The Rgr Oncogene Induces Tumorigenesis in Transgenic Mice

María Jiménez,1,2 Ignacio Pérez de Castro,1,2 Marta Benet,1 Juan F. García,2 Giorgio Inghirami,1,3 and Angel Pellicer1

1Department of Pathology and New York University Cancer Institute, New York University School of Medicine, New York, New York; 2Molecular Pathology and Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; and 3Center for Experimental Research and Medical Studies, University of Turin, Turin, Italy

ABSTRACT

To study the oncogenic potential of Rgr in vivo, we have generated several transgenic Rgr mouse lines, which express the oncogene under the control of different promoters. These studies revealed that Rgr expression leads to the generation of various pathological alterations, including fibrosarcomas, when its transgenic expression is restricted to nonlymphoid tissues. Moreover, the overall incidence and latency of fibrosarcomas were substantially increased and shortened, respectively, in a p15INK4b−/−-defective background. More importantly, we also have demonstrated that Rgr expression in thymocytes of transgenic mice induces severe alterations in the development of the thymocytes, which eventually lead to a high incidence of thymic lymphomas. This study demonstrates that oncogenic Rgr can induce expression of p15INK4b and, more importantly, that both Rgr and p15INK4b cooperate in the malignant phenotype in vivo. These findings provide new insights into the tumorigenic role of Rgr as a potent oncogene and show that p15INK4b can act as a tumor suppressor gene.

INTRODUCTION

Rgr is an oncogene that was isolated in our laboratory by its ability to produce tumors in the nude mouse assay (1). This oncogene was detected and isolated by gene transfer, using DNA from a 7,12-dimethylbenz(a)anthracene-induced rabbit squamous cell carcinoma as the starting material. Rgr (truncated at its 5′ end) was fused to the rHHKR2.5A gene, the rabbit orthologue of Rad23, a Saccharomyces cerevisiae nucleotide excision repair gene. Rgr belongs to the guanine nucleotide exchange factor (GEF) family, also known as GDP dissociation stimulator (GDS), and has a significant homology to Ral guanine dissociation stimulator (Ral-GDS). Ral-GDS is an effector of Ras and may functionally link Ras with other Ras-related proteins (2). Similar to Ral-GDS, Rgr has been shown to have specific exchange activity for Rac (1). Rgr lacks the Rac-interacting domain within the COOH-terminal end present in other family members. Interestingly, its introduction into cells resulted in increased levels of GTP-bound Ras (3). Moreover, Rgr is the first member of the Rac-mediated pathway to display tumorigenic properties as demonstrated by the potent tumorigenic activity of Rgr in the nude mice assay (1) and the formation of transformed foci and abnormal cellular morphologies in cultured cells (3). In addition, Rgr also enhanced the phosphorylation of extracellular signal-regulated kinases, p38, and e-Jun-NH2-terminal kinases. The biological significance of these activities was confirmed using dominant-negative forms of Ras, Rac, and Rho that blocked the transcripational activation induced by Rgr (3). Interestingly, one of the dominant-negative form of Ras inhibited Rgr transformation, indicating that Ras activation is crucial for the oncogenic activity of Rgr (3).

It is important to note that Rgr has been previously shown to induce the expression of several cell cycle regulators, including p15INK4b (4), and it is important to determine the ability of Rgr to produce those effects. In addition, it has been previously shown that there is Ras activation and inactivation of p15INK4b in some tumors (5). This seemingly contradictory observation is interpreted as if the increase in p15INK4b expression produced by Ras is a defense mechanism of the cell to block the transforming effects of Ras. Therefore, it is also of interest to investigate whether Rgr would cooperate with p15INK4b inactivation as well.

Recently, we have shown that at least part of the transforming activity of Rgr is a consequence of its overexpression, which in turn is due to the elimination of translational regulatory elements in the 5′ leader region of Rgr mRNA. This overexpression resulted in subsequent Rac activation (6). The human orthologue of the rabbit Rgr gene, hrgr, has been recently isolated from lymphoid malignant cell lines that express several hrgr mutant transcripts (7). Similar to the activated rabbit truncated form (Rgr oncogene), the human mutant transcripts found in T-cell lines and some T-cell lymphomas are truncated forms of the hrgr gene (7).

