Slippage of Mitotic Arrest and Enhanced Tumor Development in Mice with BubR1 Haploinsufficiency

Wei Dai,¹ Qi Wang,¹ Tongyi Liu,¹ Malisettey Swamy,⁴ Yuqiang Fang,¹ Suqing Xie,¹ Radma Mahmood,² Yang-Ming Yang,¹ Ming Xu,³ and Chinthalapally V. Rao⁴

¹Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Valhalla, New York; ²Core Facility for Histopathology, Albert Einstein College of Medicine, Bronx, New York; ³Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and ⁴Institute for Cancer Prevention, Valhalla, New York

Abstract

A compromised spindle checkpoint is thought to play a key role in genetic instability that predisposes cells to malignant transformation. Loss of function mutations of BubR1, an important component of the spindle checkpoint, have been detected in human cancers. Here we show that BubR1⁺/⁻ mouse embryonic fibroblasts are defective in spindle checkpoint activation, contain a significantly reduced amount of securin and Cdc20, and exhibit a greater level of micronuclei than do wild-type cells. RNA interference-mediated down-regulation of BubR1 also greatly reduced securin level. Moreover, compared with wild-type littermates, BubR1⁺/⁻ mice rapidly develop lung as well as intestinal adenocarcinomas in response to challenge with carcinogen. BubR1 is thus essential for spindle checkpoint activation and tumor suppression.

Introduction

The spindle checkpoint functions to block the anaphase entry until each of every condensed chromosome has successfully attached to the spindle microtubules. Vertebrate BubR1 plays a key role in spindle checkpoint activation, during which it is extensively phosphorylated (1). Hyperphosphorylated BubR1 and other components of the checkpoint machinery, including Bub1, Bub3, Mad1, Mad2, and CENP-E, are associated with unattached kinetochores (2, 3). Although it appears that BubR1 and Mad2 may function in a single pathway after spindle checkpoint activation (4), BubR1 is a much more potent inhibitor of the anaphase-promoting complex (APC) than is Mad2 (5). A recent study shows that spindle checkpoint activation or silencing is mediated through CENP-E-dependent activation or inactivation of BubR1 kinase (6). A loss of spindle checkpoint function is thought to contribute to the development of cancer because of its role in maintaining genomic stability (7). Indeed, aneuploidy is prevalent in many types of cancer. Although the physiological and molecular basis of this abnormality remains unclear, recent studies indicate that chromosomal instability is closely associated with the loss of a functional spindle checkpoint (7). Mutations in BubR1 have been detected in colonic cancers (8). In addition, a recent study has shown that BubR1 is epigenetically down-regulated in a substantial fraction of human cancers (9). To determine the physiological function of BubR1, we have generated BubR1 mutant mice. Mouse embryonic fibroblasts (MEFs) from BubR1⁺/⁻ animals were found to contain lower levels of securin and Cdc20 as well as BubR1 than MEFs from wild-type embryos. BubR1 deficiency resulted in mitotic slippage and formation of micronuclei at an enhanced rate. Moreover, BubR1⁺/⁻ animals were prone to rapid development of tumors in multiple organs after exposure to a carcinogen.

Materials and Methods

Immunoblot Analysis. MEFs or HeLa cells were suspended in a lysis buffer (1), and the cell lysates were centrifuged at 12,000 × g for 10 min at 4°C. Equal amounts of proteins were then subjected to SDS-PAGE and immunoblot analysis with antibodies to BubR1, securin (Novocastra), Mad2, Cdc20, Pkl3, or α-tubulin (Sigma). Immune complexes were detected with an appropriate second antibody conjugated with horseradish peroxidase (Sigma) and enhanced chemiluminescence reagents (Amersham Pharmacia Biotech).

Fluorescence Microscopy and Immunohistochemistry. Cells fixed in methanol were treated with 0.1% Triton X-100 on ice and then washed three times with ice-cold PBS. After blocking with 2.0% BSA in PBS for 15 min on ice, cells were incubated for 1 h with antibodies to BubR1, α-tubulin, or CREST; washed with PBS; and then incubated with appropriate secondary antibodies conjugated with Rodamine-Red-X or FITC (Jackson Immunoresearch). Cells were finally stained with 4′,6-diamidino-2-phenylindole (1 μg/ml; Fluka). Fluorescence microscopy was performed on a Nikon microscope, and images were captured using a digital camera (Optromics). Immunohistochemistry was performed using a kit purchased from Vector Laboratory according to the instructions provided by the supplier.

