Rituximab-Dependent Cytotoxicity by Natural Killer Cells: Influence of FCGR3A Polymorphism on the Concentration-Effect Relationship

Sébastien Dall’Ozzo,1,4,5 Sophie Tartas,1,4,5 Gilles Paintaud,2,4,5 Guillaume Cartron,3,4,5 Philippe Colombat,3,4,5 Pierre Bardos,1,4,5 Hervé Watier,1,4,5 and Gilles Thibault1,4,5

1Laboratoire d’Immunologie, 2Laboratoire de Pharmacologie, and 3Service d’Oncologie Médicale et Maladies du Sang, Centre Hospitalier Régional et Universitaire; 4“Immunopharmaco-Genetics of Therapeutic Antibodies” Université François Rabelais de Tours; and 5IFR 135: Imagerie Fonctionnelles Tours, France

ABSTRACT

The FCGR3A gene polymorphism generates two allotypes: FcyRIIa-158V and FcyRIIa-158F. The genotype homozygous for FcyRIIa-158V (VV) is associated with higher clinical response to rituximab, a chimeric anti-CD20 IgG1 used in the treatment of B lymphoproliferative malignancies. Our objective was to determine whether this genetic association relates to rituximab-dependent cytotoxicity mediated by FcyRIIa/CD16a+ cells. The number of CD16+ circulating monocytes, T cells, and natural killer (NK) cells in 54 donors was first shown to be unrelated to FCGR3A polymorphism. We then demonstrated that FcyRIIa-158V displays higher affinity for rituximab than FcyRIIa-158F by comparing rituximab concentrations inhibiting the binding of 3G8 mAb (anti-CD16) with VV NK cells and NK cells homozygous for FcyRIIa-158F (FF). VV and FF NK cells killed Daudi cells similarly after FcRRIIIa engagement by saturating concentrations of rituximab or 3G8. However, the rituximab concentration resulting in 50% lysis (EC50) observed with NK cells from VV donors was 4.2 times lower than that observed with NK cells from FF donors (on average 0.00096 and 0.00402 μg/mL, respectively, P = 0.0043). Finally, the functional difference between VV and FF NK cells was restricted to rituximab concentrations weakly sensitizing CD20. This study supports the conclusion that FCGR3A genotype is associated with response to rituximab because it affects the relationship between rituximab concentration and NK cell-mediated lysis of CD20+ cells. Rituximab administration could therefore be adjusted according to FCGR3A genotype.

INTRODUCTION

FcyRIIa/CD16a, one of the low-affinity receptors for IgG Fc, is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). It links IgG-sensitized target cells to FcyRIIa/CD16a-bearing cytotoxic cells, i.e., CD56dim natural killer (NK) cells, a fraction of monocyte/macrophages, and a fraction of T cells, and activates these effector cells. The FCGR3A gene, which encodes FcyRIIa, displays a functional allelic dimorphism generating allotypes with either a phenylalanine (F) or a valine (V) residue at amino acid position 158 (1, 2). This residue directly interacts with the lower hinge region of IgG1, as recently shown by IgG1-FcyRIIa co-crystallization (3, 4). Accordingly, flow cytometry studies have shown that NK cells from donors homozygous for FcyRIIa-158V (VV) bound more human IgG1 and IgG3 than did NK cells from donors homozygous for FcyRIIa-158F (FF; Refs. 1 and 2). This difference might result from higher affinity of the FcyRIIa-158V allotype (2) or alternatively from higher FcyRIIa membrane expression on NK cells expressing this allotype (5).

Rituximab (Mabthera, Rituxan) is a chimeric anti-CD20 IgG1 monoclonal antibody (mAb) consisting of human γ1 and κ constant regions linked to murine variable domains (6). Over the past few years, rituximab has considerably modified the therapeutic strategy for B lymphoproliferative malignancies, particularly non-Hodgkin’s lymphomas (NHLs). Rituximab, alone or in combination with chemotherapy, has been shown to be effective in the treatment of both low-intermediate and high-grade NHLs (7–12), although the response rate varies with the histological type, with low-grade/follicular lymphomas displaying the best response rate (8, 10, 11). Nevertheless, 30–50% of patients with low-grade NHLs exhibit no clinical response, and the actual causes of treatment failure remain largely unknown.