This report summarizes the analysis of Rgr transgenic mouse lines in an effort to study the in vivo oncogenic potential of Rgr. In these experiments, Rgr has demonstrated the ability to induce pathological alterations, including tumors, in tissues in which it is expressed. Some of the neoplastic alterations were substantially increased in a p15INK4b−/−, defective background, indicating cooperation between these two genetic alterations in some tumor types for Rgr-induced tumorigenesis. More importantly, the expression of Rgr in T cells was able to cause the formation of lymphomas with a high penetrance, consistent with the alteration found in human lymphomas and confirming the important role of this oncogene in this type of tumor.

MATERIALS AND METHODS

Plasmids and DNA/RNA Manipulation. Rgr was subcloned into the EcoRI site of pcDNA3 vector (Invitrogen, Carlsbad, CA), in which the mCC10 promoter was put in place of the cytomegalovirus (CMV) promoter, giving rise to the pMC10-RGR plasmid; or into pCX vector (8), giving rise to the pCX-RGR plasmid. Rgr also was subcloned into pMxNeo expression vector (9), producing pNM11 plasmid, which was described previously (3). The pCD4-RGR-Flag vector, in which the CD4 promoter drives RGR-Flag expression, was prepared by inserting the CD4 promoter-enhancer into the cloning site of pMxNeo vector and then subcloning the RGR-Flag sequence in the 3′ end of the promoter. The CD4 promoter-enhancer was obtained from a plasmid (CD4-hCD2; a generous gift from Dr. D. R. Littman; Skirball Institute, New York University Medical Center, New York, NY) containing the minimal CD4 enhancer (339 bp), the minimal murine CD4 promoter (487 bp lacking the CD4 untranslated first exon and part of the first intron of the murine CD4 gene (10). The RGR-Flag fragment was described previously as Flag-tagged RSC-Rgr (6).

The expression of oncogenic Rgr driven by the majority of the promoters listed above was analyzed in vitro before obtaining the transgenic mice. pNM11 and pCX-RGR vectors were transfected into NIH3T3 cells by the calcium phosphate precipitation method (11), and the expression of Rgr was...
tested using a focus formation assay and Northern blot. The expression of RGR in pmCC10-RGR vector was confirmed by transfecting H441 lung cells by the calcium phosphate precipitation method and performing a Northern blot. In addition, the luciferase reporter plasmids (p15INK4b promoter) used in this work were described previously (4).

For hybridizations, digested DNA or RNA was separated on agarose gels and transferred onto nitrocellulose membranes (Schleicher & Schuell, Keene, NH). DNA probes were labeled with \(^{32}\)PdCTP (3,000 Ci/mmol; DuPont-New England Nuclear, Boston, MA) using the Random Primed DNA Labeling System Rediprime II (Amersham Biosciences, Piscataway, NJ) in accordance with the manufacturer's protocol. Hybridizations were visualized by the use of a PhosphorImager (Molecular Dynamics, Sunnyvale, CA) or by exposure to X-ray film.

Generation and Genotyping of Transgenic Mice. Transgenic mice were generated as described previously (12, 13). Briefly, each of the transgene constructs was injected into the pronucleus of fertilized eggs from female donors and subsequently transferred to pseudopregnant mice. All of the transgenic lines were produced in the inbred strain FVB/N (14). Screening of positive animals for the transgene was done by polymerase chain reaction (PCR) of DNA extracted as described previously (15), using forward primers specific for each of the promoters and the common reverse primer 907-884 (5'-GTGCCCTGGCTGAGCCAGTCAG-3'), which is specific for the transgene. The specific primers for each of the promoters were as follows: MSV-F (5'-ACCTGAAAATAGCAGCCTGGC-3') for the MSV-RGR lines; mCC10-147 (5'-GTGCTCCTACCTGCTGAAATA-3') for the mCC10-RGR lines; PCX-F1 (5'-CCAGCACTTGCTTTATGGT-3') for the CMV-RGR lines; and CD4-RGR-F1 (5'-GCCACTTTTGGTATCAGA-3') for the CD4-RGR-Flag lines. Founder animals were confirmed by Southern blot after digestion of 20 μg of genomic DNA with Sall and hybridization with a cDNA probe containing the entire sequence of oncogenic rabbit Rgr. Screening of the offspring was performed by PCR amplification of DNA with the primers described above. The animals were maintained in accordance with NIH guidelines for animal care.

KO-p15INK4b mice were generously provided by M. Barbacid (Spanish National Cancer Institute, Madrid, Spain) in a 129/Sv \times C57BL6 genetic background. MSV-RGR/p15INK4b offspring were generated as littermates from common matings and genotyped by PCR using specific primers for the RGR transgene and both the wild-type and KO p15INK4b sequences (15). The MSV-RGR/p15INK4b/+ line was generated by crossing MSV-RGR/p15INK4b/+ mice and then maintained by mating the double mutants, MSV- RGR/p15INK4b/-.

