ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant, that has been linked with a variety of deleterious effects on human health, including increased cancer rates and reproductive anomalies. The detrimental effects of TCDD are mediated via the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of the carcinogen-activating enzymes cytochromes P-450 (CYP) 1A1, 1A2, and 1B1. In the present study, we examined the ability of synthetic derivatives of salicylic acid to affect TCDD-stimulated AhR-mediated signal transduction in human hepatoma HepG2 cells. Salicylamide (SAL), an analgesic drug, caused a potent and long-lasting inhibition of TCDD-induced CYP enzyme activity. Acetylsalicylic acid (aspirin) and the naturally occurring phytochemical salicylic acid had no effect on CYP activity. SAL inhibited the increase in CYP1A1, -1A2, and -1B1 mRNA levels that occurs on exposure to TCDD. TCDD-induced transcription of these genes was also inhibited by SAL, but not by aspirin or salicylic acid, as demonstrated by luciferase reporter assays. The transcription of the CYP1 family of genes is regulated by the interaction of TCDD-activated AhR with the xenobiotic-responsive element present in the promoter regions of these genes. As shown by electrophoretic mobility shift assay, SAL completely blocked the binding of TCDD-activated AhR to the xenobiotic responsive element. Also, SAL substantially blocked the binding of TCDD to the cytosolic AhR. These results demonstrate that SAL, a commonly used analgesic, is a potent inhibitor of AhR-mediated signal transduction, and may be an effective agent in the prevention of TCDD-associated disease.

INTRODUCTION

The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed cytosolic protein that is a member of the basic helix–loop–helix Per-Arnt-Sim super family of transcriptional regulatory proteins (1, 2). On binding the ligand, the “activated” AhR translocates to the nucleus, in which it forms a heterodimer with its partner, the aryl hydrocarbon nuclear translocator. Together, they form a transcription factor that binds to the xenobiotic-responsive element (XRE) present in the promoter region of a number of genes. The best characterized molecular response to AhR activation is the transcriptional induction of CYP1A1, CYP1A2, and CYP1B1, the genes that encode the 1A1, 1A2, and 1B1 enzyme isoforms, respectively, of cytochrome P-450 (CYP). These enzymes catalyze the epoxidation of certain classes of xenobiotics, resulting in the generation of highly reactive electrophilic metabolites. These metabolites can covalently bind specific residues of DNA, causing DNA adduct formation that may result in mutation and subsequent cellular transformation. The AhR and the genes that it regulates are, therefore, central in mediating the genotoxicity of many environmental contaminants.

Ligands of the AhR include several classes of environmental carcinogens, including polyhalogenated biphenyls such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), aryl hydrocarbons such as benzo(a)pyrene, and heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. These classes of xenobiotics are all suspected human carcinogens. For example, TCDD, a widespread environmental contaminant generated by a variety of industrial processes, has been linked to an increase in many types of human cancers, including hepatocellular cancer (3, 4). In animal models, TCDD has been shown to cause acute toxicity (5), increased oxidative stress (6), impaired ovulation (7), and immunotoxicity (8). These effects in animal models are believed to closely reflect the deleterious effects of TCDD in humans (9). TCDD has the highest affinity for the AhR of any known compound, and is considered the prototypical AhR ligand. Its interaction with the AhR is essential to its toxicity, as demonstrated in AhR-knockout mice, which are impervious to TCDD exposure (10).

Because of the central role of the AhR in the toxicity of TCDD and genotoxicity of numerous xenobiotics, the development of inhibitors of AhR-mediated signal transduction has been an important goal of chemoprevention science. In the present study, we have examined the effects of the salicylates on the AhR and the metabolic pathway it regulates. Salicylic acid was first identified in willow bark extracts as an active anti-inflammatory compound more than 200 years ago, and its synthetic derivative, acetylsalicylic acid (aspirin), has been used to treat a number of human maladies for over a century. Recent studies have demonstrated that salicylate usage is associated with a reduction of incidence of several types of cancer (11–13), and animal studies have shown that salicylates are potent inhibitors of chemically induced carcinogenesis (14, 15). We have, therefore, examined the effects of salicylates on the AhR function in HepG2 cells, a well-differentiated human liver cancer cell line that has been extensively used as a model system to study the AhR (16–19). We demonstrated that the synthetic salicylate, salicylamide (SAL), is a potent and long-lasting inhibitor of TCDD-induced signal transduction mediated by the AhR.