In vitro studies suggest that rituximab induces lymphoma cell lysis through ADCC (6, 13), complement-dependent cytotoxicity (6, 13–16), FcyRII/CD32-dependent phagocytosis (13), or direct signaling leading to apoptosis (17–19). The implication of both FcyR and complement activation in the in vivo antitumor effect of rituximab against CD20+ lymphoma cell lines has been clearly demonstrated in murine models (20, 21). We have recently shown an association between FCGR3A genotype and response to rituximab in previously untreated follicular NHL patients with low tumor burden (22). Indeed, VV patients had a higher probability of experiencing a clinical response compared with F carriers. The association between FCGR3A genotype and clinical response to rituximab has also been observed in relapsed follicular NHL patients (23) and in Waldenström’s macroglobulinemia patients (24). In addition, systemic lupus erythematosus patients with the VV or VF genotype had better B-cell depletion after rituximab treatment than FF patients (25). Although the genetic association does not demonstrate that the mode of action of rituximab involves FcyRIIa, we postulated that VV patients show a better response because they have a more efficient rituximab-dependent ADCC against CD20+ cells. The ADCC efficiency may depend on variability of target cells and/or effector cells. However, lymphoma cells from patients with distinct histological types expressing different levels of CD20 are equally sensitive to ADCC in the presence of rituximab (13). The aim of this study was therefore to investigate the influence of the FCGR3A polymorphism on rituximab-dependent ADCC mediated by CD16+ effector cells.

We first investigated the number of circulating CD16+ mononuclear cells in relation to FCGR3A-158V/F polymorphism in 54 blood donors. We then compared the affinity of the two allotypic forms of FcyRIIa for rituximab. Finally, we studied the influence of FCGR3A-158V/F polymorphism on the relationship between rituximab concentration and rituximab-dependent NK cell-mediated cytotoxicity.

MATERIALS AND METHODS

mAbs. 679.1 Mc7 control irrelevant mAb, unconjugated and FITC-conjugated 3G8 mAb specific for CD16, unconjugated T199 and phycoerythrin-conjugated NKH-1 mAbs specific for CD56, and phycoerythrin-cyanin 5.1-conjugated UCHT1 mAb specific for CD3 were purchased from Beckman Coulter (Villepinte, France). FITC-conjugated DJ130c mAb specific for CD16 was obtained from Dako (Trappes, France). All of these mAbs are mouse

Received 9/10/03; revised 4/1/04; accepted 5/4/04.

Grant support: Ministère de l’Éducation Nationale de la Recherche et de la Technologie of France, Association pour la Recherche sur le Cancer, Ligue Nationale Contre le Cancer (Comité de l’Indre and Comité d’Indre et Loire), Fondation Langlois, Conseil Régional du Centre (S. Dall’Ozzo), and Association CANCEN (S. Dall’Ozzo, S. Tartas).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Gilles Thibault, Laboratoire d’Immunologie, Centre Hospitalier Régional et Universitaire, 2 boulevard Tonnellé, 37044 Tours Cedex, France. Phone: 33-2-4736-6081; Fax: 33-2-4736-6095; E-mail: thibault@med.univ-tours.fr.
IgG1. FITC-conjugated goat anti-human IgG F(ab')2 was purchased from Menarini (Antony, France).

Cell Culture. Daudi cells were cultured in 75-cm² tissue culture flasks (Falcon 3024; Becton Dickinson Labware Europe, Le Pont De Claix, France) at 37°C in 5% CO₂ humidified air. Cells were grown in culture medium: RPMI 1640 (Eurobio, Les Ulis, France) supplemented with 10% heat-inactivated FCS (Invitrogen SARL, Cergy Pontoise, France); 2 mM l-glutamine (Bio Whittaker Europe, Verviers, Belgium); 1 mM sodium pyruvate (Invitrogen); 50 units/ml penicillin; and 50 µg/ml streptomycin (Bio Whittaker Europe).