Cell Culture and Luciferase Assays. NIH3T3 cells were maintained in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% calf serum (HyClone, Logan, UT), streptomycin (50 μg/ml; Gemini Bio-Products, Woodland, CA), and 50 μg/ml fungizone (Invitrogen) and incubated in standard conditions of humidity (95%), CO\textsubscript{2} atmosphere (5%), and temperature (37°C).

For the luciferase assays, approximately 75 ng of the reporter plasmids, 25 ng of the pRL-null (as an internal control of transfection efficiency), and 400 ng of the inducer (pNM11) or empty vector (pMEXneo) were used to cotransfect NIH3T3 cells. Transient transfections were performed by lipofection using Lipofectamine (Invitrogen), according to the manufacturer's protocol. NIH3T3 cells were plated onto 6-well plates (NIH3T3) at a density of 100,000 cells/well, grown for 24 hours, and transfected. Forty-eight hours after transfection, cells were collected, and the luciferase assay was performed in accordance with the manufacturer's recommendations (Dual-Luciferase Reporter Assay System; Promega, Madison, WI).

Real-Time Reverse Transcription-PCR Expression Analysis. Total RNA was isolated from tissues and cells using Trizol (Invitrogen). To generate cDNA, 1 μg of total RNA was reverse transcribed using 0.4 μmol/L of an oligo(dT)-adapter primer and SuperScript II RNase H reverse transcriptase (Invitrogen) as described by manufacturer. To determine p15INK4b mRNA expression in thymic lymphomas and wild-type thymi, real-time reverse transcription (RT)-PCR was performed using the following primers for mouse p15INK4b, E2mp15F74, 5'-CTGCCACACCTACAGGCTTCGC-3', and E2mp15R257, 5'-TCTCAGTCCAGGGTCCAGATC-3'. To normalize the expression levels of p15, β-actin expression was also determined using primers QmBactin-F (5'-TGTGGACACTGGGAGCA-3') and QmBactin-R (5'-CTTTTCACGGTGGCCTTAG-3'). Quantitative PCR was performed with the iCycler iQ System from Bio-Rad (Hercules, CA) using SYBR Green as DNA intercalator.

Histological and Immunohistochemical Analyses. Tissues were fixed in 10% buffered formalin at 4°C overnight, transferred to 70% ethanol, embedded in paraffin, and sectioned at 5-μm thickness. Sections were stained with hematoxylin and eosin for histological analysis.

The immunohistochemical expression of lineage-specific markers for B cells and IgM was performed on paraffin-embedded tissue sections from MSV-RGR/KO-p15INK4b and CD4-RGR lymphomas (spleen and thymus, respectively). Antibodies used were CD45R (goat antimouse B220; clone RA3-6B2; PharMingen, San Diego, CA) and rabbit antimouse IgM (DAKO, Glostrup, Denmark), respectively. A previous heat-induced epitope retrieval step was performed in a 0.1 mol/L trisodium citrate solution for 2 minutes in a conventional pressure cooker. After incubation, immunodetection was performed with the peroxidase-labeled streptavidin (DAKO). Diaminobenzidine was used as substrate chromogen.

Immunostaining techniques were also performed in paraffin-embedded tissue sections for the detection of p53, p21, and p16 as described above. Antibodies used as follows: rabbit antimouse p16 (M-156; 1:35 dilution; Santa Cruz Biotechnology, Santa Cruz, CA), rabbit antimouse p21 (C-19; 1:25 dilution; Santa Cruz Biotechnology), and rabbit antimouse p53 (CM5p; 1:100 dilution; Novocastra, Newcastle upon Tyne, United Kingdom).

Flow Cytometric Analysis. Primary thymocytes (0.5 \times 10^6 per point) were isolated from 6-week-old wild-type and CD4-RGR mice. To characterize the different thymocyte subpopulations as well as their activation status, CD3, CD4, CD8, CD25, CD44, and CD69 markers were detected in both groups of thymocytes. Briefly, isolated thymocytes were washed twice with PBS and incubated at 4°C for 1 hour with two different sets of antibodies from Caltag: PE-TexasRed-antiCD8, FITC-antiCD4, PE-antiCD44, and APC-antiCD25; or FITC-antiCD3 plus PE-antiCD69. Cells were washed three times with PBS and fixed with 2% parafomaldehyde. Finally, cells were analyzed by flow cytometry in a FACscan cytometer, and data were interpreted using the CellQuest program (Becton Dickinson, San Jose, CA).

