Integrin Fibronectin Receptors in Matrix Metalloproteinase-1–Dependent Invasion by Breast Cancer and Mammary Epithelial Cells

Yifeng Jia, Zhao-Zhu Zeng, Sonja M. Markwart, Korrenne F. Rockwood, Kathleen M. Woods Ignatowski, Stephen P. Ethier, and Donna L. Livant

Department of Radiation Oncology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan

ABSTRACT

Integrins contribute to progression in many cancers, including breast cancer. For example, the interaction of αβ₁ with plasma fibronectin causes the constitutive invasiveness of human prostate cancer cells. Inhibition of this process reduces tumorigenesis and prevents metastasis and recurrence. In this study, naturally serum-free basement membranes were used as invasion substrates. Immunoblotting was used to compare the roles of αβ₁ and αβ₃ fibronectin receptors in regulating matrix metalloproteinase (MMP)-1–dependent invasion by human breast cancer and mammary epithelial cells. We found that a peptide consisting of fibronectin PHSRN sequence, Ac-PHSRN-NH₂, induces αβ₁-mediated invasion of basement membranes in vitro by human breast cancer and mammary epithelial cells. PHSRN-induced invasion requires interstitial collagenase MMP-1 activity and is suppressed by an equimolar concentration of a peptide consisting of the LDV sequence of the fibronectin connecting segment, Ac-LHGPEILDPVST-NH₂, in mammary epithelial cells, but not in breast cancer cells. This sequence interacts with αβ₁, an integrin that is often down-regulated in breast cancer cells. Immunoblottingshowing that the PHSRN peptide stimulates MMP-1 production by serum-free human breast cancer and mammary epithelial cells and that the LDV peptide represses PHSRN-stimulated MMP-1 production only in mammary epithelial cells. Furthermore, PHSRN stimulates MMP-1 activity in breast cancer cells and mammary epithelial cells with a time course that closely parallels invasion induction. Thus, down-regulation of surface αβ₁ during oncogenic transformation may be crucial for establishment of the αβ₁-induced, MMP-1–dependent invasive phenotype of breast cancer cells.

INTRODUCTION

Integrins are a family of αβ heterodimeric receptors that mediate cell–matrix and cell–cell interactions and have important functions in cell migration, survival, and differentiation (reviewed in refs. 1 and 2). In addition to functioning in cellular adhesion to the extracellular matrix, integrins are known to mediate many diverse processes in- cell migration, survival, and differentiation (reviewed in refs. 1 and 2). Because fibronectin is found throughout the body, the proper regulation of αβ₁-mediated collagenase expression, and hence invasion, is very important. This is accomplished by another integrin fibronectin receptor, αβ₃. When fibronectin is intact, αβ₃ integrin interacts with the LDV sequence of the fibronectin connecting segment, LHGPEILDPVST, to repress αβ₁-mediated interstitial collagenase expression in adherent fibroblasts (15). Fragmentation of fibronectin by plasmin has been shown to de-repress αβ₁-mediated invasion during wound healing (16, 17); thus, an important attribute of αβ₁-induced invasion in normal cells is its regulation by αβ₃ integrin.

Although still expressing abundant surface αβ₁, metastatic prostate and breast cancer cells have low levels of surface αβ₁, relative to prostate and mammary epithelial cells (18, 19). Loss of surface αβ₁, which can result from oncogene overexpression in transformed mammary epithelial cells (19), causes constitutive invasiveness in the presence of the abundant pFn of blood, lymph, and interstitial fluid (20, 21). Because of its importance in breast cancer cell invasion and metastasis, we undertook this study to define the receptor–ligand interaction responsible for the invasive phenotype of metastatic breast cancer cells and to assess the role of interstitial collagenase matrix metalloproteinase (MMP)-1 in basement membrane invasion in vitro.

MATERIALS AND METHODS

Cell Culture. SUM-52 PE and MCF-10A cells were cultured in SF media, as described previously (22); whereas 5% serum was present in cultured SUM-149 PT and normal human mammary epithelial (HME) cells (23). When necessary, SUM-149 PT cells were serum-starved overnight before the addition of peptides.

