Rituximab-Dependent Cytotoxicity by Natural Killer Cells: Influence of FCGR3A Polymorphism on the Concentration-Effect Relationship

Sébastien Dall'Ozzo,1,4,5 Sophie Tartas,1,4,5 Gilles Paintaud,2,4,5 Guillaume Cartron,3,4,5 Philippe Colombat,3,4,5 Pierre Bardos,1,4,5 Hervé Watier,1,4,5 and Gilles Thibault1,4,5

1Laboratoire d’Immunologie, 2Laboratoire de Pharmacologie, and 3Service d’Oncologie Médicale et Maladies du Sang, Centre Hospitalier Régional et Universitaire; 4“Immuno-Pharmaco-Genetics of Therapeutic Antibodies” Université François Rabelais de Tours; and 5IFR 135: Imagier Fonctionnelles Tours, France

ABSTRACT

The FCGR3A gene dimorphism generates two allelotypes: FcγRIIa-158V and FcγRIIa-158F. The genotype homozygous for FcγRIIa-158V (VV) is associated with higher clinical response to rituximab, a chimeric anti-CD20 IgG1 monoclonal antibody (mAb) consisting of human y1 and κ constant regions linked to murine variable domains (6). Over the past few years, rituximab has considerably modified the therapeutic strategy for B lymphoproliferative malignancies, particularly non-Hodgkin’s lymphomas (NHLs). Rituximab, alone or in combination with chemotherapy, has been shown to be effective in the treatment of both low-intermediate and high-grade NHLs (7–12), although the response rate varies with the histological type, with low-grade/follicular lymphomas displaying the best response rate (8, 10, 11). Nevertheless, 30–50% of patients with low-grade NHLs exhibit no clinical response, and the actual causes of treatment failure remain largely unknown.

In vitro studies suggest that rituximab induces lymphoma cell lysis through ADCC (6, 13), complement-dependent cytotoxicity (6, 13–16), FcγRII/CD32-dependent phagocytosis (13), or direct signaling leading to apoptosis (17–19). The implication of both FcγR and complement activation in the in vivo antitumor effect of rituximab against CD20+ lymphoma cell lines has been clearly demonstrated in murine models (20, 21). We have recently shown an association between FCGR3A genotype and response to rituximab in previously untreated follicular NHL patients with low tumor burden (22). Indeed, VV patients had a higher probability of experiencing a clinical response compared with F carriers. The association between FCGR3A genotype and clinical response to rituximab has also been observed in relapsed follicular NHL patients (23) and in Waldenström’s macroglobulinemia patients (24). In addition, systemic lupus erythematosus patients with the VV or VF genotype had better B-cell depletion after rituximab treatment than FF patients (25). Although the genetic association does not demonstrate that the mode of action of rituximab involves FcγRIIa, we postulated that VV patients show a better response because they have a more efficient rituximab-dependent ADCC against CD20+ cells. The ADCC efficiency may depend on variability of target cells and/or effector cells. However, lymphoma cells from patients with distinct histological types expressing different levels of CD20 are equally sensitive to ADCC in the presence of rituximab (13). The aim of this study was therefore to investigate the influence of the FCGR3A polymorphism on rituximab-dependent ADCC mediated by CD16+ effector cells.

We first investigated the number of circulating CD16+ mononuclear cells in relation to FCGR3A-158VF polymorphism in 54 blood donors. We then compared the affinity of the two allelotype forms of FcγRIIa for rituximab. Finally, we studied the influence of FCGR3A-158VF polymorphism on the relationship between rituximab concentration and rituximab-dependent NK cell-mediated cytotoxicity.