RESULTS

Study of the Effect of Rgr Transgene Expression in Nonlymphoid Mouse Tissues. To determine whether the oncogenic form of Rgr is able to elicit the formation of tumors in vivo, we inserted its cDNA into transgene cassettes to generate different transgenic

Fig. 1. Transgenic constructs generated with the Rgr oncogene. Four Rgr constructs were generated as described in Material and Methods. All of them include Rgr cDNA (white boxes) and differ in their promoter (hatched and checkered boxes) and polyA (gray boxes) sequences. Depending on the promoter sequence, the different constructs and mouse transgenic lines were termed MSV-RGR (A), mCC10-RGR (B), CMV-RGR (C), and CD4-RGR (D). In two of the cases (C and D), an intronic sequence was inserted between the promoter region and Rgr. Finally, Rgr was tagged with a Flag sequence (black box) in the CD4-RGR construct.
The expression of Rgr was controlled by different promoters (Fig. 1): the Moloney murine sarcoma virus (MSV), which is expressed at significant levels in the brain (16), eye (16–18) and skeletal muscle (19) and at lower levels in the kidney, pancreas (16), and testis; the mCC10 promoter (mouse Clara Cell 10 KD protein), which is specific for the lung (20, 21), although it also drives a low level of expression in the uterus, ovaries, and epididymus of normal adults (21–23); and the CMV-IE enhancer plus the chicken β-actin promoter, which is ubiquitously expressed and starting from 4-cell stage (8).

Different results were obtained in the three cases in which the expression of the Rgr transgene was driven by nonlymphoid promoters. For the mCC10-RGR construct, after 2 years of study, gross morphological or behavioral abnormalities have not been detected in any of the transgenic mice. On the other hand, after three different experiments in which 244 fertilized eggs were injected with the CMV-RGR construct and a total of 50 mice were born, transgenic mice have not been obtained with this construct, which suggests that a high and ubiquitous expression of this oncogene at early embryonic stage could be lethal.

In the case of the MSV-RGR construct, a total of 11 transgenic lines were obtained that transmitted the transgene to their progeny. Five of these lines, with varying levels of expression in several tissues, were maintained as stable lines (L3, L21 L40, L43, and L58). Two of them, L21 and L43, were characterized and studied in more detail. Fig. 2A summarizes the RGR expression pattern as well as the major abnormalities found in the MSV-RGR lines. More than 95% of the mice bearing the transgene developed visible lens opacity at 3–6 weeks after birth. This opacity led to cataracts with swollen disoriented lens fibers and vacuolation of the lens (Fig. 2B i and ii). Associated with the cataracts, the presence of the oncogene elicited Harderian gland adenomas in all transgenic animals. MSV-RGR mice also exhibited inguinal hernias (Fig. 2B iii) that affected only males (90% of L3 males and 5% of L21 males), compromising male reproductive function and leading to sterility. More importantly, fibrosarcomas in the limbs and tail were found in 10% of the transgenic mice. Tumors were composed of atypical spindle-shaped cells that had a variable mitotic activity and appeared fibroblastic, arranged in intersecting fascicles, with collagenous stroma (Fig. 2B iv). These fibrosarcomas, which developed with a latency of 6–8 months, caused paralysis of the limbs in aged mice. These results indicated that Rgr acts as an oncogene and can produce tumors when overexpressed in transgenic mice.

Rgr Cooperates with the Lack of p15INK4b in the Tumoral Phenotype In vivo. Tumoral processes are the result of an accumulation of alterations in genes regulating cellular homeostasis, such as oncogenes, tumor suppressor genes, apoptotic-regulating genes, and DNA repair genes. Because the MSV-RGR transgenic line showed a moderate tumor phenotype (10% of sarcomas with a 6- to 8-month latency period), we analyzed whether Rgr, as an oncogene, could cooperate in vivo with a tumor suppressor gene in tumor progression and development. Among all of the genes that have been associated with a tumor suppressor activity, we have previously demonstrated that the lack of one of them, p15INK4b, cooperates with RGR in foci formation assays performed in mouse embryonic fibroblasts (10). Because this is the same collaboration type that we have found between Ras and p15INK4b (10), we studied whether or not Rgr also shares with Ras the mechanisms to activate the expression of p15INK4b. NIH3T3 cells were cotransfected with Rgr and luciferase reporter plasmids containing either a wild-type form or different deletion mutants of the p15INK4b promoter. Luciferase activity was measured 48 hours after transfections. As shown in Fig. 3, Rgr is indeed able to induce p15INK4b expression in a fashion similar to that of Ras.