Isolation of Peripheral Blood Mononuclear Cells (PBMCs) and Preparation of Peripheral Blood Lymphocytes, Monocytes, T Cells, and NK Cells. PBMCs and peripheral blood lymphocytes were prepared from the peripheral venous blood of blood donors by Lymphoprep (AbCys S.A., Paris, France) centrifugation as described previously (26). Monocytes and T cells were positively selected using MACS CD14 and MACS CD3 MicroBeads (Miltenyi Biotec, Paris, France), respectively, and NK cells were negatively selected using MACS NK Cell Isolation Kit (Miltenyi Biotec) according to the manufacturer’s recommendations. The labeled cells were retained on a MACS column in the magnetic field of a VarioMACS separator (Miltenyi Biotec).

Preparation of Target Cells. Daudi cells were washed and resuspended in RPMI 1640. Cells (10 × 10⁶) were labeled for 90 min with 100 µCi of Na¹⁸⁵CrO₄ (DuPont-NECN, Les Ulis, France) at 37°C in 5% CO₂, washed three times in RPMI 1640, and incubated for 1 h with culture medium to allow spontaneous release. Finally, ¹⁸⁵Cr-labeled cells were washed twice and resuspended in culture medium, and 2 × 10⁵ cells/well were added to 96-well round-bottomed plates.

Cytotoxicity Assay. Cytotoxicity assay was performed as described previously (26). Rituximab or 3G8 mAb at the indicated final concentration was added to the ¹⁸⁵Cr-labeled target cells immediately before adding effector cells. Each assay was set up in triplicate, and the results were expressed as the percentage of specific lysis: (experimental cpm − spontaneous cpm)/100 × 1000.(maximum cpm – spontaneous cpm).

Analysis of the Relationship between Rituximab Concentration and Daudi Cell Lysis. The concentration-effect relationship of rituximab-dependent cytotoxicity by NK cells was analyzed for each individual with an Emax model, using WinNonLin 3.1 (Pharsight, Mountain View, CA), as follows:

\[E = E_0 + \left(\frac{E_{\text{max}} \times E_{\text{EC}_{50}} + C}{E_{\text{EC}_{50}} + C} \right) \]

where E is the effect (lysis), E₀ is basal lysis in the absence of rituximab (effector cells alone), Emax is maximum lysis induced by rituximab, C is rituximab concentration, and EC₅₀ is the concentration of rituximab leading to 50% of Emax. Pharmacodynamic parameters were compared with a nonparametric Mann-Whitney test, using Statistica 5.5 A (StatSoft, Maisons-Alfort, France). Results were considered significant if P < 0.05. E/Emax percentage at a given rituximab concentration was calculated as follows: % = 100 × predicted lysis at given rituximab concentration/Emax.

Enumeration of Circulating CD16⁺ PBMCs. Phenotypic analysis of CD16⁺ PBMCs was performed according to a standard no-wash whole-blood procedure using a PrepPlus workstation (Beckman Coulter). Blood samples (100 µl) were incubated with 20 µl of FITC-conjugated anti-CD16, 5 µl of phycoerythrin-conjugated anti-CD56, and 20 µl of phycoerythrin-cyanin 5.1-conjugated anti-CD3 mAbs for 15 min at 18–20°C. RBC lysis and cell fixation were performed using a TQ-Prep workstation and ImmunoPrep reagent system (Beckman Coulter) following the manufacturer’s recommendations. Cells were analyzed using an EPICS-XL-MCL flow cytometer (Beckman Coulter) as described previously (27).

Binding of Rituximab to Daudi Cells. Daudi cells (5 × 10⁵) in PBS were incubated with varying concentrations of rituximab for 30 min at 4°C. After two washes with PBS, cells were incubated (30 min at 4°C) with FITC-conjugated goat anti-human IgG F(ab')₂. After two washes with PBS, cells were analyzed by flow cytometry. The percentage of CD20 occupancy on Daudi cells at a given rituximab concentration was calculated as follows:

\[\% = \frac{100 \times \text{(MFI at given rituximab concentration – MFI in absence of rituximab)}}{\text{MFI at 0.2 µg/ml rituximab – MFI in absence of rituximab)) \times 100}} \text{MFI in absence of rituximab} \]

where MFI is mean fluorescence intensity.

