Overexpression, Amplification, and Androgen Regulation of TPD52 in Prostate Cancer

Mark A. Rubin,1,2 Sooryanarayana Varambally, Rameen Beroukhim,2,7 Scott A. Tomlins,2 Daniel R. Rhodes,3 Pamela L. Paris,2 Matthias D. Hofer,1,2 Martina Storz-Schweizer,1,2 Rainer Kuefer,7 Jonathan A. Fletcher,1,2 Bae-Li Hsi,2 Jennifer A. Byrne,10 Kenneth J. Pienta,4,5,6 Colin Collins,8 William R. Sellers,2,7 and Arul M. Chinnaiyan3,4,6

ABSTRACT

Gains in the long arm of chromosome 8 (8q) are believed to be associated with poor outcome and the development of hormone-refractory prostate cancer. Based on a meta-analysis of gene expression microarray data from multiple prostate cancer studies (D. R. Rhodes et al., Cancer Res 2002;62:4427–33), a candidate oncogene, Tumor Protein D52 (TPD52), was identified in the 8q21 amplicon. TPD52 is a coiled-coil motif-bearing protein, potentially involved in vesicle trafficking. Both mRNA and protein levels of TPD52 were highly elevated in prostate cancer tissues. Array comparative genomic hybridization and amplification analysis using single nucleotide polymorphism (SNP) chips, and fluorescence in situ hybridization (FISH) all implicate amplification of the chromosomal region containing TPD52. A survey of gene expression studies provides evidence that TPD52 is overexpressed in several other common human malignancies.

MATERIALS AND METHODS

Patient Population and Tissue Collection. Prostate tissue samples were taken from the radical prostatectomy series and the rapid autopsy program at the University of Michigan Prostate Cancer Specialized Program of Research Excellence Tissue Core with institutional review board approval. Clinically localized prostate cancer samples used for this study were taken from a cohort of men who underwent radical retropubic prostatectomy as a monotherapy (i.e., no hormonal or radiation therapy) for clinically localized prostate cancer between January 1995 and December 2001. Tumors were staged using the tumor-node-metastasis (TNM) system (23) and graded according to the system originally described by Gleason (24, 25). The snap-frozen samples used for immunoblot, cGH, and SNP analysis were all evaluated histologically by the study pathologist (M. A. R.). All samples were trimmed to ensure that >95% of the sample used represented the desired lesion. Hormone-refractory metastatic prostate cancer samples from 15 autopsy cases performed from 1997 to 2000 were also collected from the rapid (“warm”) autopsy program (26). The patients’ ages ranged from 40 to 84 years, with a median age of 67.5 years. Hormone-naïve metastatic prostate cancers were collected at the University of Ulm Hospital as part of an ongoing institutional review board-approved research program to study the molecular signature of metastatic prostate cancer.

Quantitative Real-Time PCR. Quantitative real-time PCR for TPD52 expression was performed using SYBR Green essentially as described previously (27). Briefly, total RNA isolated from 11 benign prostate samples, 33 clinically localized prostate cancer samples, and 15 metastatic prostate cancer samples was reverse transcribed into first-strand cDNA. The quantity of cDNA in each sample was calculated by interpolating its Ct value versus a standard curve of Ct values obtained from serially diluted cDNA from commercially available pooled normal prostate samples (Clontech) and one of the prostate cancer samples. The calculated quantity of TPD52 for each sample was then divided by the quantity of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), or the average of GAPDH and HMBS corresponding to each sample to give a relative expression of TPD52 for each sample. HMBS, a pseudogene-free gene, has been shown in previous studies, including studies of neoplastic versus normal tissue (27–30), to be an accurate housekeeping gene in a variety of tissues. Through validation with over 40 genes identified as being differentially expressed in prostate cancer, we found that the addition of HMBS as a second internal control improves our correlation to cDNA microarray data, consistent with other reports (31). No reverse transcription controls were included when the 3′ untranslated region primers were used. Primer sequences (5′ to 3′) are as follows: TPD52_cds-sense, GCTGCTTTTTCGTCTGTTGGCT3; TPD52_cds-antisense, TCAAATGATTTAAAAGTTGGGGAGTT; TPD52_3′UTR-sense, CATCCTGCCCCTGCTAACTCTT; and TPD52_3′UTR-antisense, CACTTGCCACCCCATTTCTACTC. GAPD and HMBS primers were as described previously (2).
Cell Culture and Androgen Treatment. LNCaP cells (American Type Culture Collection, Manassas, VA) were grown in RPMI 1640 without phenol red (Sigma, St. Louis, MO) supplemented with 10% fetal bovine serum (BioWhittaker), 100 units/ml penicillin, and 50 µg/ml streptomycin. Cells were maintained in a 5% CO2, 95% air-humidified atmosphere at 37°C and cultured in phenol red-free medium with 5% stripped fetal bovine serum (BioWhittaker) 48 h before experiments. The cells were plated on 100-mm dishes with 50% density. Forty-eight h later, the cells were treated with either vehicle control or 1 nM synthetic androgen R1881 (New England Nuclear).