Fig. 3. Oncogenic Rgr induces p15INK4b expression through activation of its promoter. Representative experiment showing the induction of p15INK4b promoter activity by Rgr. NIH3T3 cells were cotransfected with Rgr and the pGL2b(−751/+160)-luc construct carrying a 751-bp sequence upstream of the p15INK4b ATG, the pGL2b(−35/+160)-luc construct carrying a sequence lacking Sp1 binding sites, or the tk81-luc construct as a negative control. Forty-eight hours after transfection, luciferase activity was measured as described in Material and Methods.
inappropriate oncogenic Rgr activation, we decided to investigate the effect of Rgr oncogenic activation in a p15 INK4b -deficient background using a new transgenic/knockout mouse line that was generated by crossing the MSV-RGR and KO-p15 INK4b mouse lines (24). With this mouse model, we were able to demonstrate that lack of p15 INK4b could collaborate in the MSV-RGR-induced tumorigenesis inducing a more pronounced phenotype (Fig. 4). Indeed, the severity and incidence of the tumors induced by Rgr were substantially increased when the MSV-RGR transgenic mice were crossed with the KO-p15 INK4b mouse line. In fact, all of the MSV-RGR/KO-p15 INK4b mice developed fibrosarcomas in the limbs, tail, and/or ears, compared with only 10% of animals in the case of the MSV-RGR/WT-p15 INK4b. Further, MSV-RGR/KO-p15 INK4b limb tumors were significantly larger than those found in the MSV-RGR/WT-p15 INK4b mice (Fig. 4A).

The histopathological analysis of the fibrosarcomas obtained from MSV-RGR/KO-p15 INK4b mice exhibited a more aggressive phenotype than those from MSV-RGR/WT-p15 INK4b mice, usually showing higher grade tumors with increased cellularity, mitotic activity, necrotic foci, and tumor areas, with frequent multinucleated pleomorphic cells (undifferentiated pleomorphic sarcomas; Figs. 2F and 4B). In addition, all of the MSV-RGR/KO-p15 INK4b mice displayed lymphoid hyperplasia in the spleen (Fig. 4C). In 50% of these cases, this phenotype was a consequence of extramedullary hematopoiesis (foci of myeloid metaplasia in the red pulp composed of granulocytic cells, erythroblasts, and megakaryocytes in different stages of maturation), an abnormal phenotype that is also found in the p15 INK4b -null mice (24). More importantly, the remaining enlarged spleens were associated with lymphomas, a tumor type rarely found in KO-p15 INK4b mice (Ref. 24). These tumors were predominantly well-differentiated lymphomas, composed of small- to medium-sized cleaved centrocytes that usually expressed CD45R (B220) and IgM (data not shown),
whereas infiltration of the white and red pulp was variable. Thus, the concurrent presence of both genetic alterations, expression of oncogenic Rgr together with the loss of p15\(^{INK4b}\), has a synergistic effect in the tumoral phenotype (Fig. 4D).

To demonstrate the specificity of p15\(^{INK4b}\) in cooperation with Rgr in this mouse transgenic model, we studied the expression of other tumor suppressor genes by immunohistochemistry. Specifically, we chose the following for this analysis: p16\(^{INK4a}\), an INK4 family member that has been found to be down-regulated in many tumor types; p21\(^{RB1}\) (another RB function inhibitor; in this case, a member of the CIP/KIP family); and, finally, p53, the key molecule of the other critical pathway most frequently mutated in tumorigenesis. Interestingly, none of these three genes was down-regulated in any of the seven tumors analyzed (Fig. 5). Moreover, we did not find overexpression of p53, suggesting that this gene is not mutated in any of the analyzed tumors. Therefore, these results appear to indicate a specific role of the constitutive lack of p15\(^{INK4b}\) in RGR-induced tumorigenesis.