Rituximab-Binding Properties of FCGRIIIa. NK cells (15 × 10⁵) were incubated with varying concentrations of rituximab (30 min, 4°C). Cells were then incubated with FITC-conjugated 3G8 (0.1 µg/ml) and phycoerythrin-conjugated anti-CD56 mAb (30 min, 4°C), washed twice in PBS at 4°C, and analyzed by flow cytometry. Results were expressed as the percentage of inhibition of 3G8 mAb binding (MFI in absence of rituximab – MFI in presence of rituximab) × 100/MFI in absence of rituximab). HPLC analysis of rituximab preparation was performed periodically to ensure maintenance of the monomeric IgG. In addition, the lack of binding of rituximab preparation to polymorphonuclear cells was verified periodically by flow cytometry (5).

FCGR3A-158V/F Genotyping. Genotyping of the FCGR3A-158V/F polymorphism was performed using a single-step multiplex allele-specific PCR and fluorescence melting curve analysis assay as described previously (28).

Statistical Analysis. Differences between the three genotypes were compared by Kruskal-Wallis nonparametric ANOVA test followed by Mann-Whitney tests. Within-genotype differences in 3G8 binding were compared by Wilcoxon paired nonparametric test. Statistica 5.5 A (StatSoft) was used, and results were considered significant if P < 0.05.

RESULTS

Circulating CD16⁺ Mononuclear Cells in FCGR3A-158V/F Genotyped Donors. The number of peripheral blood CD16⁺ mononuclear cells, CD16⁺ monocytes, CD3⁺CD16⁺ T cells, and CD3⁻CD16⁺ NK cells were analyzed by flow cytometry in 54 blood donors simultaneously tested for the FCGR3A-158V/F polymorphism. Of the 54 donors, 7 and 21 were homozygous for FCGR3A-158V and FCGR3A-158F, respectively, and 26 were heterozygous (Table 1). The three groups were not different in terms of sex or age.

Table 1: Enumeration of circulating CD16⁺ mononuclear cells according to FCGR3A genotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>All samples (n = 54)</th>
<th>F/F samples (n = 21)</th>
<th>V/F samples (n = 26)</th>
<th>V/V samples (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PBMCs</td>
<td>2630 ± 530²</td>
<td>2540 ± 410</td>
<td>2700 ± 610</td>
<td>2640 ± 590</td>
</tr>
<tr>
<td>CD16⁺ PBMCs</td>
<td>362 ± 190</td>
<td>361 ± 185</td>
<td>364 ± 211</td>
<td>357 ± 138</td>
</tr>
<tr>
<td>Total Monocytes</td>
<td>457 ± 136</td>
<td>446 ± 112</td>
<td>476 ± 157</td>
<td>420 ± 121</td>
</tr>
<tr>
<td>CD16⁺ Monocytes</td>
<td>43 ± 20</td>
<td>40 ± 18</td>
<td>45 ± 21</td>
<td>44 ± 23</td>
</tr>
<tr>
<td>Total Lymphocytes</td>
<td>2130 ± 450</td>
<td>2060 ± 310</td>
<td>2160 ± 520</td>
<td>2210 ± 560</td>
</tr>
<tr>
<td>CD3⁻CD16⁺ Lymphocytes</td>
<td>35 ± 31</td>
<td>26 ± 20</td>
<td>39 ± 36</td>
<td>44 ± 34</td>
</tr>
<tr>
<td>CD3⁻CD16⁻ Lymphocytes</td>
<td>279 ± 166</td>
<td>292 ± 176</td>
<td>271 ± 174</td>
<td>267 ± 117</td>
</tr>
</tbody>
</table>

² Phenotypic analysis of PBMC was performed according to a standard no-wash whole-blood procedure, with a combination of anti-CD16, anti-CD56, and anti-CD3 mAbs, followed by flow cytometry analysis. Gates were set on PBMC, monocytes, and lymphocytes with forward and side scatter parameters. The FCGR3A-158V/F genotyping was performed as described previously (28).

² Results are expressed as the mean ± SD of cells/µl.

² Results in brackets are the mean ± SD of CD16 staining with 3G8 mAb, expressed as MFI arbitrary units.

² P < 0.001 versus MFI of CD3-CD16⁺ lymphocytes with the same genotype.

² P < 0.001 versus MFI of CD16⁺ cells from FF donors (within the cell population).

² P < 0.02 versus MFI of VV CD3-CD16⁺ lymphocytes.