Immunohistochemistry. Sections of 4-µm-thick, paraaffin-embedded tissue microarrays (TMAs) were dewaxed and rehydrated using xylene and ethanol, respectively. After immersion in 10% citrate buffer (pH 6.0), the slides underwent microwave pretreatment for 10 min for optimal antigen retrieval. The affinity-purified TPD52 rabbit polyclonal antibody (22) was applied to 1:1,000 dilution overnight in a 1:20 dilution at 4°C. The secondary antibody was incubated overnight in a 1:20 dilution at 4°C. After washing three times with TBS-T buffer, the membrane was incubated with horseradish peroxidase-linked donkey antirabbit IgG antibody (Amersham Pharmacia Biotech) at a 1:5,000 dilution for 1 h at room temperature. The signals were visualized with the enhanced chemiluminescence detection system (Amersham Pharmacia Biotech) and autoradiography. To monitor equal loading, the TPD52 antibody-probed membrane was stripped with Western Re-Probe buffer (Geno-tech, St. Louis, MO), blocked in TBS-T with 5% nonfat dry milk, and incubated with rabbit anti-GAPDH antibody (1:25,000 dilution; Abcam, Cambridge, MA) and anti-heterochromatin protein β (HP1β; 1:1,000 dilution; Upstate, Charlotte, VA) for 2 h. In prostate cancer, many epithelial cell proteins show differential expression. Changes in keratin expression during the development of benign prostatic hyperplasia and prostate cancer have been reported (32, 33). Hence we did not use keratins as controls.

Tissue Microarray Construction, Digital Image Capture, and Analysis. As described previously, high-density (TMAs) composed of samples from a wide range of prostate tissues were assembled using a manual tissue arrayer [Beecher Instruments, Silver Spring, MD (34, 40–42)]. Three to four 0.6-mm tissue cores were taken from each targeted lesion (i.e., benign, prostate cancer, or metastatic prostate cancer) and placed into a recipient block. Digital images were acquired from the 4-µm-thick H&E-stained sections as well as all immunostained TMA slides using the BLISS Imaging System (Bacus Laboratory, Lombard, IL). Protein expression was evaluated in a blinded manner using an internet-based TMA presentation tool, TMA Profiler.15 The tissue sample diagnosis was confirmed, and immunostaining was scored by the study pathologist for protein expression intensity as described above.

Array Comparative Genomic Hybridization. The aCGH protocol that was followed has been reported recently (43–45). In brief, the human version 2.0 bacterial artificial chromosome (BAC) arrays were provided by the University of California at San Francisco Array Core Facility. In aCGH, microarray BAC DNA targets are cohybridized with differentially fluorophore-labeled DNAs from normal reference and tumor test genomes. Primary Tumor DNA was prepared from microdissected archival material (43). Genomic gain was defined a log2 ratio greater than or equal to the tumor background threshold (43). Gene copy number along the genome is proportional to the ratio of fluorescent intensities. Each array consists of 2460 BACs spotted in triplicate on chromium slides that provides a resolution of approximately 1.4 Mb. All aCGH data have been mapped on the University of California, Southern California genome assembly12 and can be computationally linked to the underlying and annotated genome sequence. Seven consecutive clones were identified at 8q21 that were used to help determine the amplicon size.

Copy Number of TPD52 Was Determined by SNP Arrays. Copy numbers were determined by analysis of SNP arrays (46). The protocol used to determine copy number from SNP arrays is reported separately (47). Briefly, DNA was digested with XbaI, ligated to a single primer, and subjected to single primer extracted from a 2-mm core of each metastasis using a Qiagen Mini-Prep kit (Valencia, CA). It was then subjected to PCR amplification under conditions favoring the generation of 200-bp amplicons. These amplifications were then fragmented, fluorophore labeled, and hybridized to an Affymetrix SNP array containing over 400,000 probes interrogating over 116,500 SNP loci (48). Using the informatics platform dChip (49), signal intensities at each probe locus were analyzed compared with a composite reference, representing germ-line DNA from 19 individuals, to determine copy number at each SNP locus using methods described previously (47). The region displayed represents data obtained from over 60 SNPs at 8q21 with 3 SNPs within the region spanned by TPD52.