CD4-RGR Transgenic Mice: A Key Role of Rgr in T-Cell Lymphoma Development and Progression. Mutations in the Rgr human orthologue, hrgr, have been associated with human T-cell malignancies (7). In contrast, MSV-RGR transgenic mice expressing low levels of Rgr in lymphoid tissues (data not shown) are prone to splenic lymphomas in a p15\(^{INK4b}\)-deficient background (Fig. 4C and D). To further analyze in vivo the role of Rgr in lymphomagenesis, new transgenic mouse lines were generated in which Rgr expression was under the control of the murine CD4 minimal promoter (lacking the CD4 silencer region) and the CD4 enhancer (Fig. 1D) to drive the expression in CD4- and CD8-positive T cells (both single and double positive; Ref. 10). Among the 16 founders obtained from microinjection of the CD4-RGR-Flag transgene, three independent CD4-RGR transgenic lines (lines 19, 37, and 42), were expanded and studied. The thymocytes of the animals in all three lines exhibited Rgr expression (data not shown). As shown in Fig. 6A, many animals (83% in L19, 38% in L37, and 68% in L42) carrying the CD4-RGR construct developed thymic lymphomas. In fact, the progression of this tumor was the cause of death in all cases. Lines 19 and 42 showed similar thymic lymphoma incidence curves in the first year of life (median latency of 22 and 20 weeks and tumor-free ratios of 6.7% and 13.2%, respectively). A weaker phenotype was displayed by line 37 (median latency of 35 weeks and tumor-free ratio at 1 year of age of 37%). The neoplasms caused complete effacement of the normal thymic architecture and frequently infiltrated adjacent soft tissues and lung (Fig. 6B).

To further characterize the in vivo oncogenic effect of Rgr expression in mouse thymocytes, the expression profile of different T-cell surface markers was determined. A series of thymic lymphomas showed that the majority of these tumors were, CD4\(^+\), CD8\(^{+/-}\), and CD25\(^+\) (Fig. 6C). To characterize the putative effects resulting from the expression of Rgr in preneoplastic thymocytes, the morphological and phenotypic features of thymocyte populations in line 42 and in the less clinically aggressive line 37 were studied. Microscopic evaluation demonstrated a normal thymic architecture and no significant differences between the transgenic mice and normal control littermates (data not shown). However, a reproducible but minimal reduction in the total number of thymocytes was observed in lines 37 and 42 (Fig. 7), although this decrease in the number of cells of the CD4-RGR thymi was not statistically significant. Moreover, when 6-week-old mice were used to isolate and study the frequency of different T-cell subpopulations by flow cytometric analysis, significant differences were detected between CD4-RGR and wild-type thymocytes (Fig. 7). These differences were more pronounced in the case of the CD4-RGR mice line with shorter latency and higher incidence of thymic lymphomas (line 42). Indeed, a significant reduction was found in the thymocyte subpopulation expressing high levels of T-cell receptor (CD3high) and the single-positive CD4 and CD8 thymocytes, together with an increase in the number of CD4/CD8 double-positive cells. No significant differences were found for the percentages of CD4/CD8 double-negative thymocytes. Higher levels of CD25-, CD44-, and CD69-positive thymocytes among CD4-RGR line 42 mice were also detected. However, only the percentages of CD25- and CD69-positive thymocytes were significantly altered in the CD4-RGR line with longer latency and lower incidence (line 37).

All these results indicated that Rgr expression in the thymocytes of immature mice induced a severe alteration on the patterns of thymocyte development and maturation consisting of a substantial increase in the number of activated and undifferentiated cells. These alterations preceded the development of lymphomas.

Finally, because lack of p15\(^{INK4b}\) in mice carrying a MSV-RGR construct induces a more pronounced malignant phenotype, including the onset of spleen lymphomas, we investigated whether or not p15\(^{INK4b}\) down-regulation also plays a critical role in CD4-RGR-induced lymphomagenesis. The expression levels of p15\(^{INK4b}\) mRNA were determined in a set of CD4-RGR thymic lymphomas by real-time RT-PCR. As shown in Fig. 8, 50% of the tumors analyzed showed a significant down-regulation of p15\(^{INK4b}\) expression. Also, it is interesting to note that in the other 50% of the samples, p15\(^{INK4b}\) was overexpressed, which confirmed our in vitro results on the capacity of Rgr to induce p15\(^{INK4b}\) expression (Fig. 3). These results support the functional interplay between Rgr and p15\(^{INK4b}\) and suggest that oncogenic activation of Rgr and lack of p15\(^{INK4b}\) expression cooperate in different tumor types.
stimulation of cyclin D1 expression (28). Metastatic evolution of Ras-transformed cells and for Ras-induced transformation, participate in cell motility, and are required for processes (2, 28). Unlike in mouse cells, the RalGEF pathway has been reported to be important for Ras-mediated transformation in human cells (7, 29). In vivo studies have shown previously that activation of RalGEF is sufficient to initiate an invasive phenotype in nude mice (30). The present study demonstrates that Rgr displays tumorigenic properties in a mouse transgenic model because it is able to produce tumors in some of the tissues in which it is overexpressed.

