Automated Quantitative Analysis of HDM2 Expression in Malignant Melanoma Shows Association with Early-Stage Disease and Improved Outcome

Aaron J. Berger, Robert L. Camp, Kyle A. DiVito, Harriet M. Kluger, Ruth Halaban, and David L. Rimm

Departments of Pathology, Medicine, and Dermatology, Yale University School of Medicine, New Haven, Connecticut

ABSTRACT

The incidence of cutaneous malignant melanoma continues to increase every year, and this disease remains the leading cause of skin cancer death in industrialized countries. Despite the aggressive nature of advanced melanoma, there are no standard biological assays in clinical usage that can predict metastasis. This may be due, in part, to the inadequacy of reproducible assessment of protein expression using traditional immunohistochemistry. We have previously described a novel method of quantitative assessment of protein expression (AQUA) with the continuity and accuracy of an ELISA assay but with maintenance of critical spatial information. Here, we modify this technology for the evaluation of protein expression in melanoma. Using a tissue microarray cohort of 405 melanoma lesions and 17 normal skin samples, we analyzed expression of HDM2, the human homologue of murine double minute 2 with automated quantitative analysis. We show that expression levels in the nuclei are significantly higher in primary melanomas than in metastatic lesions. Furthermore, high levels of expression are predictive of better outcome. This study demonstrates that quantitative assessment of protein expression is useful in melanoma to validate potential tissue biomarkers and suggests that human homologue of murine double minute 2 may be a valuable prognostic tool for management of malignant melanoma.

INTRODUCTION

Malignant melanoma is currently the malignancy with the most rapid increase in incidence in the United States (1, 2). The fifth most common cancer (3), melanoma is the most common fatal malignancy among young adults (4), with 53,600 new cases diagnosed in 2002 (5). Current estimates predict that 1 in 71 individuals will develop melanoma during their lifetime, up from an initial estimate of 1 in 600 in 1960 and 1 in 150 in 1985 (1).

A number of clinical and pathological factors have been described as markers of prognosis in cutaneous malignant melanoma; however, there are currently no routinely used, broadly accepted molecular, or immunohistochemical markers to define subsets of this neoplasm (6) or predict outcome. The current methods of prognosis in cutaneous melanoma have not changed much since the 1970s when Breslow (7) and Clark et al. (8) first published reports indicating the importance of dermal invasion in prognosis. The models of Breslow and Clark remain the most powerful and reliable predictors of survival in primary melanoma (9), despite the molecular revolution of the past 30 years.

To develop a better understanding of melanoma biology and development, as well as discover molecular markers of potential benefit in melanoma prognosis, a number of studies have evaluated immunohistochemical markers on an individual basis and in numerous relatively small cohorts. Very few, however, have been performed on melanoma tissue microarrays (10, 11), and none have made use of quantitative analysis. Differences in expression levels in the tissues have been limited to those that are easily detectable by the human eye. The current immunohistochemical technology is susceptible to high levels of inter- and intraobserver variability and fraught with variability as a function of the lack of standardization of antibody-based techniques (12–14).

Tissue microarrays provide a highly efficient and economical way to evaluate hundreds of tumors on a single slide (15). The use of tissue microarray technology eliminates the slide-to-slide variability inherent to immunohistochemical methods because all tissues are present on the same slide and are exposed to the same experimental conditions. The use of archival tissues allows for a retrospective study with the benefit of long-term patient follow-up. In addition to improving our understanding of key molecular events in cancer progression, tissue microarrays provide an excellent mechanism for the discovery of outcome predictor models, particularly when coupled with quantitative analysis.

We have developed a system for compartmentalized, automated quantitative analysis of histologic sections (16). This system, called AQUA, provides highly reproducible analysis of target signal expression in tissues on a continuous scale while preserving spatial information, particularly subcellular localization. Quantitative analysis enables precise discrimination of expression levels in tissues, providing measurements on a continuous scale not previously attainable by traditional or manual scoring methods. The use of this technology was originally described in colon cancer (16) and has since been applied to breast (17) and prostate (18) carcinoma. Briefly, the system identifies and tags tumor tissue within each histoslot based on the expression of tissue-specific proteins such as cytokeratin in carcinomas and then evaluates the expression level of a target antigen within the tumor mask and inside user-defined subcellular compartments. For this study, the automated quantitative analysis system was modified to accommodate melanoma by substituting S100 protein for cytokeratin (Fig. 1). A review of the pertinent literature demonstrated that S100 is expressed in 97.4% of all melanomas (19), and some investigators suggest this number may exceed 98% (20). Here, we validate the technology by assessing the expression of human homologue of murine double minute 2 (HDM2) and demonstrate its use in evaluating a prognostic marker in a large retrospective cohort.