INTRODUCTION

FcγRIIa/CD16a, one of the low-affinity receptors for IgG Fc, is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). It links IgG-sensitized target cells to FcγRIIa/CD16a-bearing cytotoxic cells, i.e., CD56dim natural killer (NK) cells, a fraction of monocyte/macrophages, and a fraction of T cells, and activates these effector cells. The FCGR3A gene, which encodes FcγRIIa, displays a functional allelic dimorphism generating allotypes with either a phenylalanine (F) or a valine (V) residue at amino acid position 158 (1, 2). This difference might result from a functional allelic dimorphism generating allotypes with either a phenylalanine (F) or a valine (V) residue at amino acid position 158 (1, 2). This difference might result from RIIIa-158F (FF; Refs. 1 and 2). This difference might result from RIIIa-158V (VV) bound more human IgG1, as recently shown by IgG1-FcγRIII cocrystallization (3, 4). The RIIIa-158F and RIIIa-158V allotypes differ in their interaction with the lower hinge region of the RIIIa, displaying higher affinity of the FcγRIIIa-158F by comparing RIIIa-158V (VV) is associated with higher clinical response to rituximab, a chimeric anti-CD20 IgG1 monoclonal antibody (mAb) consisting of human y1 and κ constant regions linked to murine variable domains (6). Over the past few years, rituximab has considerably modified the therapeutic strategy for B lymphoproliferative malignancies, particularly non-Hodgkin’s lymphomas (NHLs). Rituximab, alone or in combination with chemotherapy, has been shown to be effective in the treatment of both low-intermediate and high-grade NHLs (7–12), although the response rate varies with the histological type, with low-grade/follicular lymphomas displaying the best response rate (8, 10, 11). Nevertheless, 30–50% of patients with low-grade NHLs exhibit no clinical response, and the actual causes of treatment failure remain largely unknown.

In vitro studies suggest that rituximab induces lymphoma cell lysis through ADCC (6, 13), complement-dependent cytotoxicity (6, 13–16), FcγRII/CD32-dependent phagocytosis (13), or direct signaling leading to apoptosis (17–19). The implication of both FcγR and complement activation in the in vivo antitumor effect of rituximab against CD20+ lymphoma cell lines has been clearly demonstrated in murine models (20, 21). We have recently shown an association between FCGR3A genotype and response to rituximab in previously untreated follicular NHL patients (23) and in Waldenström’s macroglobulinemia patients (24). In addition, systemic lupus erythematosus patients with the VV or VF genotype had better B-cell depletion after rituximab treatment than FF patients (25). Although the genetic association does not demonstrate that the mode of action of rituximab involves FcγRIIa, we postulated that VV patients show a better response because they have a more efficient rituximab-dependent ADCC against CD20+ cells. The ADCC efficiency may depend on variability of target cells and/or effector cells. However, lymphoma cells from patients with distinct histological types expressing different levels of CD20 are equally sensitive to ADCC in the presence of rituximab (13). The aim of this study was therefore to investigate the influence of the FCGR3A polymorphism on rituximab-dependent ADCC mediated by CD16+ effector cells.

We first investigated the number of circulating CD16+ mononuclear cells in relation to FCGR3A-158VF polymorphism in 54 blood donors. We then compared the affinity of the two allelotype forms of FcγRIIa for rituximab. Finally, we studied the influence of FCGR3A-158VF polymorphism on the relationship between rituximab concentration and rituximab-dependent NK cell-mediated cytotoxicity.
IgG1. FITC-conjugated goat antihuman IgG F(ab’)2 was purchased from Menarini (Antony, France).

**Cell Culture.** Daudi cells were cultured in 75-cm² tissue culture flasks (Falcon 3024; Becton Dickinson Labware Europe, Le Pont De Clai, France) at 37°C in 5% CO₂ humidified air. Cells were grown in culture medium: RPMI 1640 (Eurobio, Les Ulis, France) supplemented with 10% heat-inactivated FCS (Invitrogen SARL, Cergy Pontoise, France); 2 mM L-glutamine (Bio Whittaker Europe, Verviers, Belgium); 1 mM sodium pyruvate (Invitrogen); 50 units/ml penicillin; and 50 µg/ml streptomycin (Bio Whittaker Europe).

