because its property of quinone and derived semiquinone, like mitochondrial ubiquinone, allows it to transfer electrons (25–27). Emodin has a structure similar to those of DMNQ and ubiquinone (shown in Fig. 12), but its capability to generate ROS has not been adequately studied (28), nor has a link between its anticancer effect and ROS generation been established. We found in the present study that emodin elicited an immediate elevation of cellular ROS level and a moderate reduction of the GSH/GSSG ratio. Compared with the ROS fluctuation related to As₂O₃, emodin-triggered ROS elevation was more potent and rapid but transient. Remarkably, emodin augmented As₂O₃-induced ROS elevation when it was coadministered. As₂O₃ increases cellular ROS through an unknown mechanism that may be related to the disruption of mitochondrial respiration chain (2, 29, 30). In contrast, emodin seems to elevate ROS level by direct generation of ROS, as reflected by the pattern of emodin-related ROS fluctuation.

Fig. 9. Assays for activator protein 1 (AP-1) activation in HeLa cells pretreated with As₂O₃, emodin, the two-drug combination, or the two-drug combination + N-acetyl-L-cysteine (NAC) and stimulated with phorbol 12-myristate 13-acetate (PMA). Electrophoretic mobility shift assay (EMSA), A; luciferase assay, B. Cells were starved overnight. NAC, when applied, was added 16 or 24 h before other agents. In EMSA, after pretreatment with drugs for 30 min, cells were stimulated with 500 nM PMA for 45 min. Results of EMSA (A) showed that AP-1 binding to DNA (i.e., activation of AP-1), reflected by a predominant band, was induced by PMA (Lane 2). Whereas this activation was not significantly altered by either As₂O₃ (Lane 3) or emodin (Lane 4), the two-drug cotreatment rendered a remarkable inhibition (Lane 5). NAC abolished the two-drug-rendered inhibition of AP-1 activation (Lane 6). In the luciferase assay, cell treatment was given at 48 h posttransfection. After overnight starvation and pretreatment with the drugs for 30 min, PMA was added for a 4-h incubation. Results (B) showed that PMA-stimulated AP-1 activation (bar 2) was inhibited by emodin alone (bar 4) and further inhibited by the two-drug combination (bar 5). NAC partially abolished this inhibition. Experiments were repeated two to four times. * indicated that the value differences of bar 5 versus bar 4 or versus bar 6 were significant, although statistically marginal (P = 0.073).
and redox state. Emodin’s enhancement of \( \text{As}_2\text{O}_3 \)-induced cytotoxicity in HeLa cells is apparently dependent on ROS generation because the enhancement of both proliferation-inhibition and apoptosis rendered by cotreatment with the two drugs can be abolished or attenuated by the antioxidant NAC.

ROS-dependant regulation of signaling and transcription activation has become a focus of a large body of investigation (31–33). It is known that AP-1, one of the first mammalian transcription factors to be identified, and NF-κB, another important transcription factor, can be regulated by a variety of physiological and pathological stimuli, including changes in cellular redox state. These transcription factors, in turn, regulate a wide range of cellular activities, including cell proliferation, differentiation, and death. In response to an oxidative stress, activated mitogen-activated protein kinase members translocate to the nucleus to phosphorylate and thereby potentiate the activity of the components of these so-called redox-sensitive transcription factors (7, 33–38). On the other hand, activation of these transcription factors may be inhibited by overloaded oxidants that oxidize the cysteine residues within the DNA-binding region of transcription factors (31). Activation of NF-κB and AP-1 is predominantly thought to serve as a prosurvival factor (34–38), although these transcription factors are involved in both proliferation and apoptosis events (34–40). Inhibition of their activation may hence shift the survival/death control (35, 38, 41). In the present study, PMA, a typical phorbol ester and strong mitogen, activates NF-κB and AP-1 in HeLa cells and increases cellular resistance to the cytotoxicity of the two drugs. Blockage of NF-κB activation by transfection of a dominant negative IkB-α mutant potentiates cellular susceptibility to drug cytotoxicity. This indicated that NF-κB and AP-1 activation, served as prosurvival or antiapoptotic forces, was suppressed by cotreatment with emodin, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and mitochondrial ubiquinone.