HDM2 is a transcriptional target of the tumor suppressor protein p53 that, in turn, marks p53 for degradation (21–23). It is predicted that disruption of this negative feedback loop, through either p53 mutation or overexpression of HDM2, would be a negative prognostic marker for cancer progression. The association between HDM2 and clinical outcome has been investigated intensively in a number of cancers (24) with the anticipation of using HDM2 as a clinical prognostic marker. However, only a handful of studies have evaluated HDM2 expression in melanoma (10, 25, 26). In the largest study, Polsky et al. (27) demonstrated that overexpression of HDM2 in a cohort of 134 melanoma patients unexpectedly correlated with improved clinical outcome, having a statistically significant association...
with longer disease-free and overall survival. The quantitative assay we describe in this work confirms and extends these observations.

MATERIALS AND METHODS

Tissue Microarray Construction. The tissue microarray was constructed as previously described (28, 29). A total of 570 tissue cores representing 542 total melanoma cases and a small series of controls measuring 0.6 mm were spaced 0.8 mm apart on a single glass slide. The cohort was constructed from formalin-fixed, paraffin-embedded tissue blocks obtained from the archives of the Department of Pathology at Yale University School of Medicine. A pathologist examined each case to select the region for inclusion in the tissue microarray. Core biopsies from the specimens were placed on the tissue microarray with a Tissue Microarrayer (Beecher Instruments, Sun Prairie, WI). The tissue microarrays were then cut to 5-μm sections and placed on glass slides with the adhesive tape transfer system (Instumedics, Inc., Hackensack, NJ) with UV cross-linking. The specimens were all drawn from archives of tumors resected between 1959 and 1994, with a follow-up range of 2 months and 38 years (median follow-up time, 60 months). The cohort characteristics are demonstrated in Table 1. For the primary cutaneous lesions (269), a single reviewer measured Breslow depth, Clark level, microscopic satellites, tumor-stromal ratio, and stage movement with an Olympus BX51 microscope with automated x, y, and z stage movement with an Olympus Motorized Reflected Fluorescence System and software (IP lab v3.54, Scanalytics, Inc., Fairfax, VA) equipped with Cooke Sensicam QE High Performance camera. Low-power images of the microarray were stitched together with multiple low-resolution images of the microarray (64 × 64 pixel) at ~7-μm resolution. Histospots were identified with the signal from 4',6-diamidino-2-phenylindole and/or 100 tags. Rows and columns of the histospots were then identified, missing histospots filled in, allowing each histospot to be identified by its coordinates, and recorded based on its position in the grid. Subsequently, monochromatic, high-resolution (1024 × 1024 pixel, 0.5-μm resolution) images were obtained of each histospot, both in the plane of focus, and 8 μm below it, and recorded in an image stack as bitmaps. A resolution of 0.5 μm is suitable for distinguishing between large subcellular compartments such as the cell membrane/cytoplasm and nuclei. Images were obtained with a pixel intensity dynamic range of 0 to 255.