**Isolation of Peripheral Blood Mononuclear Cells (PBMCs) and Preparation of Peripheral Blood Lymphocytes, Monocytes, T Cells, and NK Cells.** PBMCs and peripheral blood lymphocytes were prepared from the peripheral venous blood of blood donors by Lymphoprep (AbCys S.A., Paris, France) centrifugation as described previously (26). Monocytes and T cells were positively selected using MACS CD14 and MACS CD3 MicroBeads (Miltenyi Biotec, Paris, France), respectively, and NK cells were negatively selected using MACS NK Cell Isolation Kit (Miltenyi Biotec) according to the manufacturer’s recommendations. The labeled cells were retained on a MACS column in the magnetic field of a VarioMACS separator (Miltenyi Biotec).

**Preparation of Target Cells.** Daudi cells were washed and resuspended in RPMI 1640. Cells (10 × 10⁶) were labeled for 90 min with 100 µCi of Na₂¹⁵CrO₄ (DuPont-NEW, Les Ulis, France) at 37°C in 5% CO₂, washed three times in RPMI 1640, and incubated for 1 h with culture medium to allow spontaneous release. Finally, ¹⁵Cr-labeled cells were washed twice and resuspended in culture medium, and 2 × 10⁴ cells/well were added to 96-well round-bottomed plates.

**Cytotoxicity Assay.** Cytotoxicity assay was performed as described previously (26). Rituximab or 3G8 mAb at the indicated final concentration was added to the ¹⁵Cr-labeled target cells immediately before adding effector cells. Each assay was set up in triplicate, and the results were expressed as the percentage of specific lysis: (experimental cpm/ basal cpm) × 100%.

**Analysis of the Relationship between Rituximab Concentration and Daudi Cell Lysis.** The concentration-effect relationship of rituximab-dependent cytotoxicity by NK cells was analyzed for each individual with an Emax curve-fitting analysis. The concentration of antibody leading to 50% of Emax. Pharmacodynamic parameters were compared with a nonparametric Mann-Whitney test, using Statistica 5.5 (StatSoft, Maisons-Alfort, France). Results were considered significant if P < 0.05.

**Enumeration of Circulating CD16⁺ PBMCs.** Phenotypic analysis of CD16⁺ PBMCs was performed according to a standard no-wash whole-blood procedure using a PrepPlus workstation (Beckman Coulter). Blood samples (100 µl) were incubated with 20 µl of FITC-conjugated anti-CD16, 5 µl of phycoerythrin-conjugated anti-CD56, and 20 µl of phycoerythrin-cyanin 5.1-conjugated anti-CD3 mAbs for 15 min at 18–20°C. RBC lysis and cell fixation were performed using a TQ-Prep workstation and ImmunoPrep reagent system (Beckman Coulter) following the manufacturer’s recommendations. Cells were analyzed using an EPICS-XL-MCL flow cytometer (Beckman Coulter) as described previously (27).

**Binding of Rituximab to Daudi Cells.** Daudi cells (5 × 10⁴) in PBS were incubated with varying concentrations of rituximab for 30 min at 4°C. After two washes with PBS, cells were incubated (30 min at 4°C) with FITC-conjugated goat antihuman IgG F(ab’)2. After two washes with PBS, cells were analyzed by flow cytometry. The percentage of CD20 occupancy on Daudi cells at a given rituximab concentration was calculated as follows: % = 100 × (MFI at given rituximab concentration – MFI in absence of rituximab)/MFI at 0.2 µg/ml rituximab – MFI in absence of rituximab, where MFI is mean fluorescence intensity.

**Rituximab-Binding Properties of FCGR3A⁻ NK Cells.** NK cells (15 × 10⁴) were incubated with varying concentrations of rituximab (30 min, 4°C). Cells were then incubated with FITC-conjugated 3G8 (0.1 µg/ml) and phycoerythrin-conjugated anti-CD56 mAb (30 min, 4°C), washed twice in PBS at 4°C, and analyzed by flow cytometry. Results were expressed as the percentage of inhibition of 3G8 mAb binding: (MFI in absence of rituximab – MFI in presence of rituximab) × 100%/MFI in absence of rituximab. HPLC analysis of rituximab preparation was performed periodically to ensure maintenance of the monomeric IgG. In addition, the lack of binding of rituximab preparation to polymorphonuclear cells was verified periodically by flow cytometry (5).