RNA Interference. Double-stranded RNAs of 21 nucleotides in length were synthesized by Dharmacon Research. The targeting sequence was 5′-AAGGAAGCCGACGCUGUUGAC-3′, corresponding to the coding region of 1281–1301 in human BubR1 (accession number AF068760 GenBank) and 1259–1279 in mouse BubR1 (accession number NM009773 GenBank) relative to the first nucleotide of ATG start codon. The control small interfering RNA (siRNA) targets luciferase mRNA (accession number X65532) of the firefly (Photinus pyralis), and the targeting sequence was 5′-UUCCTTAGCTGTCGATTCTCTGA-3′ (GL-3; Dharmacon Research). Double nucleotides (dtdT) were added at the 3′ end of each strand. RNA duplexes were transfected into HeLa cells via the Oligofectamine approach (Invitrogen).

Mouse Carcinogenesis Assay. At 6 weeks of age, female mice (10 wild-type and 10 BubR1⁻/⁻) were fed semipurified AIN-76A diets. One week after initiation of diets, both groups of mice were given s.c. azoxymethane (AOM; 4 mg/kg body weight) two times weekly for 4 weeks. All animals were weighed once every 2 weeks until termination of the study. Eight or 12 weeks after carcinogen treatment, mice were sacrificed by CO₂ euthanasia, and their colons were removed and flushed with Krebs Ringer solution. The dissected colons were opened and fixed flat between two pieces of filter paper in 10% buffered formalin for microadenoma analysis. After a minimum of 24 h in buffered formalin, the colons were cut into segments and placed in a Petri dish containing 0.2% methylene blue in Krebs Ringer solution. They were then placed mucosal side up on a microscope slide and observed through a light microscope. The colon microadenomas present were scored according to standard procedures that are being used routinely in our laboratory (10). Colons showing adenoma-like masses were fixed and subjected to histological analysis after H&E staining.

Results

To study the consequence of loss of BubR1 function on genetic instability and tumor formation, we have generated BubR1 mutant mice.
mice (11). *BubR1* deficiency results in early embryonic death (11). To confirm that *BubR1*−/− cells actually contained a reduced level of *BubR1*, we examined the abundance of *BubR1* in MEFs derived from embryonic day 14.5 embryos produced from intercrosses of *BubR1*−/− mice. The genotype of each MEF line was determined by nested PCR (11). Immunoblot analysis revealed that the amount of *BubR1* in *BubR1*−/+ MEFs was less than that in wild-type MEFs (Fig. 1A). Interestingly, the average level of *BubR1* in *BubR1*−/+ MEFs was about 25% (rather than the expected 50%) of that in wild-type MEFs (data not shown). This greatly reduced level of *BubR1* apparently failed to accumulate at kinetochores during early mitosis (Fig. 1B), consistent with the notion that *BubR1*−/− MEFs may not be efficiently activated. Indeed, exposure to the spindle checkpoint activator nocodazole for 16 h resulted in an apparent upshift of *BubR1* due to phosphorylation in wild-type MEFs but not in *BubR1*−/− MEFs (Fig. 1A). Thus, ablation of one *BubR1* allele apparently reduced the expression of the other allele, and the reduced level of *BubR1* also compromised its activation after microtubule disruption.

*Fig. 1. Compromised spindle checkpoint function in *BubR1*−/+ mouse embryonic fibroblasts (MEFs). A, wild-type and *BubR1*−/+ MEFs were incubated in the absence or presence (with a duplicate) of nocodazole (Noc; 0.5 μg/ml) for 16 h, after which cell lysates were prepared and subjected to immunoblot analysis with antibodies to *BubR1* or to α-tubulin. *BubR1*-P denotes phosphorylated *BubR1*. B, wild-type and *BubR1*−/+ MEF cells were fixed and stained with the antibody to *BubR1* (green), and DNA was stained with 4',6-diamidino-2-phenylindole (blue). A representative prophase cell from each cell type is shown. Bar, 2 μm. C, *BubR1*−/+ and wild-type MEFs were incubated with nocodazole (0.5 μg/ml) for the indicated times, after which equal amounts of cell lysates were subjected to immunoblot analysis with antibodies to securin, *BubR1*, Mad2, Cdc20, or α-tubulin. Data in all panels are representative of at least three independent experiments. D, HeLa cells transfected with small interfering RNA (siRNA) for 3 or 5 days were assayed for *BubR1*, securin, or α-tubulin expression via immunoblotting.