Quantitative Real-Time PCR to Validate Copy Number. Quantitative real-time PCR was performed on a PRISM 7700 sequence detector (Applied Biosystems) and Opticon Chromo 4 (MJ Research) using a QuantTect SYBR Green kit (Qiagen). We have quantified each tumor DNA by comparing the target locus to the reference line-1, a repetitive element for which copy numbers per haploid genome are similar among all human normal and neoplastic cells (50). Quantification is based on standard curves from a serial dilution of human normal genomic DNA. The relative target copy number level was also quantified to normal human genomic DNA as a calibrator. Copy number change of target gene relative to the Line-1 dye and the calibrator was determined by using the formula (Ttarget/TLine-1)/(Ctarget/CLine-1), where Ttarget and TLine-1 are quantity from tumor DNA by using target and Line-1, and Ctarget and CLine-1 are quantity from calibrator by using target and Line-1. PCRs for each primer set were performed in at least triplicate, and means were reported. Conditions for quantitative PCR reaction were as follows: one cycle of 50°C for 15 min; one cycle of 94°C for 2 min; and 40 cycles of 94°C for 20 s, 56°C for 20 s, and 70°C for 20 s. At the end of the PCR reaction, samples were subjected to a melting analysis to confirm specificity of the amplicon. Primers were designed by using Primer 313 to span a 100–150-bp nonrepetitive region and synthesized by Invitrogen. Each primer set was subsequently compared with the human genome using the BLAST algorithm to determine its uniqueness. All primer sets were further confirmed to generate a single desired size amplicon by agarose gel electrophoresis. For homozygous deletion, the presence or absence of PCR products was also evaluated by agarose gel electrophoresis. Primer sequences for each target used in this study are published as the supporting information. Primer sequences (designed to include both intronic and exonic elements in the amplicon, to avoid amplification of mRNA) were as follows: LINE-1, AAAGGCGCTCAACTACTAGG (forward) and TGGCTTTGAGTTCCGCTTCCCAGAG (reverse); exon 2, ATGGTT- TAAATCCCCCAAACCA (forward) and TCTTCCGAGGCTGCTTGTC (reverse); exon 4, GAGCTGCCATCCTTCTTGACT (forward) and GACCTGA- GCCACAGGCAAAA (reverse); and exon 6, TGGGTGGTTATTTGGAAG (forward) and GCAGTTGGTACGACAAACA (reverse).

Fluorescent in Situ Hybridization for TPD52/Elongin c. TMA sections were pretreated with a 50 mM Tris and 100 mM EDTA solution at 199°C for 15 min and digested with Digest All 2 (Zymed, South San Francisco, CA) for 3 min. The TMAs and BAC FISH probes were then codenatured at 94°C for 3 min and hybridized overnight at 37°C. The BAC FISH probes were digoxigenin-labeled BAC RP11–367E12 probe for the Elongin c gene (TCEB1) and the biotin-labeled BAC probes RP11-941H19 and RP11-92K15 for the TPD52 gene. Posthybridization washing was with 0.5× SSC for 5 min, and the fluorescence detection was carried out using anti-digoxigenin-FITC and streptavidin–Alexa-594 conjugates (Molecular Probes, Eugene, OR). Slides were then counterstained and mounted in 4',6-diamidino-2-phenylindole–Vectashield (Vector Laboratories, Burlingame, CA). FISH signals were ana-
lyzed using the Oncor Imaging System, and images were captured using a charge-coupled device camera (Photometrics, Tucson, AZ).

Statistical Analysis. Pertinent clinical information [i.e., clinical stage, pre-treatment prostate-specific antigen (PSA), tumor stage, surgical margin status, and Gleason score] was prospectively collected. Clinical postprostatectomy follow-up was also ascertained and stored prospectively, including an annual patient assessment by clinic visit, phone, or mail contact to ascertain overall, cancer-specific, and PSA recurrence-free survival. A PSA level of >0.2 ng/ml was considered biochemical evidence of micrometastatic recurrence or progression. TPD52 protein expression was evaluated as a mean score based on all TMA cores from a single patient. Expression was graphically represented using error bars with 95% confidence intervals. Differences between tissue types (e.g., benign versus localized prostate cancer) were evaluated using ANOVA with a post hoc Scheffé analysis to take multiple tissue types into account. The association of clinical parameters, pathology results, and TPD52 expression with recurrence-free survival was first evaluated by bivariate (univariate) analysis. The relationship between prooperative variables and recurrence-free survival was then examined using Cox proportional-hazard regression models. All decisions were made using a 0.05 significance level, and all analyses were run using the SPSS software (SPSS Systems, Chicago, IL).