**FCGR3A-158F/V Genotyping.** Genotyping of the FCGR3A-158F/V polymorphism was performed using a single-step multiplex allele-specific PCR and fluorescence melting curve analysis assay as described previously (28).

**Statistical Analysis.** Differences between the three genotypes were compared by Kruskal-Wallis nonparametric ANOVA test followed by Mann-Whitney tests. Within-genotype differences in 3G8 binding were compared by Wilcoxon paired nonparametric test. Statistica 5.5 A (StatSoft) was used, and results were considered significant if P < 0.05.

### RESULTS

**Circulating CD16⁺ Mononuclear Cells in FCGR3A-158F/V Genotyped Donors.** The number of peripheral blood CD16⁺ mononuclear cells, CD16⁺ monocytes, CD3⁺CD16⁺ T cells, and CD3⁻CD16⁻ NK cells were analyzed by flow cytometry in 54 blood donors simultaneously tested for the FCGR3A-158F/V polymorphism. Of the 54 donors, 7 and 21 were homozygous for FCGR3A-158F/V, respectively, and 26 were heterozygous (Table 1). The three groups were not different in terms of sex or age.

### Table 1. Enumeration of circulating CD16⁺ mononuclear cells according to FCGR3A genotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>F/F samples (n = 21)</th>
<th>V/F samples (n = 26)</th>
<th>V/V samples (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PBMCs</td>
<td>2630 ± 530²</td>
<td>2540 ± 410</td>
<td>2700 ± 610</td>
</tr>
<tr>
<td>CD16⁺ PBMCs</td>
<td>362 ± 190</td>
<td>361 ± 185</td>
<td>364 ± 211</td>
</tr>
<tr>
<td>Total Monocytes</td>
<td>457 ± 137</td>
<td>446 ± 112</td>
<td>476 ± 157</td>
</tr>
<tr>
<td>CD16⁺ Monocytes</td>
<td>43 ± 20</td>
<td>40 ± 18</td>
<td>45 ± 21</td>
</tr>
<tr>
<td>CD3⁻CD16⁻ Lymphocytes</td>
<td>2130 ± 450</td>
<td>2060 ± 310</td>
<td>2160 ± 520</td>
</tr>
<tr>
<td>CD3⁺CD16⁺ Lymphocytes</td>
<td>35 ± 31</td>
<td>26 ± 20</td>
<td>39 ± 36</td>
</tr>
<tr>
<td>CD3⁻CD16⁻ Lymphocytes</td>
<td>279 ± 166</td>
<td>292 ± 176</td>
<td>271 ± 174</td>
</tr>
<tr>
<td>CD3⁻CD16⁻ Lymphocytes</td>
<td>20.3 ± 4.3</td>
<td>(20.3 ± 4.3)</td>
<td>(22.5 ± 3.3)</td>
</tr>
</tbody>
</table>

² Phenotypic analysis of PBMC was performed according to a standard no-wash whole-blood procedure, with a combination of anti-CD16, anti-CD56, and anti-CD3 mAbs, followed by flow cytometry analysis. Gates were set on PBMC, monocytes, and lymphocytes with forward and side scatterers. The FCGR3A-158F/V genotyping was performed as described previously (28).

This work was supported by the French National Agency for Research.
When all samples were analyzed together, we found that 13.8% of PBMCs, 9.4% of monocytes, and 14.7% of lymphocytes were CD16+. The vast majority of CD16+ PBMCs were NK cells (77.1%), whereas CD16+ monocytes and CD3+CD16+ lymphocytes represented 11.9% and 9.7% of these cells, respectively. No difference was found among the three genotype groups in terms of number of circulating CD16+ mononuclear cells, CD16+ monocytes, CD3+CD16+ T cells, and CD3-CD16+ NK cells (Table 1). The level of CD16 expression on monocytes was slightly higher than that observed on NK cells whatever the genotype, whereas it was very low on CD3+CD16+ T cells. Finally, higher binding of anti-CD16 3G8 mAb to NK cells and monocytes was observed in \( {FCGR3A-158V} \) homozygous and heterozygous donors compared with homozygous \( {FCGR3A-158F} \) donors (Table 1). Given that the binding of several other anti-CD16 mAbs is similar on NK cells from VV and FF donors (2), it is likely that the difference in binding of 3G8 reflects a greater affinity of this mAb for the V allotype.