![Fig. 10. Assays to determine the role of nuclear factor κB activation in cellular susceptibility to cytotoxicity of \( \text{As}_2\text{O}_3 \), emodin, and the two-drug combination. MTS, A; Annexin V/propidium iodide flow cytometry on dominant negative IkB-α mutant-transfected cells, B. Cells were exposed to \( \text{As}_2\text{O}_3 \), emodin, and the two-drug combination with or without 500 nM phorbol 12-myristate 13-acetate (PMA) for 3 days before MTS assay. Cell viability rate was higher in PMA-treated cells. * and ** indicated that values of PMA+ versus PMA− were significantly different \((P = 0.004 \text{ and } 0.014); A\). For apoptosis assay, dominant negative IkB-α mutant (IkB-DM) was transfected 40 h before drug treatment for 3 days. Annexin V/propidium iodide flow cytometry showed the increased apoptotic rate in IkB-DM-transfected cells on drug exposure, compared with the control DNA-transfected cells. * and ** indicated that values of IkB-DM+ versus IkB-DM− were significantly different \((P = 0.007 \text{ and } 0.020); B\). Each sample was quadruplicated (MTS) or duplicated (flow cytometry), and assays were repeated twice.](Image 10)

![Fig. 11. Mitogen-activated protein kinase activation in HeLa cells treated with \( \text{As}_2\text{O}_3 \), emodin, the two-drug combination, or the two-drug combination + N-acetyl-l-cysteine. Western blots, A and B; MTS, C. For Western blots, cells were starved overnight and then incubated with drugs for 10 min. Results showed that p38 was mildly activated by \( \text{As}_2\text{O}_3 \), and cotreatment with emodin potentiated the activation of p38. N-Acetyl-l-cysteine abolished emodin’s enhancement (A). However, c-Jun NH2-terminal kinase activation was affected by neither \( \text{As}_2\text{O}_3 \), emodin, nor the two-drug combination (B). Western blot experiments were repeated three times. For cell viability assay, SB203580 (20 \( \mu \text{M}\)), the inhibitor of p38, was added with the drugs. MTS results (C) showed that inhibition of p38 activation did not protect cells from the cytotoxicity rendered by \( \text{As}_2\text{O}_3 \) or the two-drug combination. The value differences between SB203580+ and SB203580− samples in each group were statistically insignificant \((P = 0.996); C\). Each sample was quadruplicated.](Image 11)

![Fig. 12. Structures of emodin, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and mitochondrial ubiquinone.](Image 12)
EMODIN ENHANCES ARSENIC TRIOXIDE-INDUCED APOPTOSIS

din + As$_2$O$_3$, whereas As$_2$O$_3$ or emodin alone had no suppressive effect or little suppressive effect. This synergistic suppression may be attributed, at least in part, to the substantial increase of cellular ROS and the dramatic oxidative stress resulting from the two-drug cotreatment because NAC prevented this effect.

Among the three types of mitogen-activated protein kinases, p38 and JNK/stress-activated protein kinase are predominantly activated in response to cellular redox stress (32, 34). In our study, p38 phosphorylation was moderately activated by As$_2$O$_3$, and this activation was enhanced by emodin. Conversely, JNK activation was not. The role of JNK in mediation of apoptosis has been emphasized in an increasing number of recent reports (34, 42–44). JNK activation and, consequently, c-Jun phosphorylation usually precede AP-1 activation. In other words, suppression of AP-1 could be linked to inactivation of JNK. In the present study, the activation of p38, but not JNK, seemed to be involved in ROS-mediated enhancement of cytotoxicity, although the activation of p38 was not necessarily required for cytotoxicity. However, NF-$\kappa$B and AP-1 may regulate their activity by sensing changes in the intracellular redox state, rather than by merely recognizing redox-related upstream signals (i.e., mitogen-activated protein kinases). Evidence exists implying that ROS may have opposite effects on upstream mitogen-activated protein kinase signaling systems versus downstream transcription factors [i.e., they activate different families of protein kinases and, on the other hand, oxidize the cysteine residues within the DNA-binding region of transcription factors that result in their inactivation (31)]. In our work, emodin in combination with As$_2$O$_3$ exerted remarkable ROS-mediated suppression of two antiapoptosis transcription factors, and this appears to be responsible for the enhanced cytotoxicity rendered by cotreatment with the two drugs.

Previous studies showed that emodin inhibits tumor cell growth and sensitizes tumor cells to chemotherapy through the inhibition of tyrosine kinase activation (24). Activation of extracellular signal-regulated kinase, p38, and JNK all required tyrosine kinase for phosphorylation of their tyrosine residues. In the present study, activation of mitogen-activated proteins apparently was not inhibited by emodin alone or emodin + As$_2$O$_3$, at the doses used. Therefore, inhibition of tyrosine kinase certainly does not account for the effect of emodin in the present case.