RESULTS

Meta-Analysis of DNA Microarray Studies Demonstrates Overexpression of TPD52 Transcript in Prostate Cancer. Meta-analysis of prostate cancer profiling studies (51) has identified several markers of prostate cancer including hepsin, AMACR, and fatty acid synthase (34, 52–56). TPD52 was a gene identified by this meta-analysis (Fig. 1A; Ref. 51) and also found in a region often amplified in prostate cancer, chromosome 8q21 (7, 20). Based on the four prostate expression array data sets, overexpression of TPD52 was observed in prostate cancer samples (n = 63) when compared with histologically benign prostate tissue (n = 32) with a false discovery rate (Fig. 1A. FDR) of 0.05. Overexpression of the TPD52 transcript in prostate cancer was validated using quantitative reverse transcription-PCR (Fig. 1B). Box plot representations of the quantitative reverse transcription-PCR data demonstrate a significant increase in the mRNA level of TPD52 in clinically localized prostate cancer (P = 1e-5; Fig. 1C).

Overexpression of TPD52 Protein in Prostate Cancer. To determine whether TPD52 overexpression at the transcript level corresponded with overexpression at the protein level, prostate tissue extracts were prepared from benign prostate tissue, prostate cancer, and metastatic prostate tumors, and immunoblot analysis was performed using an affinity-purified antibody specific for TPD52 (22, 57). Consistent with the TPD52 mRNA results, TPD52 protein levels were elevated in clinically localized prostate cancer and metastatic prostate cancer compared with benign prostate tissue samples. No changes in expression were appreciated with the two control genes (HP1B and GAPDH) between the different tissue types (Fig. 2A).

Immunohistochemistry Using High-Density Tissue Microarrays Confirmed TPD52 Protein Overexpression in Prostate Cancer. To validate that overexpression of the TPD52 transcript was associated with overexpression at the protein level, we performed immunohistochemistry using the affinity-purified polyclonal antibody against TPD52. Using high-density prostate cancer TMAs, we were able to characterize TPD52 protein expression in a wide range of prostate samples. TPD52 protein expression was cytoplasmic, consistent with a previous report in breast cancer (22). Weak to moderate TPD52 expression was seen in benign prostate tissue (Fig. 2B, 1 and 2). Strong protein expression was consistently seen in clinically localized prostate cancer samples (Fig. 2B, 3 and 4) and metastatic prostate cancer (Fig. 2B, 5). TPD52 expression was confined to the cytoplasm and was not observed in the nucleus (Fig. 2B, 6). Protein expression was strongest in clinically localized and metastatic prostate cancer. The mean TPD52 protein expression levels are presented in Table 1 and Fig. 2C. There was no significant difference seen between clinically localized prostate cancer and hormone-refractory prostate cancer. In a subset of 54 cases of clinically localized prostate cancer (i.e., clinical stage T1a–c or T2), we looked for associations with PSA failure after radical prostatectomy for clinically localized prostate cancer. In this cohort, 37% (7 of 19) failures were seen in TPD52 high expressors in contrast to 20% (7 of 35) failures in moderate expressors. These differences demonstrated a trend toward higher PSA failure rates in men with high-TPD52-expressing tumors (log rank P = 0.12). No significant associations were observed between TPD52 protein expression and Gleason score, tumor stage, or surgical margin status.

Androgen Regulation of TPD52 Protein. Sequence analysis demonstrated the presence of androgen-responsive elements in the putative promoter region of TPD52 (Ref. 58; Fig. 2D). The hormoneresponsive prostate cancer cell line LNCaP was treated with the...
showed the presence of androgen-responsive elements in metastatic prostate cancer). Sequence analyses revealed strong cytoplasmic TPD52 protein expression in neoplastic prostate tissues (i.e., high-grade prostatic intraepithelial neoplasia, localized prostate cancer, and metastatic prostate cancer (B and C). Weak to moderate TPD52 expression was seen in benign prostate tissue (B, 1 and 2; ×200). Strong protein expression was consistently seen in localized prostate cancer samples (B, 3 and 4; ×200) and metastatic prostate cancer (B, 5; ×200). TPD52 expression was confirmed by in situ hybridization and was not observed in the nucleus (B, 6; ×600). Protein expression was strongest in localized and metastatic prostate cancers. The mean TPD52 protein expression levels are presented in C using error bars with 95% confidence intervals (Benign, benign prostatic tissue; PCA, atrophic prostate glands also referred to as proliferative inflammatory atrophy; PIN, high-grade prostatic intraepithelial neoplasia; PCA, clinically localized prostate cancer; MET, hormone-naive and refractory metastatic prostate cancer). Sequence analyses showed the presence of androgen-responsive elements upstream of the TPD52 gene. The hormone-responsive prostate cancer cell line LNCaP was treated with synthetic androgen R1881 for 24, 48, and 72 h. The lysates from the treated and untreated cells were separated on SDS-PAGE, and immunoblotting was carried out for TPD52 protein expression. Up-regulation of PSA served as a positive control for androgen action (D and E).