Influence of \( {FCGR3A-158V/F} \) Polymorphism on Rituximab-Binding Properties of NK Cell FcγRIIIa. It has been assumed that the \( {FCGR3A-158V/F} \) polymorphism affects FcγRIIIa affinity for IgG1 (2). To address this question, we compared the ability of rituximab (IgG1) to inhibit the binding of FITC-conjugated 3G8 mAb (29) with NK cells from VV and FF donors. A 50% inhibition of 3G8 mAb binding to VV and FF NK cells was achieved with less than 0.15 mg/ml and more than 0.8 mg/ml rituximab, respectively (Fig. 1). The difference in the ability of rituximab to block 3G8 mAb binding to FcγRIIIa on VV and FF NK cells cannot result from a difference in the affinity of 3G8 mAb binding to FcγRIIIa allotypes. Indeed, the higher binding of 3G8 mAb to VV NK cells (Table 1) should lead to less rather than more blockade of 3G8 mAb binding in the presence of rituximab. These findings thus indicate that FcγRIIIa expressed on NK cells from VV donors binds rituximab with higher affinity than FcγRIIIa expressed on NK cells from FF donors.

Binding of Rituximab to Daudi Cells. To study the in vitro susceptibility of B cells to ADCC in the presence of rituximab, Daudi cells (HLA class I negative and CD20 positive) were used as target cells. To study the binding of rituximab, Daudi cells were incubated with rituximab concentrations ranging from 0.0002 to 2 μg/ml followed by FITC-conjugated antihuman IgG F(\( \text{ab'} \))\(_2\) that did not recognize the membrane IgM on Daudi cells (Fig. 2). Weak binding of rituximab was detected with 0.0006 μg/ml rituximab. Binding then increased dramatically with increasing concentrations reaching a maximum at 0.2 μg/ml.

Cytolytic Potential of NK Cells from VV and FF Donors in Response to Optimal FcγRIIIa Stimulation. As expected, Daudi cells were resistant to lysis in the absence of rituximab but were killed efficiently by PBMCs and peripheral blood lymphocytes in the presence of 0.2 μg/ml rituximab (not shown). In addition, lysis did not increase in the presence of 20 μg/ml rituximab, and Daudi cells were not killed by purified monocytes or by purified T cells, but they were killed very efficiently by purified NK cells in the presence of rituximab (not shown). We next addressed the question of the influence of \( {FCGR3A} \) polymorphism on the cytotoxic response of NK cells to optimal FcγRIIIa engagement. Daudi cells express CD32/FcγRII, which binds mouse IgG1 (30). They may therefore be used as targets in a redirected killing assay in the presence of anti-CD16 3G8 mAb. Daudi cells were resistant to lysis in the presence of anti-CD56 T199 mAb (data not shown), whereas they were killed very efficiently in the presence of 3G8 mAb (Fig. 3). Although 3G8 mAb bound slightly more efficiently to NK cells from VV donors (Table 1), the lysis observed with VV and FF NK cells in the presence of 3G8 mAb was similar and was also equivalent to that observed in the presence of saturating amounts of rituximab (Fig. 3).