Peptide Synthesis. NH₃-terminal acetylated, COOH-terminal amidated PHSRN and LDV peptides (Ac-PHSRN-NH₂ and Ac-LHGPEILDPVST-NH₂), their randomized sequence controls (Ac-HSPNR-NH₂ and Ac-PGVLSEP-HPTLID-NH₂), RGD peptide (Ac-GRGDSP-NH₂), and VKNEED peptide (Ac-VKNEED-NH₂) were synthesized using Fmoc/-butyl-9-fluorenylmethoxycarbonyl/-butyl protection strategies (24) at 25- and 100-μmol scales on a Rainin Symphony peptide synthesizer. COOH-terminally amidated peptides were synthesized on Rink resin. Anhydrous trifluoroacetic acid was used to remove side chain protecting groups and to cleave peptides from the resin. Peptides were precipitated with diethyl ether, purified by preparative
high-performance liquid chromatography, and lyophilized. Peptide purities were assessed by reverse-phase high-performance liquid chromatography and found to be 95% for Ac-PHRSN-NH2, 97% for Ac-HPERN-NH2, 93% for Ac-LHGEIPDVPST-NH2, 92% for Ac-PGVLSEHPTLD-NH2, 95% for Ac-GRGDSP-NH2, and 91% for Ac-VKNEED-NH2 (data not shown). Peptide structures were confirmed by mass spectrometry and amino acid analysis (data not shown) using standard methods (24). Residual trifluoroacetic acid was removed by gel permeation chromatography on Sephadex G-10 in 1 N acetic acid. Peptides were lyophilized and stored in the presence of a desiccant at −20°C until solubilization in phosphate-buffered saline at 1 mg/mL at the time of use.

Antibodies Used in Invasion Assays. P1D6 anti-α5β1, or P1B5 anti-αβ1 integrin function-blocking monoclonal antibodies (mAbs) (25, 26), from Oncogene Research Products (Boston, MA), were prebound to suspended cells in SF medium before peptide addition. Samples were 20,000 cells; 1 μg of Ac-PHSRN-NH2; 2 μg of Ac-PGVLSEHPTLD-NH2 per 20,000 cells. Residual trifluoroacetic acid was removed by gel permeation chromatography on Sephadex G-10 in 1 N acetic acid. Peptides were lyophilized and stored in the presence of a desiccant at −20°C until solubilization in phosphate-buffered saline at 1 mg/mL at the time of use.

Invasion Assays. Preparation of SU-ECM and in vitro SU-ECM invasion assays were performed with or without added FCS, as described previously (3, 6, 10). Plasma fibronectin-depleted (pFn) FCS was made using gelatin affinity chromatography, as described previously (6, 19, 21). Single-cell suspensions were made with 0.25% trypsin/EDTA (Gibco). Cell suspensions were rinsed by pelleting and resuspension in the appropriate medium before placement on SU-ECM invasion substrates. Invasion percentages and cellular viabilities were scored as described previously (3, 6, 10, 19). Peptides were added to the invasion assays by prebinding to suspended, rinsed cells for 5 minutes at room temperature. For assays demonstrating anti-MMP-1 inhibition of PHSRN-induced invasion, the concentration of Ac-PHSRN-NH2 in the assay medium was 1 μg/mL. Antibodies were prebound to suspended cells, as described above. Each invasion percentage is the ratio of the total number of single cells located in the interior, blastocoeelic cavities of the SU-ECM substrates to the total number of single cells adhering to both their exterior and interior surfaces, and is the result of three to four independent determinations involving the scoring of the positions of all individual cells adhering to the SU-ECM invasion substrates.

Fluorescence-Activated Cell Sorting. Fluorescence-activated cell sorting of SUM-52 PE and MCF-10A cells was performed as described previously (19), using anti-integrin α5 antibody (catalog no. 12077-012, Gibco) or anti-integrin α3 antibody (catalog no. 10901-011, Chemicon International Research Products) followed by fluorescein-conjugated donkey antimouse IgG (1:100; Chemicon International). Negative controls contained cells bound to fluorescein-conjugated donkey antimouse IgG without primary antibody.

SDS-PAGE and Immunoblotting. Each sample contained 2 × 105 adherent cells treated with the appropriate peptides for 16 hours at 37°C. The treatment groups were as follows: SF medium; SF medium + Ac-PHRSN-NH2; SF medium + Ac-LHGEIPDVPST-NH2; SF medium + Ac-HPERN-NH2 + Ac-LHGEIPDVPST-NH2; SF medium + Ac-HPERN-NH2 + Ac-PGVLSEHPTLD-NH2. All cells were rinsed, and 5 mL of fresh SF medium were added to each sample before peptide addition. Samples were treated as follows: 1 μg of Ac-PHRSN-NH2 per 20,000 cells (100 μg for 2 × 106 cells in 5 mL of medium); 2.5 μg of Ac-LHGEIPDVPST-NH2 per 20,000 cells; 1 μg of Ac-HPERN-NH2, 2.5 μg of Ac-LHGEIPDVPST-NH2 per 20,000 cells; or 1 μg of Ac-HPERN-NH2 and 2.5 μg of Ac-PGVLSEHPTLD-NH2 per 20,000 cells.