Table 1 TPD52 protein expression in prostate cancer as determined by immunohistochemistry using TMAa

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>TMA samples</th>
<th>Mean staining intensity</th>
<th>SE</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td>101</td>
<td>2.45</td>
<td>0.045</td>
<td>2.01</td>
<td>2.90</td>
</tr>
<tr>
<td>PIN</td>
<td>91</td>
<td>3.34</td>
<td>0.057</td>
<td>2.78</td>
<td>3.90</td>
</tr>
<tr>
<td>PCA</td>
<td>283</td>
<td>3.61</td>
<td>0.043</td>
<td>3.27</td>
<td>4.00</td>
</tr>
<tr>
<td>METS</td>
<td>384</td>
<td>3.61</td>
<td>0.043</td>
<td>3.27</td>
<td>4.00</td>
</tr>
</tbody>
</table>

aa TMAs: tissue microarray; CI, confidence interval; Benign, benign prostate tissue; PCA, atrophic prostate glands also referred to as proliferative inflammatory atrophy; PIN, high-grade prostatic intraepithelial neoplasia; PCA, clinically localized prostate cancer; METS, hormone-refractory metastatic prostate cancer.

b Staining intensity is scored from negative (score = 0) to strong (score = 4).

synthetic androgen R1881 over different time points. Up-regulation of PSA served as a positive control for androgen action. Stimulation of the LNCaP cells with R1881 demonstrated an expected increase in PSA and a modest increase in TPD52 expression starting at 24 h, and maximum effect was seen at 48 h (Fig. 2E).

Amplification of TPD52 as Determined by aCGH and SNP Arrays. TPD52 is located in a known area of amplification on chromosome 8q21 (21, 22). This area of chromosome 8q has also been linked to prostate cancer progression (7, 59). Therefore, we set out to determine the extent of chromosome 8q21 amplification in metastatic prostate cancer samples using two independent techniques. Using an aCGH platform containing approximately 2400 BAC clones with an average genome-wide resolution of 1.4 Mb (44, 45), we examined the data for 7 consecutive BACs at 8q21, with one containing TPD52 (Table 2). Although copy number cannot be accurately determined from this analysis, the BAC containing TPD52 (clone RP11-214E11) demonstrated a significant copy number increase based on the log2 ratios for the clinically localized and hormone-refractory metastatic prostate cancers with mean log2 ratios of 0.24 and 0.30, respectively. Therefore, if one calculates copy gain as a log2 ratio of ≥0.24, the cases with amplification are presented in Table 2. Approximately 45% (25 of 56) of primary prostate cancers and 63% (5 of 8) metastatic tumors demonstrated a genomic gain at the BAC containing TPD52.

Table 2 BACs located near TPD52 locus mapping to 8q21.13

Mapping positions along 8q are based on University of California Southern California August freeze (see “Materials and Methods” for details or refer to http://genome.ucsc.edu/index.html for more information regarding each of these clones).

<table>
<thead>
<tr>
<th>Clone</th>
<th>KB August 2001</th>
<th>PCs (N)</th>
<th>Est. amp.</th>
<th>S.E.</th>
<th>Mets (N)</th>
<th>Est. amp.</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP11-90B7</td>
<td>89799</td>
<td>0.04 (62)</td>
<td>5/62</td>
<td>0.021</td>
<td>0.15 (8)</td>
<td>3/8</td>
<td>0.20</td>
</tr>
<tr>
<td>RP11-115D10</td>
<td>90647</td>
<td>0.16 (62)</td>
<td>18/62</td>
<td>0.018</td>
<td>N/A (2)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>RP11-195F9</td>
<td>90833</td>
<td>0.06 (54)</td>
<td>4/54</td>
<td>0.019</td>
<td>-0.038 (6)</td>
<td>1/6</td>
<td>0.21</td>
</tr>
<tr>
<td>RP11-214E11</td>
<td>91519</td>
<td>0.24 (56)</td>
<td>28/56</td>
<td>0.028</td>
<td>0.30 (8)</td>
<td>5/8</td>
<td>0.21</td>
</tr>
<tr>
<td>RP11-93E9</td>
<td>91964</td>
<td>0.12 (60)</td>
<td>9/60</td>
<td>0.023</td>
<td>0.11 (9)</td>
<td>5/9</td>
<td>0.18</td>
</tr>
<tr>
<td>RP11-80C11</td>
<td>92687</td>
<td>0.15 (59)</td>
<td>10/59</td>
<td>0.024</td>
<td>0.34 (9)</td>
<td>5/9</td>
<td>0.12</td>
</tr>
<tr>
<td>RP11-257P3</td>
<td>92974</td>
<td>0.18 (57)</td>
<td>19/57</td>
<td>0.024</td>
<td>0.45 (9)</td>
<td>7/9</td>
<td>0.13</td>
</tr>
</tbody>
</table>

a BAC, bacterial artificial chromosome; Est. Amp., estimated number of cases amplified using a log2 ratio of 0.25 at the cutoff point; NA, not available.

b Clones closest to TPD52.