² P < 0.01 versus MFI of FF CD3-CD16⁺ lymphocytes.
When all samples were analyzed together, we found that 13.8% of PBMCs, 9.4% of monocytes, and 14.7% of lymphocytes were CD16+. The vast majority of CD16+ PBMCs were NK cells (77.1%), whereas CD16+ monocytes and CD3+CD16+ lymphocytes represented 11.9% and 9.7% of these cells, respectively. No difference was found among the three genotype groups in terms of number of circulating CD16+ mononuclear cells, CD16+ monocytes, CD3+CD16+ T cells, and CD3-CD16+ NK cells (Table 1). The level of CD16 expression on monocytes was slightly higher than that observed on NK cells whatever the genotype, whereas it was very low on CD3+CD16+ T cells. Finally, higher binding of anti-CD16 3G8 mAb to NK cells and monocytes was observed in FCGRA3-158V homozygous and heterozygous donors compared with homozygous FCGRA3-158F donors (Table 1). Given that the binding of several other anti-CD16 mAbs is similar on NK cells from VV and FF donors (2), it is likely that the difference in binding of 3G8 reflects a greater affinity of this mAb for the V allotype.

Influence of FCGRA3-158V/F Polymorphism on Rituximab-Binding Properties of NK Cell FcyRIIIa. It has been assumed that the FCGRA3-158V/F polymorphism affects FcyRIIIa affinity for IgG1 (2). To address this question, we compared the ability of rituximab (IgG1) to inhibit the binding of FITC-conjugated 3G8 mAb (29) with NK cells from VV and FF donors. A 50% inhibition of 3G8 mAb binding to VV and FF NK cells was achieved with less than 0.15 mg/ml and more than 0.8 mg/ml rituximab, respectively (Fig. 1). The difference in the ability of rituximab to block 3G8 mAb binding to FcγRIIIa on VV and FF NK cells cannot result from a difference in the affinity of 3G8 mAb binding to FcγRIIIa allotypes. Indeed, the higher binding of 3G8 mAb to VV NK cells (Table 1) should lead to less rather than more blockade of 3G8 mAb binding in the presence of rituximab. These findings thus indicate that FcγRIIIa expressed on NK cells from VV donors binds rituximab with higher affinity than FcγRIIIa expressed on NK cells from FF donors.

Binding of Rituximab to Daudi Cells. To study the *in vitro* susceptibility of B cells to ADCC in the presence of rituximab, Daudi cells (HLA class I negative and CD20 positive) were used as target cells. To study the binding of rituximab, Daudi cells were incubated with rituximab concentrations ranging from 0.0002 to 2 μg/ml followed by FITC-conjugated antihuman IgG F(ab’)_2 that did not recognize the membrane IgM on Daudi cells (Fig. 2). Weak binding of rituximab was detected with 0.0006 μg/ml rituximab. Binding then increased dramatically with increasing concentrations reaching a maximum at 0.2 μg/ml.

Cytolytic Potential of NK Cells from VV and FF Donors in Response to Optimal FcγRIIIa Stimulation. As expected, Daudi cells were resistant to lysis in the absence of rituximab but were killed efficiently by PBMCs and peripheral blood lymphocytes in the presence of 0.2 μg/ml rituximab (not shown). In addition, lysis did not increase in the presence of 20 μg/ml rituximab, and Daudi cells were not killed by purified monocytes or by purified T cells, but they were killed very efficiently by purified NK cells in the presence of rituximab (not shown). We next addressed the question of the influence of FCGRA3 polymorphism on the cytotoxic response of NK cells to optimal FcγRIIIa engagement. Daudi cells express CD32/FcγRII, which binds mouse IgG1 (30). They may therefore be used as targets in a redirected killing assay in the presence of anti-CD16 3G8 mAb. Daudi cells were resistant to lysis in the presence of anti-CD56 T199 mAb (data not shown), whereas they were killed very efficiently in the presence of 3G8 mAb (Fig. 3). Although 3G8 mAb bound slightly more efficiently to NK cells from VV donors (Table 1), the lysis observed with VV and FF NK cells in the presence of 3G8 mAb was similar and was also equivalent to that observed in the presence of saturating amounts of rituximab (Fig. 3).