MATERIALS AND METHODS

Materials. Human hepatoma HepG2 cells were from American Type Culture Collection (Manassas, VA), RPMI 1640, TRIzol, and LipofectAMINE were from Life Technologies, Inc. (Grand Island, NY). Glutamine and fetal bovine serum were from BioFluids (Rockville, MD). Polydeoxyinosinic-deoxyctydylid acid, protease inhibitors, ethyloresorufin, acetylsalicylic acid (aspirin), salicylic acid and SAL were from Sigma (St. Louis, MO). [3H]dATP and [32P]dCTP were from DuPont-NEN (Boston, MA). TCDD was from the Midwest Research Institute (Kansas City, MO). [3H]TCDD was from Chemsys Science Labs, Lanexa, VA. The Omniscript kit was from Qiagen (Valencia, CA). Tris-borate gels, Tris-borate running buffer, and high-density sample buffer were from Invitrogen (Carlsbad, CA).

Cell Culture. HepG2 human hepatoma cells were grown with RPMI 1640 supplemented with 2% glutamine and 10% fetal bovine serum in a 5% CO2 humidified incubator at 37°C. For all of the treatment compounds, DMSO was used as the vehicle and did not exceed 0.1%.

Carcinogen Activation Capacity in HepG2 Cells. The ability of SAL to affect CYP enzyme activity was evaluated in intact cells by measurement of ethyloresorufin-O-deethylase (EROD) activity. In 24-well plates, HepG2 cells were incubated with increasing concentrations of salicylates in the presence of 1 nM TCDD for 24 h, for dose-response experiments. For time course experiments, cells were incubated with increasing concentrations of SAL, or with
other test compounds at concentrations that inhibit 50% (IC\(_{50}\)) in the presence of 1 nM TCDD for various times from 6 to 144 h. Medium was decanted, and cells were washed once with PBS. Medium containing 5 μM ethoxyresorufin was added. Increasing fluorescence as a result of the conversion of ethoxyresorufin to resorufin by CYP enzymes was measured using a CytoFluor multiwell plate reader (Applied Biosystems, Foster City, CA), with an excitation of 530 nm and emission at 590 nm. The reaction was allowed to run for 30 min.

Reverse Transcription-PCR. In 6-well plates, cells were treated with various concentrations of SAL alone, or with 100 pm TCDD, for 8 h. Cells were washed twice with PBS, and total RNA was isolated with TRIzol reagent per manufacturer’s instructions. cDNA was synthesized from 2 μg of total RNA using an Omniscript kit according to the manufacturer’s instructions. Semiquantitative reverse transcription-PCR for cytochrome P4501A1 (CYP1A1), cytochrome P4501A2 (CYP1A2), and cytochrome P4501B1 (CYP1B1) expression was performed as described previously (20). Primer sequences and conditions for CYP1A1 and CYP1B1 were as described by Dohr et al. (21), and for cytochrome P4501A2 (CYP1A2) as described by Chung and Bresnick (22). Primers for glyceraldehyde-3-phosphate dehydrogenase were from Clontech (Palo Alto, CA). The optimum cycle number that fell within the exponential range of response for CYP1A1 (23 cycles), CYP1A2 (28 cycles), CYP1B1 (30 cycles) and glyceraldehyde-3-phosphate dehydrogenase (17 cycles) was used. The level of CYP mRNA was normalized to the level of glyceraldehyde-3-phosphate dehydrogenase mRNA.

Luciferase Assay. HepG2 cells were seeded onto 6-well plates at 400,000 cells/well. After 24 h, the cells were transiently transfected with a luciferase reporter vector (1.5 μg/well) containing three repeats of the XRE and a β-galactosidase vector (pCMV-β-gal; 0.6 μg/well) with the use of LipofectAMINE. Transfected cells were treated with various concentrations of salicylates in the presence of 10 nM TCDD. Luciferase activity was measured using a Microlumat LB 96P luminometer (EG&G Berthold). β-galactosidase activity was determined by the method of Rosenthal (23).

Electrophoretic Mobility Shift Assay. HepG2 cells were incubated with DMSO (0.1%), 10 nM TCDD alone, or 10 nM TCDD with 1 mM SAL for 2 h at 37°C. Nuclear protein was isolated, and electrophoretic mobility shift assay was performed by the method of Denison et al. (24). Synthetic oligonucleotides containing the AhR-binding site of the XRE (forward primer, 5'-GAT CGT AGC TCG GAG TTG CGT GAG AAG AGC CG-3'; reverse primer, 5'-CGG CTC TCA CGA AAC TCC GAG CTC AG-3'; Ref. 25) were labeled with 32P[dCTP]. Binding reactions were performed for 25 min (10-min preincubation without probe + 15-min incubation with probe) at room temperature and contained 10 μg of nuclear protein, 2 μg of polydeoxyinosinic deoxyctydilic acid and labeled probe (~50,000 cpm) in a final volume of 20 μl of binding buffer [25 mM Tris-HCl (pH 7.9), 50 mM KCl, 1 mM MgCl\(_2\), 1.5 mM EDTA, 0.5 mM DTT, 5% (v/v) glycerol]. To determine the specificity of binding to the oligonucleotide, excess unlabeled specific probe was incubated with the nuclear extract of TCDD-treated cells for 15 min. DNA–protein complexes were separated under nondenaturing conditions on a 6% (v/v) polyacrylamide gel with 0.5× Tris/borate/EDTA running buffer. The gels were dried, and the amount of labeled probe present in the DNA–protein complexes was determined with a Bio-Rad GS-363 molecular imaging system.