DISCUSSION

Rgr Is the First Ral Guanine Nucleotide Exchange Factor Family Member with Transforming Activity In vivo. Rgr is a GEF protein that was isolated in our laboratory by its ability to produce tumors in nude mice (1). The role of GEFs in activating pathways mediated by small GTPases indicates that they could play a pathogenic role in some tumors in which these pathways are abnormally induced. There are several GEFs, such as dbl, vav, and CALDAG-GEF1, previously identified as oncogenes that have been found to be mutated or rearranged in human (25, 26) and animal malignancies (27). However, it is interesting to note that among all of the constitutively activated variants of the RalGEFs, only Rgr is transforming by itself in mouse cells (3). The remaining GEFs, although they are not transforming, cooperate with activated Raf in focus formation processes (2, 28). Unlike in mouse cells, the RalGEF pathway has been reported to be important for Ras-mediated transformation in human cells (7, 29). In vivo studies have shown previously that activation of Raf in focus formation processes is associated with multiple genetic lesions. Although it is not known which altered genes are cooperating with Rgr in tumorigenic processes, one of the candidates is the tumor suppressor gene p15INK4b. In a previous study, p15INK4b produced G1 arrest in Ras-transformed cells and decreased the tumorigenic potential of Ras and Rgr in focus formation assays in mouse fibroblasts (4). In addition, we have shown that, like oncogenic Ras, activation of oncogenic Rgr triggers p15INK4b expression (Fig. 3), which could be part of a more general antioncogenic response. Therefore, similar to oncogenic Ras, Rgr and p15INK4b interact in vitro in such a way that alteration of both genes cooperates in the malignant phenotype. These results are consistent with the fact that although Rgr is able to activate both Raf and Ras, its transforming activity is dependent on Ras and less so on Raf (3).

The role of p15INK4b in tumorigenesis is not well defined. Although the INK4b locus is often deleted in human tumors, its loss is concomitant with that of the Ink4a/Arf locus (35). In some cases, however, deletion of p15INK4b occurs independently of p16INK4a status (36, 37). More recently, it has been described that a small fraction of the KO-p15INK4b mice develop different types of tumors, mainly sarcomas (24). The high incidence of tumors observed in the double-mutant MSV-Rgr/KO-p15INK4b mice (100%), compared with that obtained in both the MSV-Rgr (10%) and KO-p15INK4b (8.2%) mouse lines, clearly demonstrates the synergistic cooperation between p15INK4b and the Rgr oncogene in vivo.

It has been described that inhibition of p15INK4b expression appears to be a common event in human lymphoid tumors and mouse T-cell lymphomas (37–41). Here, the important role of p15INK4b in lymphomagenesis is confirmed. Furthermore, the results indicate that the role of p15INK4b in tumorigenesis is dependent on the concurrent oncogenic activation of various components of the Ras pathway. Indeed, splenic lymphomas are found in 50% of MSV-RGR/KO-p15INK4b mice, whereas this tumor type is found in <1% of KO-p15INK4b mice, which only show extramedullary hematopoiesis. In accordance with these observations, similar results have been obtained when crossing transgenic mice expressing an N-Ras oncogenic variant
with p15INK4b-KO mice. Finally, the results derived from the study of the CD4-RGR tumors constitute not only additional evidence in favor of the role of alterations in both genes in lymphomagenesis but also a new and significant observation about the collaboration of the two of them in this kind of tumor.

The INK4b gene and the closely related gene, INK4a, are located at the same chromosomal region in both the human and mouse genome, a hot spot for cancer-associated deletions (37, 42). Although the inactivation of p16INK4a has been clearly associated with cancer development and progression (43), the role of p15INK4b as a tumor suppressor gene is still controversial. Therefore, our data constitute new and strong evidence in favor of the critical role of p15INK4b inactivation in the development and progression of some tumor types.

Critical Role of Rgr Oncogenic Activation in T-Cell Tumorigenesis. An important conclusion derived from this work is the role of Rgr in lymphomagenesis. As it has been described above, MSV-RGR mice lacking p15INK4b showed a remarkable increase in splenic B-cell lymphoma incidence. These results are remarkable, considering that Rgr expression in the spleens of transgenic mice is modest (data not shown). CD4-RGR transgenic mice provided additional confirmation of the role of Rgr in lymphomagenesis. The expression of Rgr under control of the CD4 promoter induces thymic lymphomagenesis (Fig. 6). The fact that NrasT transgenic mice develop thymic lymphomas (44) is consistent with our previous results in vitro, in which the transforming activity of Rgr is mediated predominantly by Ras.