Immunohistochemistry. The tissue microarray slide was stained as described previously (16). In brief, the slides were deparaffinized by rinsing with xylene, followed by two changes of 100% ethanol and two changes of 95% ethanol. Antigen retrieval was performed in a pressure cooker containing 1 mmol/L EDTA (pH 7.5), and endogenous peroxidase activity was blocked with 2.5% hydrogen peroxide in methanol for 30 minutes at room temperature. The slide was washed with Tris-buffered saline (TBS), incubated in 0.3% BSA/1× TBS for 30 minutes at room temperature to reduce nonspecific background, and then stained with the a combination of anti-MDM2 mouse monoclonal antibody 1B10 (1:100, Novocastra, Ltd., Newcastle upon Tyne, United Kingdom) plus anti-S100 rabbit polyclonal (1:6000, DAKO Corporation, Carpinteria, CA) diluted in BSA/TBS at 4°C overnight. The 1B10 monoclonal antibody was chosen because it was validated by numerous studies in which HDM2 expression was assessed in tumors relative to normal tissues (30–32). The secondary antibodies Alexa 488-conjugated goat anti-rabbit (1:100, Molecular Probes, Eugene, OR) plus Envision antimmouse (neat; DAKO) diluted in BSA/TBS were applied for 1 hour at room temperature. 4',6-Diamidino-2-phenylindole was included with the secondary antibodies to visualize nuclei. The slide was washed with BSA/TBS (three times for 5 minutes) and then incubated with Cy5-tyramide (Perkin-Elmer Life Science Products, Boston, MA) and activated by horseradish peroxidase, resulting in the deposition of numerous covalently associated Cy5 dyes immediately adjacent to the horseradish peroxidase-conjugated secondary antibody. Cy5 was used because its emission peak (red) is well outside of the green-orange spectrum of tissue autofluorescence. The slides were sealed with coverslips with an antifade-containing mounting medium (with 0.6% n-propyl gallate).

Automated Image Acquisition and Analysis. The AQUA automated image acquisition and analysis was performed as described previously (16). Brieﬂy, images of the tissue microarray were captured through an Olympus BX51 microscope with automated x, y, and z stage movement with an Olympus Motorized Reflected Fluorescence System and software (IP lab v3.54, Scanalytics, Inc., Fairfax, VA) equipped with Cooke Sensicam QE High Performance camera. Low-power images of the microarray were stitched together with multiple low-resolution images of the microarray (64 × 64 pixel) at ~7-μm resolution. Histospots were identiﬁed with the signal from 4',6-diamidino-2-phenylindole and/or S100 tags. Rows and columns of the histospots were then identiﬁed, missing histospots ﬁlled in, allowing each histospot to be identiﬁed by its coordinates, and recorded based on its position in the grid. Subsequently, monochromatic, high-resolution (1024 × 1024 pixel, 0.5-μm resolution) images were obtained of each histospot, both in the plane of focus, and 8 μm below it, and recorded in an image stack as bitmaps. A resolution of 0.5 μm is suitable for distinguishing between large subcellular compartments such as the cell membrane/cytoplasm and nuclei. Images were obtained with a pixel intensity dynamic range of 0 to 255.
A visual demonstration of the AQUA process is depicted in Fig. 1. For each histospot, areas of tumor are distinguished from stromal elements by creating a tumor mask from the S100 protein signal visualized under the Alexa 488 fluorophore. The tumor mask is determined by gating the pixels in this image in which an intensity threshold is set by visual inspection of histospots (ranging from lowest to highest intensity), and each pixel is recorded as “on” (tumor) or “off” (nontumor) based on the threshold. In addition, small objects (<50 pixels) are removed and small holes filled. The 4',6-diamidino-2-phenylindole image, used to identify the nuclei, is subjected to rapid exponential subtraction algorithm, which improves signal-to-noise ratio by subtracting the out-of-focus image from the in-focus image to clearly define the nuclear compartment (16). Removal of the pixels assigned to the nuclear compartment from the tumor mask provides a designation of the cytoplasmic compartment. After application of rapid exponential subtraction algorithm, the signal intensity of the target antigen, acquired under the Cy5 signal (HDM2), is scored on a scale of 0 to 255, and the AQUA score within the subcellular compartments (i.e., nucleus, cytoplasm) is calculated by dividing signal intensity by the area of the specified compartment. This score has three significant figures and is directly proportional to the number of molecules per unit area.

Data Analysis. Histospots containing <10% tumor as assessed by mask area were excluded from further analysis. Previous studies have demonstrated that the staining from a single histospot provides sufficient representative sample to judge outcomes (33, 34). In the case of HDM2, staining was always nuclear; analyses using the nuclear-specific automated quantitative analysis score of HDM2 yielded parallel results to analyses using the total automated quantitative analysis score. Univariate survival analyses were assessed using the Kaplan-Meier method for nominal variables and the Cox regression method for continuous variables. Multivariate analyses were performed with the Cox proportional hazards model. Mantel-Cox log-rank score was used to assess statistical significance. Analyses were performed with JMP 5.0.1 (SAS Institute, Inc., Cary, NC). Patients were deemed uncensored if they died of melanoma within 30 years of their initial date of diagnosis.