SUM-52 PE, SUM-149 PT, and MCF-10A cells were rinsed with PBS and lysed in ice-cold buffer [50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 2 mmol/L EGTA, and 1% Triton X-100] containing protease inhibitors (1× complete protease inhibitor mixture; Roche, Indianapolis, IN). The lysate was collected and centrifuged at 12,000 × g for 10 minutes at 4°C, and the resulting pellet was resuspended in SDS sample buffer [2% SDS, 62.5 mmol/L Tris-HCl (pH 6.8), and 10% glycerol]. The amounts of protein were measured for each sample using the Bio-Rad protein assay kit (catalog no. 500-0006; Bio-Rad, Richmond, CA) with albumin standards. Before electrophoresis, samples were brought to 5% (v/v) 2-mercaptoethanol and boiled for 5 minutes. To verify a rapid increase in latent and activated MMP-1 secreted into the SF medium after Ac-PHRSN-NH2 treatment, adherent cultures of 2 × 105 SUM-52 PE or SUM-149 PT breast cancer cells and 2 × 106 MCF-10A mammary epithelial cells in SF medium were treated with 1 μg of Ac-PHRSN-NH2 per 20,000 cells (100 μg in 5 mL of medium) for periods of time ranging from 1 hour to 6 hours. Media were collected and concentrated 50-fold using centrifugal filter devices (Amicon Ultra PL-10 device; 10,000 nominal molecular weight limit; Millipore, Bedford, MA), according to the manufacturer’s instructions. The quantitative consistency of the volume reduction was verified by using a micropipetting device for all media assayed.

For cell lysates, 30 μg of total protein per sample in SDS buffer were resolved on 10% polyacrylamide gels using a mini-PROTEAN II Electrophoresis Cell (Bio-Rad, Hercules, CA). Separated proteins were transferred onto polyvinylidene difluoride membranes (Millipore) using the submarine electrophoretic transfer unit in the same apparatus. Varying amounts (10, 5, 2.5, and 1.25 ng) of recombinant MMP-1 (catalog no. CC1031; Chemicon International) were combined with cytoskeletal actin and loaded on the same gel for generation of standard curves. Membranes were blocked for 1 hour in 0.1% (v/v) Tween 20 in PBS (PBS-T) containing 5% (w/v) nonfat dry milk and then incubated for 1 hour at room temperature with anti–MMP-1 mAb (clone COMY-4A2; Chemicon International) at a 1:5,000 dilution in blocking solution.

For the analysis of secreted MMP-1 levels by immunoblotting, identical volumes of concentrated media from PHRSN-treated and untreated cells were run on 10% polyacrylamide gels, as described above. Recombinant MMP-1 was diluted 3,000-fold and run in varying amounts on each gel as positive controls. Separated proteins were transferred onto polyvinylidene difluoride membranes as described above, and membranes were incubated overnight at 4°C with rabbit anti–MMP-1 polyclonal antibody (catalog no. AB806, Chemicon International) at a dilution of 1:1,000 in Tris-buffered saline with 0.05% Tween 20.

After incubation with the primary antibody, all membranes were washed three times in PBS-T and incubated for 1 hour with goat antimouse IgG antibody conjugated to horseradish peroxidase (Jackson Immunoresearch Laboratories, West Grove, PA) at a dilution of 1:5,000 in blocking solution. The membranes were then washed three times in PBS-T and processed for detection by enhanced chemiluminescence ECL reagent (Amersham, Arlington Heights, IL). The amounts of MMP-1 and actin from the cell lysates were quantified using Quantity One software (Bio-Rad, Hercules, CA) by comparison with the recombinant MMP-1 and actin standard curves generated from the same blot. Then the amount of MMP-1 was normalized to the amount of total cellular actin in each sample from cell lysates. In immunoblots used to compare MMP-1 levels in the media of PHRSN-treated and untreated cells, equal volumes of concentrated media were loaded without normalization of protein content.