Influence of \( {FCGR3A-158V/F} \) Polymorphism on the Concentration-Effect Relationship of Rituximab-Dependent NK Cell-Mediated Cytotoxicity. The influence of the \( {FCGR3A-158V/F} \) genotype on the lysis of Daudi cells was then analyzed in the presence of decreasing concentrations of rituximab (0.2 to 0.0002 μg/ml), with NK cells from six VV and six FF donors (E/T ratio = 2:5:1). As expected, for each donor, the observed lysis of Daudi cells increased with increasing concentrations of rituximab and reached a plateau at high concentrations (Fig. 4). The relationship between Daudi cell lysis and rituximab concentrations was analyzed for each individual using an Emax model. Basal lysis and maximal lysis induced by rituximab with NK cells from VV and FF donors were not different. E0 values obtained with VV and FF NK cells were 11.3 ± 9.9% and 8.3 ± 3.5% specific lysis, respectively, \( P = 1 \); whereas Emax values were 47.4 ± 6.2% and 41.9 ± 9.5% specific lysis, respectively,
obtained with NK cells from FF donors, whereas Emax and E0 were not different. These results are in accordance with the previous observation that human low-IgG-binding NK cells were able to lyse chicken erythrocytes better than NK cells from high-IgG-binding NK cells in the presence of low concentrations of rabbit antichicken erythrocyte IgG (5). Shields et al. (33) have shown that some substitutions in the Fc sequence improved both the binding of monomeric human anti-IgE to FcγRIIIA-transfected Chinese hamster ovary cells and Herceptin-mediated ADCC of SKBR-3 cells by NK cells. These effects were more pronounced on the FcγRIIIA-158F than on the FcγRIIIA-158V allotype. In addition, it was shown that the more the substitutions improved binding to FcγRIIIA, the more they increased ADCC, whatever the genotype. Finally, the differences in ADCC were observed in the presence of a concentration of Herceptin variant (2 ng/ml) that is very close to the EC50 observed in our study. Thus, our results are consistent with these findings. Interestingly, it can be calculated from the results shown in Fig. 2 and Fig. 4 that less than 5% and 15% of CD20 molecules on Daudi cells are bound by rituximab at the EC50 obtained with VV and FF NK cells, respectively. In addition, rituximab concentrations yielding more than 40% occupancy of CD20 (i.e., above 0.02 μg/ml) were sufficient to obtain more than 80% of maximum lysis, whatever the genotype. Thus, the increased ADCC associated with expression of the FcγRIIIA-158V allotype on NK cells was restricted to a rituximab concentration range weakly sensitizing CD20 on Daudi cells. We therefore conclude that both the level of opsonization and the 158VF/FcγRIIIA polymorphism influence the killing of Daudi cells.

The fact that VV and FF NK cells killed Daudi cells similarly after optimal FcγRIIIA engagement by saturating concentrations of rituximab or by 3G8 anti-CD16 mAb and respond by an indistinguishable rise in Ca2+ to 3G8 (2) shows that the two FcγRIIIA allotypes are not different in terms of intracellular signaling and cytolytic potential. Thus, the functional difference between the two allotypes that we demonstrated at low concentrations results primarily from their difference in IgG1 binding. Flow cytometry studies have shown that human IgG1 binds more strongly to NK cells from low- and high-IgG-binding individuals, Vance et al. (5) concluded that the absolute number of FcγRIIIA receptors rather than FcγRIIIA affinity accounts for the difference in IgG binding. Conversely, the fact that

**DISCUSSION**

We and others (22–25) have recently shown an association between the FCGR3A genotype and the clinical response to rituximab. We postulated that the better response to rituximab observed in FCGR3A-158V homozygous patients may be related to better ADCC against CD20+ cells (22). Because rituximab-mediated ADCC may first depend on the number of CD16+ effector cells in a given patient, peripheral blood CD16+ effector cells were enumerated in 54 FCGR3A-genotyped blood donors. No difference in the numbers of circulating CD16+ PBMCs, CD16+ monocytes, CD16+ T cells, and CD16+ NK cells was found among the three groups of donors, showing that the number of circulating CD16+ effector cells is unrelated to the FCGR3A-158 polymorphism.