Downloaded from cancerres.aacrjournals.org on October 3, 2017. © 2004 American Association for Cancer Research.
Fig. 3. A–D, heterozygosity and amplification on 8q21.13 near TPD52 using single nucleotide polymorphism (SNP) arrays and fluorescent in situ hybridization (FISH). A, TPD52 is located on chromosome 8q21. By SNP array analysis, we first assessed the level of heterozygosity at TPD52. Alleles identified at SNP loci on chromosome 8 (locations, according to the April 2003 freeze of the human genome, are listed on the right) are displayed for hormone-naive and hormone-refractory prostate cancer metastases. In the germ-line DNA of a given individual, each of the SNP loci probed on the array has an approximately 37% chance of containing both alleles (AB, displayed in red) and a 63% chance of being homozygous for one (A or B; displayed in blue). A loss of heterozygosity event within a tumor would leave each locus within the affected portion of the genome with only one allele. All of the metastases evaluated, with only one exception (WA18-2), had heterozygous loci either within or immediately adjacent to the region spanned by TPD52 (boundaries are denoted by dashed lines). SNP array analysis is regularly unable to identify either allele in 5–10% of the probed loci; this is displayed in black as None. B, a second novel approach was taken combining newly developed SNP chips and novel informatics tools. By comparing the signal intensity at each SNP locus with the intensity of normal controls, amplifications can be identified. Copy numbers along a segment of 8q21 (cytoband reference in black on the left) are displayed for four hormone-naive and five hormone-refractory metastatic prostate tumors. The approximate boundaries of TPD52 are denoted by the dashed blue lines. Four of five hormone-naive and three of five hormone-refractory metastases appear to be amplified at TPD52. A fourth hormone-refractory metastasis is amplified adjacent to and possibly overlapping part of the region spanned by TPD52. The region displayed represents data obtained from >60 SNP loci; 3 SNP loci were within the region spanned by TPD52. The results of the SNP copy number estimates are compared with quantitative real-time PCR results below the figure. The copy number for the SNPs was determined by Hidden-Markov modeling, and the copy number from quantitative real-time PCR was estimated by averaging results of amplicons overlying exons 2, 4, and 6 of TPD52 (see “Materials and Methods” for details). C, FISH analysis was performed using tissue microarrays with a BAC probe specific for a region on the long arm of chromosome 8 containing TPD52 (red probe). Amplification was observed in prostate cancer samples (right panel) but not in histologically benign prostate tissue from the same patient (left panel). The highest mean copy amplification was observed in hormone-refractory prostate cancer (mean copy number, 3.3). The mean copy number for clinically localized prostate cancer was 2.8. Significant copy number increases were seen between benign and clinically localized prostate cancer (mean difference, 0.8; SE, 0.13; post hoc Scheffé analysis, P < 0.0001) and between localized prostate cancer and hormone-refractory prostate cancer (mean difference, 0.54; SE, 0.13; post hoc Scheffé analysis, P < 0.001). D, the variation in amplification for TPD52 as determined by FISH is presented graphically using error bars with 95% confidence intervals. Although this amplification was specific for a BAC containing TPD52, a separate probe using a BAC containing elongin C, located at 8q21, demonstrated amplification (green probe). There was no significant difference in amplification between these two BAC probes (data not shown).

(clone RP11-214E11). Best estimates suggest that seven of the clinically localized tumors had a gain of two copies, and eight tumors had a single copy gain. The amplicon width at 8q21 appears to be approximately 1.5 Mb. Elongin C, in the region of 8q21.11 and approximately 60 Mb from TPD52, did not demonstrate consistent amplification (data not shown).