Matrix Metalloproteinase-1 Activity Assay. Adherent SUM-149 PT, SUM-52 PE, or MCF-10A cells were treated for various times with Ac-PHRSN-NH2 at a concentration of 1 μg per 20,000 cells in SF medium, and untreated controls were performed in parallel. Culture media were concentrated 10-fold by centrifugation through Centricon YM-10 filter units (Fisher Scientific Company, L.L.C., Pittsburgh, PA), according to the manufacturer’s instructions. The quantitative consistency of the volume reduction was verified by using a micropipetting device for all media assayed. MMP-1 activity was measured in concentrated media with the Biotrak MMP-1 activity assay system (Amersham Pharmacia Biotech Inc., Piscataway, NJ), according to the manufacturer’s instructions. The assays were read at 405 nm in a microtiter plate spectrophotometer (Dynatech Laboratories, Inc., Chantilly, VA). A standard curve was generated from a set of known aliquots of MMP-1 in the following concentration range: 0, 0.10, 0.20, 0.40, 0.80, and 1.60 ng/mL. Each time point was assayed at least three times in triplicate, and mean MMP-1 activities were determined with their first SDs. The results were analyzed using Student’s t test.
RESULTS

Invasion Induction by the PHSRN Peptide. The effects of the PHSRN peptide on invasion by HME and MCF-10A mammary epithelial cells and SUM-149 PT and SUM-52 PE breast cancer cells were evaluated on SU-ECM invasion substrates. As shown in Fig. 1A, the blocked PHSRN peptide stimulated invasion by HME with a log-linear dose-response relationship at concentrations from 10 ng/mL to 1 μg/mL (17 nmol/L to 1.7 μmol/L), whereas the scrambled, blocked PHSRN peptide, Ac-HSPNR-NH₂, was without detectable activity at 17 μmol/L. In addition to PHSRN (32), α₁β₁ interacts with the RGD (8) and VKNEED sequences of the fibronectin cell binding domain (33). Thus, the acetylated, amidated derivatives of these peptides were also tested for invasion induction. As shown in Fig. 1A, neither GRGDSP nor VKNEED induced HME invasion at concentrations as high as 10 μg/mL. Very similar results were obtained for MCF-10A cells (Fig. 1B). In addition, the PHSRN peptide was equally effective at stimulating invasion by MCF-10A and HME cells, irrespective of the presence of FCS. Furthermore, no invasion occurred in the absence of the PHSRN peptide, either in SF medium or in the presence of FCS (data not shown).

Under SF conditions, the PHSRN peptide was equally effective at stimulating invasion by SUM-149 PT breast cancer cells, whereas the HSPNR, RGD, and VKNEED peptides lacked activity, as shown in Fig. 1C. Quantitatively similar results were obtained for SUM-52 PE breast cancer cells in SF medium, as shown in Fig. 1D. Thus, the PHSRN peptide was as effective at stimulating invasion by MCF-10A and HME cells, irrespective of the presence of FCS. Furthermore, no invasion occurred in the absence of the PHSRN peptide, either in SF medium or in the presence of FCS (data not shown).

To assess the role of α₁β₁ in repressing serum-induced invasion, HME and MCF-10A cells were treated with blocking anti-α₁β₁ mAb before placement on SU-ECM invasion substrates. Fig. 2 shows the relative percentages of invasive HME and MCF-10A when the cells were prebound with increasing amounts of P1H4 or P4C2 blocking anti-α₁β₁ mAb (27, 28). Both P4C2 and P1H4 mAbs stimulated SU-ECM invasion by HME and MCF-10A cells in the presence of FCS, whereas their corresponding isotype control antibodies did not.

Because the P4C2 epitope specifically includes the region of α₁β₁ that binds the LDV sequence (28, 34) to repress serum-induced invasion, a P1H4 and P4C2 mAbs induce mammary epithelial cell invasion in FCS-containing medium. X axis, log antibody concentration (in μg/mL). Y axis, mean percentage of invasive cells, relative to positive controls containing 1 μg/mL Ac-PHRSRN-NH₂. Invasion by either HME or MCF-10A cells did not occur in the absence of anti-α₁β₁ mAb. ○, HME cells bound to purified P1H4 mAb; ⊘, MCF-10A cells bound to purified P1H4 mAb; ■, HME cells bound to P4C2 ascites fluid; □, HME cells bound to P1H4 isotype control; ●, MCF-10A cells bound to P1H4 isotype control; □, HME cells bound to P4C2 isotype control. Symbols ■ and □ reflect the mAb concentration range of the P4C2 ascites fluid. Vertical bars, first SDs. B, dependence of P4C2 anti-α₁β₁–induced invasion on pFn. X axis, mean percentages of invasive cells, relative to positive controls performed in parallel: percentage of invasive cells in the presence of FCS after binding to 100 μg/mL P4C2 mAb. Y axis, media components. □ and grey 0, HME; ■ and black 0, MCF-10A cells. SF, SF invasion assay medium; FCS, 5% FCS in invasion assay medium, P4C2 prebound in SF medium; FCS-2, 5% FCS in invasion assay medium and during P4C2 prebinding; FCS-3, 5% FCS in invasion assay medium and during isotype control prebinding; pFn, 4 μg/mL pFn in invasion assay medium and in P4C2 prebinding; pFn+4, 4 μg/mL pFn in SF medium in invasion assays and in P4C2 prebinding. Vertical bars, first SDs.