*Fig. 2. Characterization of *BubR1*−/*BubR1*−/+ MEFs revealed that these MEFs displayed defects in cell cycle progression (Fig. 2A). Immunoblot analysis revealed that the amount of securin in *BubR1*−/+ MEFs was less than that in wild-type MEFs (Fig. 2A). Consistently, the securin level was also significantly reduced. By day 5, securin had almost completely disappeared from HeLa cells transfected with siRNA targeting *BubR1*.

To determine whether mitosis was affected in *BubR1*−/+ MEFs, we examined the percentage of cells positive for phosphorylated histone H3, a mitotic marker tightly associated with chromosome condensation (Fig. 2A). Fluorescence microscopy revealed that there existed significantly fewer phosphorylated histone H3-positive cells in *BubR1*−/+ MEFs than in wild-type MEFs (Fig. 2B). About 3.8% of *BubR1*−/+ MEFs were in mitotic stages as revealed by phosphorylated histone H3 staining, whereas 9.2% of cells were mitotic in wild-type MEFs (Fig. 2C). Chromosome mis-segregation and micronuclei formation are hallmarks of a compromised spindle checkpoint (7). A greatly increased number of *BubR1*−/+ MEF cells contained spontaneously formed micronuclei compared with the wild-type MEFs (Fig. 2, D and E). Irregular nuclear shape and nuclear blebbing were also observed in *BubR1*−/+ MEFs (data not shown).

Because mutations of the *BubR1* gene were first identified in human colon cancer cells (8) and because *BubR1* is epigenetically down-regulated in a substantial fraction of human cancers (9), we investigated whether *BubR1*+/− mice were more susceptible to carcinogenesis after treatment with AOM, a colon carcinogen. Wild-type mice typically develop a low incidence of colonic tumors 6–8 months after initiation of AOM treatment (12). About 2 months after the completion of AOM treatment, *BubR1*−/+ mice had already exhibited abnormal and dilated crypts (data not shown). These mice subsequently developed a significant number of microadenomas and adenoma-like masses (Fig. 3B; Table 1). Polypos were scarcely detected in colons of wild-type C57/B16 mice at this stage of treatment (Table 1), however. Histological studies revealed that when compared with the

1 Wei Dai and Tongyi Liu, unpublished data.
normal structure of colon, these polyps were indeed neoplastic (Table 1; Fig. 3, C and D). Colonic tubular adenomas were lined with mild dysplastic epithelium, and glands exhibited partial loss of polarity with a mild architecture distortion (Fig. 3 C). Based on common pathological criteria (e.g., gland architecture, nuclear/cytoplasmic ratio, nuclear location, and amount of interglandular stroma), many large tumors from BubR1+/−/H11001/H11002 animals were classified as well to moderately differentiated adenocarcinomas (Fig. 3 D).

We next examined several other major organs (e.g., spleen, liver, and lung) for any sign of tumor formation. No neoplastic growths were detected in either BubR1+/− or wild-type spleens. To our surprise, BubR1+/− mice, but not the wild-type mice, developed many lung adenocarcinomas (Fig. 4A) as well as neoplasm in liver (data not shown). Tumor masses were typically well circumscribed, but not encapsulated, and situated at the periphery of the lung. They exhibited hyperchromatic and pleomorphic nuclei with abundant eosinophilic cytoplasm. Consistent with pulmonary adenocarcinoma, some tumor cells apparently formed glands with a lumen, whereas others formed trabecular patterns (Fig. 4A). Immunohistochemical studies revealed that lung adenocarcinomas were strongly stained with proliferative cell nuclear antigen (Fig. 4B), indicating that these tumor cells were...
highly proliferative. The susceptibility of BubR1+/− mice to lung tumor formation after challenge with the colon carcinogen AOM is unexpected because C57/BL6 mice are very resistant to the development of tumors, even when the lung-specific carcinogens such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are used. It is intriguing to note that lung appears prone to development of cancer when the spindle checkpoint is compromised because Mad2 or Bub3 haploinsufficiency also results in enhanced development of lung cancer (13, 14).