RESULTS

Validation of Microarray Cohort. We sought to validate our tissue microarray cohort of 542 melanomas with several traditional histopathological markers of malignancy. As previously described (28) and demonstrated in Table 1, unique patient-specific cases on the tissue microarray include 287 primary specimens, 233 metastatic specimens, and 20 local recurrences. Using univariate analysis of long-term disease-related survival, primary versus metastatic status predicted improved survival (P < 0.0001; Fig. 2A) For the primary cutaneous specimens, we found that tumor depth (Breslow and Clark; P < 0.0001), ulceration status (P = 0.0028), microscopic satellitosis (P < 0.0001), tumor-infiltrating lymphocytes (P = 0.0007), and histologic subtype were all significant predictors of survival (Fig. 2B–F).

Automated Analysis of HDM2 Expression in Melanoma. After image acquisition for each histospot, automated quantitative analysis...
was performed to establish the intensity of HDM2 expression per unit area within each histospot (Fig. 1). HDM2 expression was confined to the cell nuclei, and analysis of AQUA scores of HDM2 within the nuclear compartment yielded similar results to analysis of HDM2 expression within the overall tumor mask, suggesting nearly all of the expression is in the nucleus.

AQUA score calculation results in a continuous scale in contrast to manual scoring, which is based on an ordinal scale with arbitrary values. Regression analysis has previously demonstrated a good correlation between the two methods (16, 17). Of the 542 total histospots, 405 contained sufficient tumor tissue to provide an automated quantitative analysis score for HDM2. The loss of histospots is random but reduces the number of cases available for analysis in the remainder of this study. Of the 405 cases analyzed, 200 were primary lesions and 190 were metastases, 13 were local recurrences, and 2 were of unknown origin. AQUA scores in the melanoma-specific nuclear compartment of all specimens ranged from 19.62 to 150.72 and from 21.84 to 145.98 within nuclear compartment of primary lesions. The histogram in Fig. 3A demonstrates the continuous nature and bell-shaped distribution of the AQUA scores for all of the specimens. Note that in other systems, we have evidence that the scores are directly proportional to the number of molecules per unit area. This is probably also true for HDM2, but purified protein standard controls were not available to validate this prediction.

HDM2 expression in the primary lesions was compared with expression in cutaneous metastases, lymph node metastases, and distant metastases. Fig. 3B shows that loss of HDM2 is more common in later-stage disease. This may be related to specific classes of tumor with low expression having a great propensity for progression. The significance of the difference between the means of the AQUA scores for each tissue type (i.e., skin metastases, lymph node metastases, distant metastases) from the AQUA scores of primary lesions was determined by t tests, demonstrated in the Table 2.

Survival Analysis. Because the AQUA scores are of a continuous nature, the HDM2 expression scores were analyzed by univariate Cox regression. This univariate parametric survival analysis demonstrated that high HDM2 expression was associated with improved survival in all specimens (P = 0.0154) and in the primary lesions alone (P = 0.0318). However, when HDM2 expression was evaluated in only the metastatic specimens, it did not show a significant association with survival (P = 0.9330). To graphically depict the influence of HDM2 on survival in melanoma, the scores were divided into quartiles, and Kaplan-Meier survival curves were constructed for HDM2 expression. The P values for these curves were determined by the Mantel-Cox log-rank method. Assessment of survival in all specimens demonstrated that high expression of HDM2 is associated with better disease-specific survival (P = 0.0382; Fig. 3C). Examination of HDM2 expression in relation to survival in only the primary specimens followed the same trend, revealing improved outcome for high expressers (P = 0.0211; Fig. 3D). The quartile cutpoints established for AQUA scores in all specimens were maintained in evaluation of the primary lesions.