Ligand-Binding Assay. AhR ligand binding was measured according to the methods of Rahi et al. (26). Cytosolic protein (1.5 mg/500 μl) was incubated with 20 nm [3H]TCDD in the presence of DMSO (5 μl/500 μl), 5 mM SAL, or 10 μM TCDD (unlabeled) for 2 h at 4°C. Samples were centrifuged in linear gradients of 5–30% sucrose (v/v) in 12 ml of Beckman Quick-Seal rotor tubes at 65,000 rpm for 2 h at 4°C in a Beckman VTI-65–1 rotor. Fractions (~500 μl each) of the gradients were collected, and radioactivity was determined by scintillation counting.

Statistical Analysis. Statistical analyses were performed with STATVIEW Statistical Analysis Software (SAS Institute, San Francisco, CA). Differences between group mean values were determined by a one-factor ANOVA, followed by Fisher’s protected least significant difference post hoc analysis for pairwise comparison of means. A two-sided P value of <0.05 was considered significant. CYP mRNA levels in Figs. 3 and 4 are shown on a linear scale.

Results

Effect of Salicylates on TCDD-Induced CYP Enzyme Activity. In this study, we examined three salicylates the structures of which are illustrated in Fig. 1. The cellular capacity for enzymatic activation of procarcinogens was measured by EROD assay. Treatment of HepG2 cells with 1 nM TCDD resulted in an increase in EROD-specific activity from nondetectable levels to 17 pmol/min/well in controls (Fig. 2A). The addition of SAL caused a concen-
Salicylamide inhibited EROD activity, with an extrapolated \(IC_{50} \) of \(\approx 170 \mu M \). SAL at 1 mM suppressed EROD levels to 10% of cells treated with TCDD alone. In contrast, both aspirin and salicylic acid had no inhibitory effect at any concentration (Fig. 2A). TCDD caused a persistent increase in EROD activity in HepG2 cells that remained at maximal levels for 6 days (Fig. 2B). SAL, added along with TCDD, caused an inhibition of enzyme activity that persisted throughout the 6-day time course, regardless of the concentration used (Fig. 2B).

The inhibitory effect of SAL was further examined to test whether this was due to a direct effect on CYP enzyme activity. The addition of SAL (250 \(\mu M \)) to HepG2 cells that were first incubated with TCDD (to induce CYP activity) did not have a significant effect on EROD activity (\(P = 0.16 \)), whereas 10 \(\mu M \) \(\alpha \)-naphthoflavone (a positive control) inhibited EROD activity by 84%, compared with controls (Table 1). SAL (250 \(\mu M \)) was also added to microsomes isolated from TCDD-treated HepG2 cells, and EROD activity was assayed. There was no significant effect on microsomal EROD activity (\(P = 0.70 \); Table 1), whereas \(\alpha \)-naphthoflavone completely abolished EROD activity.

Effect of SAL on CYP1A1, -1A2, and -1B1 mRNA Levels. TCDD caused a 13.3-, 7.5-, and 2.8-fold increase in CYP1A1, -1A2, and -1B1 expression in HepG2 cells, respectively, compared with DMSO controls. SAL cotreatment inhibited the TCDD-induced increase of all three CYP isozymes in a concentration-dependent manner (Fig. 3A). SAL treatment alone had no effect on basal CYP expression (Fig. 3B). Aspirin did not have an effect on TCDD-induced CYP mRNA (data not shown).

Effect of Salicylates on XRE-Controlled Luciferase Reporter Activity. HepG2 cells were transiently transfected with a luciferase reporter vector containing multiple copies of the XRE. TCDD induced luciferase activity by \(\approx 45 \)-fold above control levels. The addition of SAL resulted in a concentration-dependent decrease of luciferase activity (Fig. 4). Aspirin and salicylic acid had no effect (Fig. 4).

Effect of SAL on AhR Activation. The effect of SAL on TCDD-induced activation of the AhR was measured by electrophoretic mobility shift assay. TCDD (10 nM) caused a significant increase in AhR translocation to the nucleus and in binding to the XRE. This was completely suppressed in cells cotreated with 1 mM SAL (Fig. 5). The specificity of the bandshift was confirmed by treatment of nuclear extracts with excess unlabeled XRE and by incubation with an antibody to the AhR, which abolished AhR-XRE binding (data not shown), as we have demonstrated previously (27).