A human CD20-expressing target cell was required to study the influence of FCGR3A-158 polymorphism on the rituximab-dependent CD16+ effector cell-mediated cytotoxicity in vitro. The Burkitt lymphoma cell line Daudi was chosen for several reasons, although Daudi cells are not representative of NHL cells. First, Daudi cells are resistant to lysis by effector cells in the absence of antibodies, and rituximab binds efficiently to them (Fig. 2). Second, they express CD32/FcγRI and therefore can be used as target cells in a redirected killing assay. Finally, the fact that they are HLA-class I negative (31) allows comparison of the cytolytic activities of effector cells from different donors, independently of the HLA-specific inhibitory receptors expressed on these effectors. In agreement with a recent study (32), we found that Daudi cells were not killed by purified monocytes or T cells in the presence of a saturating concentration of rituximab (not shown), whereas they were killed very efficiently by NK cells. These results suggest that NK cells are important effector cells in the mechanism of action of rituximab, although they do not rule out the possibility that other CD16+ effector cells, especially activated macrophages, could mediate rituximab-dependent cytotoxicity in vivo. Analysis of the concentration-effect relationship of rituximab-dependent NK cell-mediated cytotoxicity showed that the E50 obtained with NK cells from VV donors was 4.2 times lower than that

---

**Fig. 3. Lysis of Daudi cells by NK cells from VV and FF donors after optimal FcγRIIIA stimulation.**

51Cr-labeled Daudi cells were incubated for 4 h at 37°C with NK cells from homozygous VV (solid lines) and FF (dotted lines) donors in the presence of 0.2 μg/ml rituximab ( ) or 0.2 μg/ml 3G8 mAb ( ). Cytotoxicity against Daudi cells is expressed as the mean ± SD percentage of specific lysis (n = 6 VV and 6 FF)

\[ P = 0.3939. \] By contrast, the rituximab concentration resulting in 50% lysis of target cells obtained with NK cells from VV donors was on average 4.2 times lower than that obtained with NK cells from FF donors: EC50 obtained with VV and FF NK cells were 0.00096 ± 0.00058 and 0.00402 ± 0.00236 μg/ml, respectively, \[ P = 0.0043. \]

**Fig. 4. Relationship between rituximab concentration and Daudi cell lysis by NK cells.**

51Cr-labeled Daudi cells were incubated for 4 h at 37°C with NK cells from homozygous VV and FF donors (E:T ratio = 2.5:1) in the presence of varying concentrations of rituximab. Cytotoxicity against Daudi cells is expressed as the mean percentage of lysis in presence of rituximab – basal lysis in absence of rituximab) of each triplicate (0, VV; ■, FF) and as predicted by the Enam model (see “Materials and Methods”; solid lines, VV, n = 6; dotted lines, FF, n = 6). Observed and model-predicted basal lysis (E0), which was not different between VV and FF, was subtracted to display rituximab-dependent lysis.

---

**Materials and Methods**
similar fluorescence intensities were observed with several anti-CD16 mAbs on NK cells from VV and FF donors led Wu et al. (2) to propose that these cells express similar levels of FcγRIIIa and that 158-V/F polymorphism affects FcγRIIIa affinity. However, we observed a significantly higher binding of 3G8 anti-CD16 mAb on NK cells and monocytes from VV and VF donors compared with FF donors in accordance with previous reports (1, 5). Conversely, the binding of the DJ130 anti-CD16 mAb is higher on NK cells from FF and VF donors than on those from VV donors. These conflicting results show the important limitations in the use of anti-CD16 mAbs and flow cytometry to conclude on the levels of FcγRIIIa expression. However, our results (Fig. 1) unambiguously demonstrate that FcγRIIIa-158V has a higher affinity for rituximab—and probably for all human IgG1 including therapeutic recombinant mAbs—than FcγRIIIa-158F.