A second novel approach was taken using newly developed SNP arrays. We have shown previously (46) that these arrays can robustly detect loss of heterozygosity events in prostate cancers. Alleles identified at SNP loci on chromosome 8 (locations, according to the April 2003 freeze of the human genome, listed on the right in Fig. 3A) are displayed for hormone-naive and hormone-refractory prostate cancer metastases. In the germ-line DNA of a given individual, each of the SNP loci probed on the array has an approximately 37% chance of containing both alleles (AB, displayed in red) and a 63% chance of being homozygous for one (A or B, displayed in blue). A loss of heterozygosity event within a tumor would leave each locus within the affected portion of the genome with only one allele. All of the metastases evaluated, with only one exception (WA18-2), had heterozygous loci either within or immediately adjacent to the region spanned by TPD52 (boundaries are denoted by dashed lines). SNP array analysis is regularly unable to identify either allele in 5–10% of the probed loci; this is displayed in black as None. B, a second novel approach was taken combining newly developed SNP chips and novel informatics tools. By comparing the signal intensity at each SNP locus with the intensity of normal controls, amplifications can be identified. Copy numbers along a segment of 8q21 (cytoband reference in black on the left) are displayed for four hormone-naive and five hormone-refractory metastatic prostate tumors. The approximate boundaries of TPD52 are denoted by the dashed blue lines. Four of five hormone-naive and three of five hormone-refractory metastases appear to be amplified at TPD52. A fourth hormone-refractory metastasis is amplified adjacent to and possibly overlapping part of the region spanned by TPD52. The region displayed represents data obtained from >60 SNP loci; 3 SNP loci were within the region spanned by TPD52. The results of the SNP copy number estimates are compared with quantitative real-time PCR results below the figure. The copy number for the SNPs was determined by Hidden-Markov modeling, and the copy number from quantitative real-time PCR was estimated by averaging results of amplicons overlying exons 2, 4, and 6 of TPD52 (see “Materials and Methods” for details). C, FISH analysis was performed using tissue microarrays with a BAC probe specific for a region on the long arm of chromosome 8 containing TPD52 (red probe). Amplification was observed in prostate cancer samples (right panel) but not in histologically benign prostate tissue from the same patient (left panel). The highest mean copy amplification was observed in hormone-refractory prostate cancer (mean copy number, 3.3). The mean copy number for clinically localized prostate cancer was 2.8. Significant copy number increases were seen between benign and clinically localized prostate cancer (mean difference, 0.8; SE, 0.13; post hoc Scheffé analysis, P < 0.0001) and between localized prostate cancer and hormone-refractory prostate cancer (mean difference, 0.54; SE, 0.13; post hoc Scheffé analysis, P < 0.001). D, the variation in amplification for TPD52 as determined by FISH is presented graphically using error bars with 95% confidence intervals. Although this amplification was specific for a BAC containing TPD52, a separate probe using a BAC containing elongin C, located at 8q21, demonstrated amplification (green probe). There was no significant difference in amplification between these two BAC probes (data not shown).
the probed loci; this is displayed in black as None. We were also able to estimate amplification using the SNP arrays by measuring the intensity of expression of each SNP (Fig. 3B). Copy numbers along a segment of 8q21 (cytoband reference in black on the left) are displayed for four hormone-naïve and four hormone-refractory metastatic prostate tumors. The approximate boundaries of TPD52 are denoted by the dashed blue lines. Three of four hormone-naïve and three of five hormone-refractory metastases are amplified at TPD52. A fourth hormone-refractory metastasis is amplified adjacent to (and possibly overlapping part of) the region spanned by TPD52. The region displayed represents data obtained from possibly overlapping part of the region spanned by TPD52. The approximate boundaries of TPD52 are denoted by the static prostate tumors. The approximate boundaries of TPD52 are consistent with previous work that suggests that 8q21 gain is associ-

Table 3

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Mean copy no. (range)</th>
<th>Mean value</th>
<th>95% CI for mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign (38)</td>
<td>2.0(2–2)</td>
<td>0.00</td>
<td>2</td>
</tr>
<tr>
<td>PCA (37)</td>
<td>2.8(2–6)</td>
<td>0.15</td>
<td>2.5</td>
</tr>
<tr>
<td>Mets (12)</td>
<td>3.3(2–4)</td>
<td>0.05</td>
<td>2.7</td>
</tr>
</tbody>
</table>

* FISH, fluorescence in situ hybridization; CI, confidence interval; PCA, clinically localized prostate cancer; Mets, hormone-refractory metastatic prostate cancer.

** A minimum of 2 tissue microarray samples/case were evaluated.

DISCUSSION

Chromosome 8q gain is known to be associated with poor outcome in men with clinically localized prostate cancer (7, 59). The current study identifies a potential oncogene associated with prostate cancer progression. Several pieces of evidence support this observation. First, multiple expression array studies have identified TPD52 as overexpressed at the transcript level (51). This observation was confirmed using quantitative reverse transcription-PCR. TPD52 protein overexpression was also observed in prostate cancer using high-density TMAs from a large range of patient samples. By two separate chip-based genomic approaches, amplification of 8q21.13 in the region of TPD52 was observed, with the greatest increase in copy number occurring in metastatic prostate cancer samples. By contrast, a BAC clone at 8q21.11, located approximately 60 Mb centromeric to TPD52, did not demonstrate consistent amplification. The c-myc oncogene located at 8q24 has also been found to be variably amplified in prostate cancer (7, 15, 16, 18, 19). One study looking at hormone-refractory prostate tumors demonstrated only 11% amplification for c-myc, but this amplification was associated with prostate cancer progression (18). Therefore, it is clear that multiple foci of amplification exist on 8q. The current study also demonstrates that by using high-density SNP-arrays, the resolution should allow for a better appreciation of these amplification events, which could not be identified using FISH probes. The FISH data would suggest that, because both TPD52 and Elongin C probes demonstrated amplification, both genes sit on a large amplicon. However, the SNP and aCGH data presented in this study help us to better appreciate that along this area of 8q, there are several amplification peaks. Both 8q21.11 and 8q21.13 have copy number increases but by SNP analysis and aCGH are shown to represent two discrete areas of amplification on 8q independent of c-myc. As the resolution of the SNP chips increases, genomic complexity should be better appreciated.