Influence of FCGRA3-158V/F Polymorphism on the Concentration-Effect Relationship of Rituximab-Dependent NK Cell-Mediated Cytotoxicity. The influence of the FCGRA3-158V/F genotype on the lysis of Daudi cells was then analyzed in the presence of decreasing concentrations of rituximab (0.2 to 0.0002 μg/ml), with NK cells from six VV and six FF donors (E/T ratio = 2:5). As expected, for each donor, the observed lysis of Daudi cells increased with increasing concentrations of rituximab and reached a plateau at high concentrations (Fig. 4). The relationship between Daudi cell lysis and rituximab concentrations was analyzed for each individual using an Emax model. Basal lysis and maximal lysis induced by rituximab with NK cells from VV and FF donors were not different: E0 values obtained with VV and FF NK cells were 11.3 ± 9.9% and 8.3 ± 3.5% specific lysis, respectively, whereas Emax values were 47.4 ± 6.2% and 41.9 ± 9.5% specific lysis, respectively,
obtained with NK cells from FF donors, whereas Enmax and E0 were not different. These results are in accordance with the previous observation that human low-IgG-binding NK cells were able to lyse chicken erythrocytes better than NK cells from high-IgG-binding NK cells in the presence of low concentrations of rabbit antichicken erythrocyte IgG (5). Shields et al. (33) have shown that some substitutions in the Fc sequence improved both the binding of monomeric human anti-IgE to FcγRIIIA-transfected Chinese hamster ovary cells and Herceptin-mediated ADCC of SKBR-3 cells by NK cells. These effects were more pronounced on the FcγRIIIA-158F than on the FcγRIIIA-158V allotype. In addition, it was shown that the increased ADCC associated with expression of the FcγRIIIA-158V allotype on NK cells was restricted to a rituximab concentration range weakly sensitizing CD20 on Daudi cells. We therefore conclude that both the level of opsonization and the 158V/F FcγRIIIA polymorphism influence the killing of Daudi cells.

The fact that VV and FF NK cells killed Daudi cells similarly after optimal FcγRIIIA engagement by saturating concentrations of rituximab or by 3G8 anti-C16 mAb and respond by an indistinguishable rise in Ca2+ to 3G8 (2) shows that the two FcγRIIIA allotypes are not different in terms of intracellular signaling and cytolytic potential. Thus, the functional difference between the two allotypes that we demonstrated at low concentrations results primarily from their difference in IgG1 binding. Flow cytometry studies have shown that human IgG1 binds more strongly to VV NK cells than to FF NK cells (1, 2, 5). Based on titration of IgG binding to NK cells from low- and high-IgG-binding individuals, Vance et al. (5) concluded that the absolute number of FcγRIIIA receptors rather than FcγRIIIA affinity accounts for the difference in IgG binding. Conversely, the fact that

\[
P = 0.3939. \text{ By contrast, the rituximab concentration resulting in 50}\% \text{ lysis of target cells obtained with NK cells from VV donors was on average 4.2 times lower than that obtained with NK cells from FF donors: EC}_{50}\text{ obtained with VV NK cells was 0.00096 \pm 0.00058 and 0.00402 \pm 0.00236 } \mu\text{g/ml, respectively, } P = 0.0043.
\]

DISCUSSION

We and others (22–25) have recently shown an association between the FCGR3A genotype and the clinical response to rituximab. We postulated that the better response to rituximab observed in FCGR3A-158V homozygous patients may be related to better ADCC against CD20+ cells (22). Because rituximab-mediated ADCC may first depend on the number of CD16+ effector cells in a given patient, peripheral blood CD16+ effector cells were enumerated in 54 FCGR3A-genotyped blood donors. No difference in the numbers of circulating CD16+ PBMCs, CD16+ monocytes, CD16+ T cells, and CD16+ NK cells was found among the three groups of donors, showing that the number of circulating CD16+ effector cells is unrelated to the FCGR3A-158 polymorphism.