In contrast, whereas SUM-52 PE and SUM-149 PT cells express abundant surface α₁β₁, fluorescence-activated cell-sorting analysis shows that they express very low levels of α₁β₁. To assess the role of α₁β₁ in repressing serum-induced invasion, HME and MCF-10A cells were treated with blocking anti-α₁β₁ mAb before placement on SU-ECM invasion substrates. Fig. 2 shows the relative percentages of invasive HME and MCF-10A when the cells were prebound with increasing amounts of P1H4 or P4C2 blocking anti-α₁β₁ mAb (27, 28). Both P4C2 and P1H4 mAbs stimulated SU-ECM invasion by HME and MCF-10A cells in the presence of FCS, whereas their corresponding isotype control antibodies did not.

Because the P4C2 epitope specifically includes the region of α₁β₁ that binds the LDV sequence (28, 34) to repress α₁β₁-mediated

<table>
<thead>
<tr>
<th>Cell line</th>
<th>α₁</th>
<th>α₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>HME</td>
<td>54</td>
<td>62</td>
</tr>
<tr>
<td>MCF-10A</td>
<td>58</td>
<td>30</td>
</tr>
<tr>
<td>SUM-52 PE</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>SUM-149 PT</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

NOTE. As determined by fluorescence-activated cell-sorting analysis. * Percentage increase in the amount staining over negative control. † Data from ref. 19.
INTEGRIN FIBRONECTIN RECEPTORS IN BREAST CANCER INVASION

MMP-1 expression (15), the P4C2 mAb was tested for its ability to stimulate SU-ECM invasion by HME and MCF-10A cells while the presence of FCS and/or pFn was varied systematically in the media of the invasion assays. Antibody prebinding occurred in either SF medium, FCS-containing medium, or pFn-depleted FCS-containing medium, as indicated. As shown for HME and MCF-10A in Fig. 2B, the P4C2 anti-α5β1 mAb was unable to stimulate invasion in SF medium, but it stimulated invasion by HME and MCF-10A cells in FCS-containing medium. Also, P4C2-stimulated invasion was specifically dependent on pFn because no invasion occurred if P4C2-bound HME or MCF-10A cells were incubated on SU-ECM substrates in pFn−/FCS. The addition of 4 μg/mL pFn, the concentration found in 10% FCS (20, 21), to medium containing pFn−/FCS (pFn−/FCS + pFn) restored the ability of the P4C2 mAb to stimulate HME and MCF-10A invasion. Also, the addition of 4 μg/mL pFn to SF medium (SF + pFn) was sufficient to permit P4C2-induced invasion. Thus, pFn appeared to be both necessary and sufficient for P4C2 anti-α5β1−induced invasion by both HME and MCF-10A cells.

Repression of PHSRN-Induced Invasion by the LDV Sequence. An acetylated, amidated peptide containing the LDV sequence (Ac-LHGPEILDVPST-NH2) was tested for its ability to repress PHSRN-induced invasion by normal and neoplastic breast epithelial cells. Because a single copy of each sequence is found in the fibronectin monomer (32, 34), the PHSRN and LDV peptides were tested at equimolar concentrations. Fig. 3A shows that whereas PHSRN stimulated HME invasion of the SU-ECM, the presence of an equimolar concentration of the LDV peptide prevented PHSRN-induced invasion. Furthermore, inhibition was sequence specific because the scrambled LDV peptide (Ac-PGVLSEHPTLID-NH2) had no inhibitory effect on PHSRN-induced invasion. Analogous results were obtained for MCF-10A cells (Fig. 3B). Thus, the ability of the LDV peptide to inhibit PHSRN-induced HME and MCF-10A invasion is consistent with the expression of abundant surface α5β1 and α6β1 fibronectin receptors by these cells (ref. 19 and this study). In contrast, as shown in Fig. 3C and D, the LDV peptide had no inhibitory effect on PHSRN-induced invasion by either SUM-149 PT or SUM-52 PE cells. The failure of the LDV sequence to inhibit PHSRN-induced SUM-149 PT and SUM-52 PE invasion is likewise consistent with the expression of surface α5β1, but not α6β1, by these breast cancer cell lines.