The rituximab-depleting effect observed in vivo is the result of different complementary mechanisms including complement-dependent cytotoxicity (6, 13–16), apoptosis (17–19), phagocytosis, and ADCC (6, 13). The implication of both FcγR and C1q in the in vivo antitumor effect of rituximab against CD20+ lymphoma cell lines has been clearly demonstrated in murine models (20, 21), suggesting that ADCC and complement activation are essential for rituximab therapeutic effect. In addition, the fact that opsonization of target cells with complement components results in increased lysis by NK cells that express the CD11b/CD18 receptor (34, 35) strongly suggests that ADCC and complement activation may have a cooperative activity in vivo (32, 36). Complement-dependent cytotoxicity is mainly dependent on lymphoma cell variability, especially on both their CD20 and complement regulatory protein membrane expression (13, 14, 16), although response to rituximab therapy has been shown to be independent of the level of expression of these proteins on the tumor tissue (37). These parameters have no detectable influence on apoptosis, phagocytosis, or ADCC (13). By contrast, the present study is the first to show that rituximab-mediated ADCC is dependent on the allostropic form of FcγRIIIa expressed by NK cells. Therefore, variability at both the tumor cell level and the patient’s immune system level may influence the response to rituximab, in addition to the tumor burden at the time of treatment (10) and rituximab concentrations obtained in patients (8, 38).

In agreement with results obtained with Raji and WIL-2-S B-cell lines (39, 40), lysis of Duadi cells was detected with concentration around 0.0001 μg/ml rituximab and reached a maximum at around 0.1 μg/ml, whatever the genotype. The difference in the cytotoxic response between VV and NF NK cells was observed over the 0–0.02 μg/ml range. On the other hand, serum rituximab concentrations observed in vivo range from around 1000 μg/ml for peak concentrations to around 20 μg/ml several weeks after ending the infusions (38, 41), raising the question of the clinical relevance of our in vitro result. However, rituximab concentrations at the site of action (mainly in lymphadenopathies) may be different from those measured in the blood. In addition, for anticancer agents, the duration of drug exposure above a defined threshold concentration is sometimes more important than the extent of the exposure (42, 43). Using the data presented by Berenstein et al. (38), it can be calculated that responders have a longer half-life than nonresponders (12 versus 8 days) and that the former group has been exposed to concentrations above 0.0001 μg/ml (i.e., the concentration at which ADCC was detected in vitro) during 20 months versus 13 months for nonresponders. It has also been reported that some NHL patients have delayed clinical response (between day 78 and month 12 after rituximab infusion; Ref. 10). This observation shows that long-lasting effector mechanisms are involved in the therapeutic effect of rituximab and suggests that the difference between VV and FF NK cells observed in our in vitro model may be clinically relevant. Thus, the present study supports the conclusion that the FCGRA3A genotype is associated with the therapeutic action of rituximab because it affects the relationship between rituximab concentration and B-cell lysis by NK cells. The consequence of the present findings is that rituximab dose or administration schedule may be adjusted in FF patients to ensure a longer exposure to effective concentrations to obtain a better clinical response. More generally, such a pharmacogenetic approach has to be taken into account to improve therapeutic efficacy of cytolytic mAbs in addition to methods that have been shown to enhance NK cell response to tumor cells, such as engineering the Fc portion to increase mAb binding to FcγRIIA (32, 44) or stimulating NK cells by cytokines (35, 45, 46).

ACKNOWLEDGMENTS

We thank C. Thomas, T. Avril, C. Le Guellc, I. Desbois, Prof. J.C. Besnard, and Prof. C. Andrè for helpful assistance.

REFERENCES


34. Ramos OF, Sarmay G, Klein E, Yefenof E, Gergely J. Complement-dependent cellular cytotoxicity: lymphoblastoid lines that activate complement component 3 (C3) and express C3 receptors have increased sensitivity to lymphocyte-mediated lysis in the presence of fresh human serum. Proc Natl Acad Sci USA 1985;82:5470–4.
Rituximab-Dependent Cytotoxicity by Natural Killer Cells: Influence of FCGR3A Polymorphism on the Concentration-Effect Relationship

Sébastien Dall'Ozzo, Sophie Tartas, Gilles Paintaud, et al.

Cancer Res 2004;64:4664-4669.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/13/4664

Cited articles
This article cites 46 articles, 31 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/13/4664.full.html#ref-list-1

Citing articles
This article has been cited by 59 HighWire-hosted articles. Access the articles at:
/content/64/13/4664.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.