The copy number increase at 8q21.13 cannot be the only explanation for the overexpression of TPD52 at the protein level. This study found that a significantly larger percentage of localized and metastatic prostate tumors express TPD52 by immunohistochemistry than demonstrate an increase in copy number at 8q21.13. Therefore, deregulation of TPD52 cannot be entirely explained by amplification. This study also found that TPD52 was highly expressed in prostatic intraepithelial neoplasia but not to the same degree of intensity as benign prostate epithelium or proliferative inflammatory atrophy, suggesting that TPD52 expression may occur early in the development of cancer.

Although further confirmatory work needs to be performed, androgen response elements were identified upstream of the TPD52 coding region, and cell line experiments provide evidence for the regulation of TPD52 by androgen incubation. These findings suggest that TPD52 expression may be regulated in part by androgens, as suggested by work from DePrimo et al. (61) and Nelson et al. (58). The combination of gene amplification and androgen stimulation likely contributes to the up-regulation of TPD52. At this point, it is unclear what role TPD52 plays in cancer progression. However, the TMA experiments suggest that there was a trend toward PSA failure after radical pros-
tatectomy with strong TPD52 expression. One limitation with this immunohistochemical analysis is that the vast majority of clinically localized tumors demonstrated moderate to strong TPD52 expression, making a reproducible threshold difficult to achieve using standard techniques. We have begun the process of trying to determine whether the increased amplification seen is closely associated with protein expression. This work will use a highly sensitive fluorescence-based method that we have recently applied to prostate cancer samples using an automated quantitative imaging system called AQUA (62). This should allow us to help distinguish whether there is any difference in TPD52 protein expression between high-grade prostatic intraepithelial neoplasia and localized prostate cancer. Future work will also concentrate on defining the functional role of TPD52 in prostate cancer progression.

This study is the first to combine SNP arrays and aCGH to help characterize a region of amplification. This process allows for confirmation of these genomic observations using two separate technologies. The similar results seen by use of SNPs by one array-based method and BAC probes by another method suggest that SNP array-based technology, which is commercially available, may make this technology available to a broader group of users. The excellent concordance between these two technologies and the FISH results for TPD52 was very promising.

The use of ONCOMINE, a novel informatics tool, demonstrated an approach to survey multiple expression array studies for a specific gene of interest. Although 8q21 amplification is not universally seen in all cancers, ONCOMINE analysis suggests that both solid and hematopoietic tumors demonstrate overexpression of TPD52. It is important in the understanding of cancer biology and biomarker development to determine how widespread perturbations of a single gene are in the neoplastic process. In the current study, TPD52 was seen as overexpressed in prostate cancer, as described previously (51, 58), and in other solid and hematopoietic malignancies.

This study also demonstrated the utility of a second novel informatics tool, a module for evaluation of genomic application integrated into dChip (49), used to analyze commercially available SNP arrays. This software was used previously to provide information regarding loss of heterozygosity events in prostate tumors, as reported previously by one of the Lieberfarb et al. (46). It has now been upgraded to also allow for evaluation of amplifications and deletions (47). Therefore, using a single chip-based assay, one can in theory perform genome-wide searches for oncogenes and tumor suppressor genes. One can potentially subclassify tumors at resolutions of approximately 300 kb by identifying areas of loss of heterozygosity, homozygous deletions, and areas of amplifications. SNP array technology should greatly enhance our ability to study genomic aberrations associated with carcinogenesis.

In summary, this study demonstrated overexpression of TPD52 in prostate cancer. This overexpression is likely produced by increased gene copy number in a proportion of cases, and it increases with prostate cancer progression. Androgens may positively regulate this expression, as suggested by the presence of androgen response elements located upstream of TPD52 and regulation of TPD52 protein expression in a prostate cancer cell line study. As demonstrated by a wide survey of expression array data, TPD52 is overexpressed in tumors other than those of the prostate and breast.

Addendum

While this paper was in review, another group reported on PrLZ, a family member of TPD52.
REFERENCES

Overexpression, Amplification, and Androgen Regulation of TPD52 in Prostate Cancer

Mark A. Rubin, Sooryanarayana Varambally, Rameen Beroukhim, et al.

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/11/3814

This article cites 71 articles, 26 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/11/3814.full#ref-list-1

This article has been cited by 12 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/64/11/3814.full#related-urls

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.