Role of Matrix Metalloproteinase-1 in α5β1-Mediated Invasion. The role of MMP-1 in PHSRN-induced invasion was tested on SF SU-ECM invasion substrates in the presence of 100 ng/mL PHSRN peptide and increasing concentrations of blocking COMY-4A2 anti-MMP-1 mAb (29). As shown in Fig. 4A, the anti-MMP-1 mAb was equally effective at blocking PHSRN-induced invasion by all four cell types. Complete inhibition of invasion was achieved by a concentration of 100 to 300 μg/mL, whereas the isotype control antibody (300 μg/mL) failed to significantly affect invasion. In contrast to the role of MMP-1, results of invasion assays using inhibitory anti–MMP-2 (CA-4001) and anti–MMP-9 (GE-213) mAbs (30, 31) suggested that neither MMP-2 nor MMP-9 activities function in PHSRN-induced invasion of SU-ECM, although zymography of SF media from PHSRN-treated and untreated MCF-10A, SUM-52 PE, and SUM-149 PT cells shows that all of these cell lines secrete activated forms of both MMP-2 and MMP-9 and that the levels of both gelatinases are unchanged by exposure to the PHSRN peptide (data not shown). The anti-MMP-1 mAb was also equally effective at inhibiting serum-induced invasion by SUM-52 PE and SUM-149 PT cells (Fig. 4B). Although SUM-52 PE and SUM-149 PT cells, as well as MCF-10A cells, secrete abundant MMP-2 and MMP-9 in the presence of serum (data not shown), insignificant inhibition of serum-induced invasion was observed with high concentrations of the anti–MMP-2 and anti–MMP-9 mAbs. Thus, these data demonstrate that MMP-1 also functions specifically in serum-induced invasion by SUM-149 PT and SUM-52 PE cells. Furthermore, the specific role of MMP-1 in serum-induced invasion was also confirmed for HME and MCF-10A mammary epithelial cells because increasing concentrations of anti-MMP-1 mAb reduced anti-α5β1-induced invasion, whereas anti-MMP-2 and anti–MMP-9 mAbs had no significant effect (Fig. 4C).

Stimulation of Matrix Metalloproteinase-1 Accumulation by the PHSRN Peptide. Adherent, SF breast cancer and mammary epithelial cells were treated with PHSRN and/or LDV peptides, and the cells were lysed, immunoblotted, and probed with anti–MMP-1 rabbit antiserum to compare the levels of cell-associated MMP-1. Immunoblots were run four times for each cell type, and relative band densities were determined for each treatment. Nearly all MMP-1 appeared to migrate in a single band of Mr 52,000, suggesting that cell-associated MMP-1 is predominantly the latent form. Mean MMP-1 band densities with first SDs are shown in A–C of Fig. 5, as follows: Fig. 5A, MCF-10A; Fig. 5B, SUM-52 PE; and Fig. 5C, SUM-149 PT. As shown in Fig. 5A, PHSRN stimulated MMP-1 accumulation in MCF-10A cells, whereas equimolar LDV peptide did not. However, when mixed with the PHSRN peptide, LDV blocked the accumulation of MMP-1, whereas the scrambled LDV peptide failed to reduce PHSRN-induced MMP-1 accumulation. These results are consistent with the reported role of the α5β1 receptor in fibroblasts (15). Moreover, consistent with the lack of surface α5β1 expression in SUM-52 PE and SUM-149 PT cells, the LDV peptide had no inhibitory effect on PHSRN-induced MMP-1 accumulation in these breast cancer cells (Fig. 5B and C). Fig. 5D shows an example of a typical blot used for this analysis.

Although MMP-1 has been shown to associate with surface α5β1 integrin collagen receptor to achieve activation and facilitate migration on collagen (35) and would thus be detectable in cell lysates, MMP-1 should also be secreted into the media of adherent cell