The study of preneoplastic CD4-RGR thymi produced important insights regarding the Rgr-induced alterations in T cells. In the CD4-RGR transgenic line with higher incidence of tumors and shorter latency, 6-week-old mice showed a significantly altered pattern of their thymocyte subpopulations (Fig. 7). The reduction in the number of CD3+CD8high, CD4-CD8low, and CD4-CD8low cells indicated an increase in the number of undifferentiated thymocytes. Moreover, these cells became more activated, as demonstrated by the levels of expression of specific activation markers (CD25 and CD69). The most interesting results derived from the analysis of the CD44 marker. CD44 is a multistructural and multifunctional cell surface molecule that has been involved in many cellular functions from cell proliferation to cell migration and angiogenesis. In this case, both CD4-RGR transgenic mice lines (lines 42 and 37) showed a similar and substantial increase in the number of CD44+ thymocytes. Interestingly, CD44 has been associated with cancer (45), and it has been proposed as a good candidate to predict prognosis in patients with lymphoma (46). Our data suggest that CD44 overexpression could be a candidate marker for early detection of Rgr-induced lymphomagenesis.

Recently, the human orthologue of Rgr, hrgr, has been associated with human T-cell malignancies (7). Similar to rabbit Rgr, which was found as one of the components of a fusion protein isolated from a rabbit squamous cell carcinoma, truncation of hrgr confers transforming properties to its cDNA. DNA rearrangements, which are frequent events in T-cell lymphomagenesis (47), could have resulted in hrgr truncation. Indeed, a DNA rearrangement has been found within the hrgr gene in a human anaplastic large cell lymphoma cell line (DHL; Ref. 7). It is interesting to point out that chromosomal translocations frequently have been associated with sarcomagenesis (48), and in many cases, these

genetic translocations affect a chromosomal region close to the one in which hgr is located (22q11.2). Therefore, there is a need for additional studies on the role of hgr in human sarcomagenesis. According to our preliminary results, DNA rearrangements involving Rgr provoke changes in its levels of expression. In normal cells and tissues, the levels of expression of both Rgr and hgr are low, whereas in transformed cells and tumor samples, a significant level of expression of these genes is detected (3, 7). In this work, overexpression of oncogenic Rgr is sufficient to induce the development of fibrosarcomas and lymphomas. Thus, our previous in vitro model is corroborated, in which a mutation affecting the regulation of gene expression, which increases its expression from negligible levels, is the basis for Rgr acting as an oncogene (6). However, neoplastic alterations have not been detected in some of the tissues in which Rgr has been overexpressed. For example, the MSV-RGR mice express substantial levels of Rgr in liver, brain, and kidney (data not shown), and pathological alterations have not been detected in those tissues after analysis of these transgenic mice at age > 2 years. Therefore, these results suggest that the Rgr-induced transforming phenotype is dependent not only on the expression levels of this gene but also on certain tissue-specific factors. These still uncharacterized elements might be the reason for oncogenic Rgr involvement in lymphomagenesis and, to a lesser extent, in the development of fibrosarcomas.

Taken together, these results reinforce the role of Rgr as an oncogene in different tumor types. In some of the tumors (fibrosarcomas), Rgr-induced tumorigenesis is substantially potentiated by the effect of other genetic alterations, such as a constitutive lack of p15INK4b expression. However, in other cases (lymphomas), expression of Rgr in T cells induced a severe alteration of thymocyte differentiation and strengthens the notion that Rgr plays an important role in lymphomagenesis. Therefore, the high incidence of lymphomas and fibrosarcomas in the transgenic lines and the fact that hgr also is associated with human lymphomas support this as a model to study sarcomagenesis and lymphomagenesis.

ACKNOWLEDGMENTS

We are especially indebted to E. Latres and M. Barbacid for providing us with the p15INK4b-deficient mice. We also want to thank John Hirst for his help in flow cytometric analyses and Laura Martello-Roojone for critical reading of the manuscript.

REFERENCES

The *Rgr* Oncogene Induces Tumorigenesis in Transgenic Mice

María Jiménez, Ignacio Pérez de Castro, Marta Benet, et al.

Cancer Res 2004;64:6041-6049.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/17/6041

Cited articles
This article cites 47 articles, 24 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/17/6041.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/64/17/6041.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.