Discussion

Extensive biochemical and molecular analyses have shown that BubR1 plays a central role in spindle checkpoint activation (5, 15, 16). It both coordinates the interaction of Bub3, Mad1, Mad2, and CENP-E with kinetochores and contributes to inhibition of APC activity during activation of this checkpoint. The APC is an E3 ubiquitin ligase that mediates the polyubiquitination of securin, thereby targeting it for degradation by the proteosome (16). Securin binds to and inhibits the proteolytic activity of separase, which destroys the link between sister chromatids by cleaving the chromatin cohesin factor Scc1. Degradation of securin is required for the separation of sister chromatids during mitosis. Reduced levels of securin in BubR1+/− MEFs are closely correlated with BubR1 deficiency as well as with its activation status (Fig. 1C). Moreover, down-regulation of BubR1 via RNA interference resulted in almost complete disappearance of securin (Fig. 1D), strongly suggesting that BubR1 plays a pivotal role in the inhibition of APC during spindle checkpoint activation. In fact, enhanced genetic instability (e.g., polyploidy and micronuclei formation) in BubR1+/− MEF cells correlates very well with the observation that securin−/− cells lose chromosomes with a high frequency (17).

It is believed that one of the consequences of the loss of spindle checkpoint is genetic instability of the resulting daughter cells, which predisposes these cells to malignant transformation. Some evidence indicates that structural alterations or a loss of functional spindle checkpoint components may trigger certain cancers because mutations have been detected in Bub1 and BubR1 (8, 18). Although we have not
Fig. 4. BubR1+/– mice, but not wild-type mice, develop lung adenomas after exposure to azoxymethane. A, lung sections from BubR1+/+ and BubR1+/– mice treated with azoxymethane for 12 weeks were stained with H&E (magnifications, ×100 and ×400, respectively). Arrow indicates a solitary tumor mass in BubR1+/+ lung; the region is subjected to high-power magnification. B, neighboring sections of the same lung tissue from BubR1+/– mice were subjected to immunohistochemical studies after staining with either control immunoglobulin (IgG) or proliferative cell nuclear antigen IgG (magnifications, ×100). Arrows indicate a solitary tumor; the same region is subjected to high-power magnification (×400).
observed a significant increase in spontaneous tumors in *BubR1*+/– mice, our recent studies have demonstrated that these mice are prone to the development of neoplastic lesions of colon and lung within 2 months after they have been challenged with the carcinogen. In contrast, neither lesion is detected in wild-type mice at the same treatment stage, suggesting that *BubR1* is a tumor susceptibility gene. Consistently, recent *in vitro* studies show that adenomatous polyposis coli protein plays an important role in chromosomal segregation by interacting with BubR1 and that defects in adenomatous polyposis coli lead to increased chromosomal instability (19), underscoring the importance of further exploration of the role of *BubR1* in colon cancer using this animal model. Intriguingly, it is expected that a significantly compromised spindle checkpoint observed with *BubR1*+/– MEF cells would conceivably lead to widespread aneuploidy and rapid development of spontaneous tumors in the transgenic animals. Our explanations are as follows: (a) the spindle checkpoint in *BubR1*+/– cells is compromised, but not completely failed; and (b) animals are capable of elimination of most cells with severe chromosomal instabilities through apoptosis. This mechanism would prevent the early onset of tumors until a second insult occurs during aging or under a carcinogen stress. This view is supported by the facts that haploinsufficiency of *Mad2* and *Bub3/Rae1* results in a significantly enhanced lung cancer incidence in mice (beyond 18 months; Ref. 13) and carcinogen-challenged (20) mice, respectively.

In this study, we have addressed an *in vivo* role of *BubR1* by using a mouse gene knockout approach. *BubR1* haploinsufficiency results in a compromised spindle checkpoint, leading to slippage of mitotic arrest. A recent study shows that CENP-E functions as an activator of the essential checkpoint kinase BubR1; inactivation of BubR1 kinase activity silences the signaling of the spindle checkpoint (6). Thus, the availability of *BubR1*+/– mice should now greatly facilitate characterization of the functional interactions between BubR1 and various spindle checkpoint components, including CENP-E, Mad2, and other spindle checkpoint gene products.

Acknowledgments

We thank Dr. Robert Benezra and Dr. Jasminde Weinstein for Mad2 and Cdc20 antibodies, respectively. We are also grateful to Drs. Rulong Shen and Chung-Xiong Wang for discussions and valuable input about mouse histology. We also thank Dr. C. Clifford Conaway for reading the manuscript.

References

Slippage of Mitotic Arrest and Enhanced Tumor Development in Mice with *BubR1* Haploinsufficiency

Wei Dai, Qi Wang, Tongyi Liu, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/2/440

Cited articles
This article cites 18 articles, 10 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/2/440.full#ref-list-1

Citing articles
This article has been cited by 58 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/64/2/440.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.