Effect of SAL on AhR Ligand Binding. Competitive binding assays were performed using the cytosolic fraction from HepG2 cells. Binding of \(^{3}H \)-TCDD to the AhR was competitively inhibited by excess unlabeled TCDD or SAL (Fig. 6).

Table 1. The effect of salicylamide on cytochrome (CYP)-activity, after induction

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Activity ((\text{pmol/min/100 k cells}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Microsomes</td>
<td>Control</td>
</tr>
<tr>
<td>(\alpha)-Naphthoflavone</td>
<td></td>
</tr>
<tr>
<td>Salicylamide</td>
<td></td>
</tr>
</tbody>
</table>

\({}^{a} \) Activity for intact cells is in units of pmol/min/100 k cells; activity for microsomes is in units of pmol/min/2.5 \(\mu g \).
DISCUSSION

TCDD is a major environmental contaminant, generated by a variety of industrial processes. There are numerous thermal sources of TCDD, such as municipal, hazardous and medical waste incinerators, diesel engine emissions, fires, and residential heating. The manufacture of chlorinated chemicals, wood pulp, and paper also release TCDD (28). Major industrial accidents, including those in Nitro, West Virginia (1949) and Seveso, Italy (1976), resulted in the release of huge amounts of TCDD, causing acute exposure to both workers and residents in the surrounding areas. Because of the chemical stability of TCDD and other related dioxins, there is persistent contamination worldwide. The primary source of human exposure to TCDD is food, particularly dairy products, meat, and fish (29). TCDD is detectable in human serum and is known to accumulate in adipose tissue of humans and animals (30). It also reaches significant levels in human breast milk, providing a pathway for infant exposure (29).

The toxicity of TCDD and other dioxins have, as a result, been intensely studied. Animal experimentation has demonstrated that, based on the minimal effective carcinogenic dose, TCDD is the most potent animal carcinogen yet discovered (31). There is mounting experimental evidence suggesting that TCDD may affect human fertility, because it is associated with anovulation and dysfunctional spermatogenesis in primates and other animals (32–35). Developmental anomalies in infants may arise as a result of exposure via breast milk (36). Epidemiological studies have indicated that TCDD exposure is associated with an increase in many types of cancer, including lung, liver, and rectal cancers (3). TCDD has also been linked to increased ischemic heart disease (37, 38).

Given the ubiquity of TCDD contamination and its adverse impact on human health, the mechanisms of TCDD toxicity are of great interest. TCDD does not bind DNA, which indicates that it is not directly genotoxic. The primary mechanism of biological damage by TCDD has been reported to be the generation of reactive oxygen species (39–41). This occurs as a consequence of CYP enzyme activity. A postulated mechanism for this is the auto-oxidation of the cytochrome P-450 mono-oxygenase complex, which generates superoxide (40). Superoxide can spontaneously dismutate, liberating hydrogen peroxide as a byproduct, which, in the presence of transition metals, can produce hydroxy radicals, leading to indiscriminate damage to cellular biomolecules, including DNA. This hypothesis is consistent with the observation that the deleterious effects of TCDD are dependent on the AhR. The basal expression of CYP is very low. Only after ligands of the receptor, such as TCDD, activate the AhR, does the expression of CYP1A1 (as well as CYP1A2 and CYP1B1) increase. This AhR-dependent mechanism has been demonstrated in AhR-null mice, which do not up-regulate CYP expression when challenged with TCDD and are unaffected by TCDD, even at doses that are 10 times higher than that which induces severe toxic and pathological effects in wild-type mice (10).

Inhibition of AhR-mediated signal transduction would, therefore, prevent TCDD-induced biological damage. We, and others, have described natural and synthetic compounds that act in this regard, e.g., the synthetic flavonoid α-naphthoflavone acts antagonistically by competing with TCDD for binding of the AhR (42). However, by
inhibitory effects (at IC50). This is the first demonstration of SAL as a potent inhibitor of the AhR that, as a result, can block signal transduction initiated by TCDD exposure. It is, furthermore, a pure antagonist of the AhR, unlike most other AhR inhibitors that have been characterized in this laboratory and others. Unlike several other compounds that directly bind and inhibit CYP enzyme activity, it is exceptionally long-lasting. Finally, SAL has already been extensively used in humans; therefore, its safety and pharmacokinetics are already well established. SAL may, therefore, serve as a promising chemopreventive compound that targets the AhR.

REFERENCES

The Drug Salicylamide Is an Antagonist of the Aryl Hydrocarbon Receptor That Inhibits Signal Transduction Induced by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

Christopher J. MacDonald, Henry P. Ciolino and Grace Chao Yeh

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/1/429

Cited articles
This article cites 44 articles, 11 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/1/429.full.html#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
/content/64/1/429.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.