Fig. 3. Repression of PHSRN-induced mammary epithelial cell but not breast cancer cell invasion by the blocked LDV peptide. A, HME cells; B, MCF-10A cells; C, SUM-149 PT cells; D, SUM-52 PE cells. X axes, peptide treatment. Y axes, percentage of invasive cells. Mean percentages of invasive cells, relative to mean percentages of invasive cells in the presence of 100 ng/mL Ac-PH SRN-NH2 (in SF medium), are plotted. Media components were as follows: SF, no peptide in SF medium; PHSRN, 100 ng/mL Ac-PHSRN-NH2 in SF medium; PHSRN LDV, 100 ng/mL Ac-PHSRN-NH2 and 250 ng/mL Ac-LHGPEILDVPST-NH2 in SF medium; PHSRN acc. LDV, 100 ng/mL Ac-PH SRN-NH2 and 250 ng/mL Ac-PGVLSEHPTLID-NH2 in SF medium. Vertical bars, first SDs.
cultures treated with the PHSRN peptide. To test whether PHSRN treatment could cause a rapid increase in both the latent and activated forms of MMP-1 in the medium, adherent SF cultures of MCF-10A, SUM-52 PE, and SUM-149 PT cells were treated for 1 hour to 6 hours with the PHSRN peptide or were left untreated. All treated and untreated cultures were run in triplicate. Media from PHSRN-treated and untreated cultures were concentrated, and equal volumes of the concentrated media from each sample were analyzed by immunoblotting for the presence of MMP-1. As shown in Fig. 6A, 2 hours of PHSRN treatment induced significant increases in the mean levels of both latent and activated MMP-1 in the media from adherent MCF-10A, SUM-52 PE, and SUM-149 PT cells, relative to the amounts in the absence of antibody.

Fig. 4. Inhibition of α5β1-induced invasion by blocking anti–MMP-1 mAb. A, inhibition of Ac-PHSRN-NH2-induced invasion. B, inhibition of FCS-induced invasion. C, inhibition of P142-induced invasion.
Fig. 6. The PHSRN peptide Ac-PHSRN-NH₂ induces increased levels of both latent and activated MMP-1 in the SF media of adherent MCF-10A, SUM-52 PE, and SUM-149 PT cells (A). A, amounts of latent and activated MMP-1 in equal volumes (40 μL) of concentrated media from PHSRN-treated, adherent cultures, relative to the amounts from untreated cultures. X axis, cell types; Y axis, relative amount of MMP-1. B, latent MMP-1. C, activated MMP-1. Dotted line indicates the relative MMP-1 level in untreated controls. Examples of MMP-1 bands on immunoblots of PHSRN-treated and untreated SF media from adherent cultures of MCF-10A, SUM-149 PT, and SUM-52 PE cells. Media: MCF-10A, media from MCF-10A cells; SUM-52 PE, media from SUM-52 PE cells; SUM-149 PT, media from SUM-149 PT cells. PHSRN: +, media from cells treated with Ac-PHSRN-NH₂ at a concentration of 1 μg/mL per 20,000 cells; −, media from parallel cultures of untreated cells; std., purified MMP-1 standard. The position of the M₁, 50,000 marker is indicated on each panel (arrow). We also found, through the use of blocking anti-MMP-1, anti-MMP-2, and anti-MMP-9 mAbs, that PHSRN- and serum-induced invasion of basement membranes by mammary epithelial cells and breast cancer cells appears to be a MMP-1–dependent process. Consistent with the apparent dependence of invasion on MMP-1, it was also observed that PHSRN treatment induces a rapid increase in both cell-associated and secreted MMP-1 protein, as well as in MMP-1 activity in the medium. Furthermore, PHSRN-induced MMP-1 accumulation in mammary epithelial cells, but not in breast cancer cells, is prevented by the LDV peptide ligand of α₁β₁ integrin. Also, the rapid increase in PHSRN-induced MMP-1 activity closely parallels that of basement membrane invasion. A similarly rapid induction of MMP-1 expression has also been observed in osteoblasts treated with platelet-derived growth factor (37). Thus, MMP-1 may play an important role in α₁β₁-mediated invasion in breast cancer cells, and its up-regulation is likely a consequence of reduced levels of surface α₁β₁ fibronectin receptor relative to mammary epithelial cells. Because reduced levels of surface α₁β₁ integrin also give rise to α₁β₁-mediated, serum-dependent invasiveness in prostate cancer (6), this could be a general mechanism contributing to metastasis.

MMPS carry out most of the connective tissue destruction associated with normal and immortalized mammary epithelial cells, as well as metastatic breast cancer cells. Although the intact fibronectin of serum does not induce mammary epithelial cell invasion, due to α₁β₁ expression, invasion is induced if α₁β₁ is inhibited with a blocking antibody. Furthermore, α₁β₁ repression of α₁β₁-mediated invasion occurs if PHSRN-treated mammary epithelial cells are also exposed to a peptide consisting of the LDL sequence (34) of the fibronectin connecting segment. Moreover, in SF breast cancer cells lacking α₁β₁ on their surfaces, the LDV peptide fails to repress PHSRN-induced invasion. These results are consistent with the down-regulation of α₁β₁ on the surfaces of invasive breast cancer cells as well as in transformed mammary epithelial cells overexpressing the ERBB-2 oncogene (19) and in prostate cancer cells (18). They suggest that α₁β₁ functions to regulate α₁β₁-mediated invasion and that the loss of surface α₁β₁ may be an important event in the development of the invasive phenotype in cancer.