It has been known that cellular ROS is essential to cell survival, but the effect of ROS on cells is complex. Experimentally, a low concentration of H$_2$O$_2$ causes a modest increase in proliferation of many tumor cell lines, whereas a higher level results in slowed growth, cell cycle arrest, and apoptosis or even necrosis (45). This implies that the effects of ROS are determined by their levels. This can explain the fact that arsenic, which was initially recognized as an environmental carcinogen, becomes an anticancer agent by inducing apoptosis of tumor cells (7). Our results suggest that when emodin is coadministered with As$_2$O$_3$, the elevation of ROS may surpass a certain threshold that finally overcomes antiapoptosis forces and promotes a shift of the survival/death balance to death. Interestingly, when the drugs were added to cells, ROS elevation occurred immediately and subsided by about 24 h, and the ROS-mediated kinase activation and transcription factor suppression were induced shortly, whereas apoptosis occurred late on the second or third day. This implies that the elevation of ROS level, acting as a secondary signal, quickly triggers an alteration in survival/death signaling and fulfills its impact on the final destiny of the cell. Because the extent of synergized cytotoxicity is linked to the inherent cellular ROS level, tumor cells are more subject to this effect because they usually bear a higher ROS level than their nontumor counterparts. This explains the nonresponsiveness of fibroblasts cells to the two-drug coadministration.

Thus far, antioxidants have been considered helpful in cancer treatment because they reduce the side effects of chemo- and radiotherapy (46). We demonstrate in this article that emodin, a natural anthraquinone, enhances As$_2$O$_3$-induced apoptosis via generation of ROS and ROS-mediated inhibition of survival signaling. Herein we propose a novel strategy in which emodin and other ROS-generating agents may serve as the enhancer in chemotherapy, synergizing the drugs that depend on ROS. Given that ROS generation is increased predominantly in transformed cells, nontumor cells, which have a relatively lower inherent ROS level, can be unsusceptible to coadministration. Thus, this strategy may be advantageous in terms of the modest side effects, especially under the circumstances that ROS-generating agents are derived from natural plants and used with low doses. Future investigation should address the detailed pathways by which these synergizing drugs are involved in overriding the antiapoptotic forces.

ACKNOWLEDGMENTS

We thank Phoebe Lin for constructive reading of the manuscript.

REFERENCES

Announcements

MEETING OF THE RADIATION RESEARCH SOCIETY

The annual meeting of the Radiation Research Society will be held at the State University of Iowa, Iowa City, on June 22–24, 1953. The Society will be the guest of the University, and all meetings will be held on the campus. The program will consist of: (1) Two symposia, one on "The Effects of Radiation on Aqueous Solutions," which includes the following speakers: E. S. G. Barron, Edwin J. Hart, Warren Garrison, J. L. Magee, and A. O. Allen. The second is "Physical Measurements for Radiobiology" and companion talks by Ugo Fano, Burton J. Moyer, G. Failla, L. D. Marinelli, and Payne S. Harris. (2) On Monday night, June 22, a lecture by Dr. L. W. Alvarez on meson physics has been tentatively scheduled. On Tuesday night, June 23, Dr. L. H. Gray of the Hammersmith Hospital, London, will speak on a topic to be announced. Dr. Gray’s lecture is sponsored by the Iowa Branch of the American Cancer Society. Those desiring to report original research in radiation effects, or interested in attending or desiring additional information, please contact the Secretary of the Society, Dr. A. Edelmann, Biology Department, Brookhaven National Laboratory, Upton, L.I., New York.

ERRATUM

The following correction should be made in the article by Beck and Valentine, "The Aerobic Carbohydrate Metabolism of Leukocytes in Health and Leukemia. I. Glycolysis and Respiration," November, 1952, page 891; substitute for the last paragraph:

The data in Table 8 permit several interesting calculations. If one compares the amount of glucose actually disappearing with the sum of the amount equivalent to lactic acid produced plus that equivalent to O2 consumption, it is seen that the amount of glucose "cleavage products" exceeds the amount of glucose utilized by 12 per cent in N and 27 per cent in CML and is exceeded by the glucose utilized by 16 per cent in CLL. If the assumption is made that, in this respect, the myeloid and lymphoid cells of leukemia are similar to those of normal blood, it may be that the computed normal figure represents a summation of the myeloid (M) and lymphoid (L) cells that make up the normal leukocyte population. Thus, if M = +0.27 and L = −0.16 and the normal differential is 65 per cent M and 35 per cent L, then

\[ 0.65 (+0.27) + 0.35 (-0.16) = +0.12 \]

a figure identical to the observed +0.12 for normal leukocytes.
Emodin Enhances Arsenic Trioxide-Induced Apoptosis via Generation of Reactive Oxygen Species and Inhibition of Survival Signaling

Jing Yi, Jie Yang, Rong He, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/1/108

Cited articles
This article cites 43 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/1/108.full.html#ref-list-1

Citing articles
This article has been cited by 12 HighWire-hosted articles. Access the articles at:
/content/64/1/108.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.