A human CD20-expressing target cell was required to study the influence of FCGR3A-158 polymorphism on the rituximab-dependent CD16+ effector cell-mediated cytotoxicity in vitro. The Burkitt lymphoma cell line Daudi was chosen for several reasons, although Daudi cells are not representative of NHL cells. First, Daudi cells are resistant to lysis by effector cells in the absence of antibodies, and rituximab binds efficiently to them (Fig. 2). Second, they express CD32/FcγRII and therefore can be used as target cells in a redirected killing assay. Finally, the fact that they are HLA-class I negative (31) allows comparison of the cytolytic activities of effector cells from different donors, independently of the HLA-specific inhibitory receptors expressed on these effectors. In agreement with a recent study (32), we found that Daudi cells were not killed by purified monocytes or T cells in the presence of a saturating concentration of rituximab (not shown), whereas they were killed very efficiently by NK cells. These results suggest that NK cells are important effector cells in the mechanism of action of rituximab, although they do not rule out the possibility that other CD16+ effector cells, especially activated macrophages, could mediate rituximab-dependent cytotoxicity in vivo. Analysis of the concentration-effect relationship of rituximab-dependent NK cell-mediated cytotoxicity showed that the EC_{50} obtained with NK cells from VV donors was 4.2 times lower than that

\[
\text{Fig. 3. Lysis of Daudi cells by NK cells from VV and FF donors after optimal FcγRIIIA stimulation. } ^{51}\text{Cr-labeled Daudi cells were incubated for 4 h at 37°C with NK cells from homozygous VV (solid lines) and FF (dotted lines) donors in the presence of 0.2 } \mu\text{g/ml rituximab (} \bullet \text{) or } 0.2\mu\text{g/ml 3G8 mAb (} \blacksquare \text{). Cytotoxicity against Daudi cells is expressed as the mean } \pm SD \text{ percentage of specific lysis (} n = 6 \text{ VV and 6 FF) }
\]

\[
P = 0.0043.
\]
similar fluorescence intensities were observed with several anti-CD16 mAbs on NK cells from VV and FF donors led Wu et al. (2) to propose that these cells express similar levels of FcγRIIIα and that 158-V/F polymorphism affects FcγRIIIα affinity. However, we observed a significantly higher binding of 3G8 anti-CD16 mAb on NK cells and monocytes from VV and VF donors compared with FF donors in accordance with previous reports (1, 5). Conversely, the cells and monocytes from VV and VF donors compared with FF served a significantly higher binding of 3G8 anti-CD16 mAb on NK response between VV and FF NK cells was observed over the 0–158-V/F polymorphism affects FcγRIIIα/H9262 expression. To understand our observation shows that long-lasting effector mechanisms are involved in the therapeutic effect of rituximab and suggests that the difference between VV and FF NK cells observed in our in vitro model may be clinically relevant. Thus, the present study supports the conclusion that the FCGR3A genotype is associated with the therapeutic action of rituximab because it affects the relationship between rituximab concentration and B-cell lysis by NK cells. The consequence of the present findings is that rituximab dose or administration schedule may be adjusted in FF patients to ensure a longer exposure to effective concentrations to obtain a better clinical response. More generally, such a pharmacogenetic approach has to be taken into account to improve therapeutic efficacy of cytolytic mAbs in addition to methods that have been shown to enhance NK cell response to tumor cells, such as engineering the Fc portion to increase mAb binding to FcγRIIIa (32, 44) or stimulating NK cells by cytokines (35, 45, 46).

ACKNOWLEDGMENTS

We thank C. Thomas, T. Avril, C. Le Guellec, I. Desbois, Prof. J. C. Besnard, and Prof. C. André for helpful assistance.

REFERENCES

34. Ramos OF, Sarnay G, Klein E, Yelenof E, Gergely J. Complement-dependent cellular cytotoxicity: lymphoblastoid lines that activate complement component 3 (C3) and express C3 receptors have increased sensitivity to lymphocyte-mediated lysis in the presence of fresh human serum. Proc Natl Acad Sci USA 1985;82:5470–4.
Rituximab-Dependent Cytotoxicity by Natural Killer Cells: Influence of FCGR3A Polymorphism on the Concentration-Effect Relationship

Sébastien Dall'Ozzo, Sophie Tartas, Gilles Paintaud, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/13/4664

Cited articles
This article cites 46 articles, 31 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/13/4664.full#ref-list-1

Citing articles
This article has been cited by 59 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/64/13/4664.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.