Fig. 7. PHSRN up-regulates MMP-1 activity in parallel with the PHSRN-induced cell invasion capacity. A, quantitation of MMP-1 activity in media of adherent cultures of SUM-52 PE, SUM-149 PT, and MCF-10A cells that were treated with Ac-PHSRN-NH₂ at 0.22 ng/mL. X axis, mean percentage of invasive cells; Y axis, concentration of active interstitial collagenase MMP-1 (ng/mL), as interpolated from a standard curve. Background MMP-1 levels in untreated cells were as follows: MCF-10A, 0.21 ng/mL; SUM-149 PT, 0.22 ng/mL; and SUM-52 PE, 0.23 ng/mL. These values were subtracted from the points plotted. B, SUM-149 PT cells; ○, SUM-52 PE cells; ○, MCF-10A cells. Means and first SDs are shown. B, time course of Ac-PHSRN-NH₂–induced invasion of SUM-149 PT, SUM-52 PE, and MCF-10A cells. X axis, hours on SU-ECM invasion substrates. Y axis, mean percentage of invasive cells, relative to the percentages of invasive cells after 24 hours. □, SF SUM-149 PT cells treated with 1 μg/mL Ac-PHSRN-NH₂; ■, SF SUM-149 PT cells in 0 μg/mL Ac-PHSRN-NH₂; □, SF SUM-52 PE cells in 0 μg/mL Ac-PHSRN-NH₂; ○, SF SUM-52 PE cells treated with 1 μg/mL Ac-PHSRN-NH₂; ■, SF SUM-149 PT cells in 0 μg/mL Ac-PHSRN-NH₂; □, SF MCF-10A cells in 0 μg/mL Ac-PHSRN-NH₂. Means and first SDs are shown.
with cancer invasion and metastasis (reviewed in ref. 38). Zymography, immunoblotting, and immunohistochemistry have demonstrated increased levels of MMPs and MMP activities in human breast cancer, relative to normal breast tissues (39). However, the role of interstitial collagenses in tumor invasion and metastasis has only recently been appreciated. It has been suggested that collagenase expression is a marker for tumor progression in breast cancer, as well as in many other types of cancers (40, 41). Zymography of human breast carcinomas and normal breast tissues has also shown significant MMP-1 levels in most invasive cancers, in contrast to normal breast tissues (42). Immunohistochemistry of sectioned, invasive breast tumors and their surrounding tissues has also shown a significant correlation of MMP-1 expression with tumor stage (39). Furthermore, in most invasive breast carcinomas, in situ hybridization has demonstrated high levels of MMP-1 transcripts in both breast cancer cells and stromal cells at their invasive fronts (43). In fact, MMP-1 is also up-regulated in human breast cancer cells cocultured with fibroblasts (44), suggesting that direct interactions between these two cell types can lead to increased collagenase expression in breast cancer. In contrast, although MMP-2 transcripts have been found at high levels in invasive breast carcinomas, MMP-2 mRNA is also up-regulated in preinvasive lesions, suggesting that MMP-1 is specifically up-regulated as breast cancers become invasive (43). Interestingly, it has also been shown that interstitial collagenase also cleaves entactin, thus contributing directly to the degradation of basement membrane and hence potentially contributing to the transiting of epithelial barriers by tumor cells (45), in addition to stromal proteolysis.

In other cancers, such as colon and esophageal cancers, immunohistochemical detection of MMP-1 expression is also associated with increased invasive potential and poor prognosis (46, 47). Moreover, increased MMP-1 expression in tumor cells is significantly correlated with the depth of tumor invasion, angiogenesis, lymphangiogenesis, and the presence of local and distant metastases (48). Also, a transcription-enhancing point mutation in the MMP-1 gene promoter, which correlates with MMP-1 overexpression in tumor cells, is associated with increased malignancy in breast and lung cancer (49, 50). Thus, whereas many MMPs contribute to tumor angiogenesis and metastasis, interstitial collagenase may be critical for the development of the invasive phenotype during cancer progression.

REFERENCES

Integrin Fibronectin Receptors in Matrix Metalloproteinase-1–Dependent Invasion by Breast Cancer and Mammary Epithelial Cells

Yifeng Jia, Zhao-Zhu Zeng, Sonja M. Markwart, et al.

Cancer Res 2004;64:8674-8681.