Clinicopathologic Correlations. Table 2 and Fig. 3B demonstrate that decreased expression of HDM2 is associated with metastasis. Within primary lesions, there is a relationship between HDM2 expression and lesion progression. Table 3 demonstrates that HDM2 exhibits an association with Breslow thickness, Clark level, and tumor-infiltrating lymphocytes but not with microscopic satellites, ulceration, primary tumor location, age, or sex. Cases missing clinical data are excluded from statistical analysis (labeled unknown). These data indicate that HDM2 expression decreases as lesions progress deeper into the dermis (Breslow thickness and Clark level). Multivariate analysis revealed that HDM2 is not independently predictive presumably because of its tight association with variables defining depth of invasion (data not shown).
DISCUSSION

HDM2 overexpression correlated positively with poor prognosis in sarcoma, glioma, and pediatric acute lymphocytic leukemia but negatively for non–small-cell lung cancer, estrogen receptor α-positive breast carcinoma, and melanoma (reviewed in ref. 24). Pathologist-based, traditional analysis of HDM2 expression in a melanoma cohort of 134 patients demonstrated that HDM2 overexpression was unexpectedly associated with improved survival (27). The method of scoring used by Polsky et al. (27) was based on a scale of nuclear immunoreactivity, ranging from undetectable (0%) to homogeneous staining (100%). Their choice of cutoff was based on prior experience with this antibody in other cancers (i.e., bladder, prostate, squamous cell carcinomas, and sarcomas) in which the 20% cutoff stratified patients in a clinically relevant fashion, but they acknowledged that the appropriate cutoffs for cutaneous melanoma remain to be established (27).

The continuous nature of AQUA scores makes it difficult to determine a cutpoint for survival analyses; however, expression of HDM2 diminished as lesions became more invasive (Tables 2 and 3B). Therefore, the AQUA scores of HDM2 expression were stratified into quartiles, and survival curves were plotted to predict outcome. In concordance with Polsky et al. (27), we also found that high expression of HDM2 predicted a favorable prognosis (Fig. 3C). The ability to predict survival was more apparent when the analysis was limited to primary lesions (Fig. 3D).

The apparent paradox of HDM2 overexpression having a protective effect was suggested to indicate the presence of a functional p53 exerting an inhibitory effect on tumor proliferation and activating the HDM2 promoter as part of its normal autoregulatory feedback loop (27). The p53 tumor suppressor plays a critical role in the cellular response to DNA damage, preventing altered, premalignant cells from progressing to cancer. In response to DNA damage, the p53 protein initiates a variety of stress-specific transcriptional response programs that lead to growth arrest, apoptosis, or senescence (21). In addition to inducing these response programs, p53 may represent a snapshot of this dynamic result. That is, a set of cells undergoing pulses that are more frequent would be more likely to be expressing HDM2 at the time of excision and fixation.

However, in light of all of the examples demonstrating the regulatory functions of MDM2/HDM2 on p53, there is mounting evidence demonstrating p53-independent functions of HDM2 (36). This protein has been shown to interact with multiple factors (e.g., ARF, MDMX, ATM, c-abl, HIF-1α, RB, PML, E2F) that can play a role in transformation, affecting cell cycle control, differentiation, DNA synthesis, RNA biosynthesis, transcription, and cell surface receptor turnover (37). As with p53, which plays roles in both transcriptional regulation and mediation of apoptosis in mitochondria (38), HDM2 may also have a second role, unrelated to its interaction with p53. It should also be noted that a number of other oncoproteins such as Ras (39, 40), Raf-1 (41), and Bcl-2 (42) have recently been shown to possess secondary, growth inhibitory functions. These dual-function oncoproteins, including HDM2, may be essential to the proliferation of normal cells equipped with growth suppressor activities that have not been fully characterized (43).

The AQUA system provides a unique method for the analysis of tissue microarrays not previously possible with standard pathologist-based techniques. The system is precise, highly reproducible, and quantitative resulting in continuous measurements similar to that obtained from ELISA assays. In addition, automated quantitative analysis allows for accurate subcellular localization, with the ability to discriminate between the cytoplasmic and nuclear compartments in melanoma cells. With increased resolution, the analyses will expand to include additional virtual compartments (e.g., mitochondria, lyso-
somes, endoplasmic reticulum, Golgi, and so forth). The system has been effectively demonstrated on colon (16), breast (17), and prostate (18) carcinomas. The automated nature of this technology can allow high-throughput screening of tissue microarrays, facilitating their use in discovery of chemotherapeutic targets and biomarker validation.

In summary, AQUA-based analysis was used to demonstrate that HDM2 is a marker of melanoma progression. As might be expected of a marker of progression, it is also useful for prognostication independent of all conventional histologic markers, except those related to tumor depth of invasion. In primary lesions, this biomarker may represent a mechanism to predict survival in a tumor type without standard molecular tools for prediction of outcome.

REFERENCES

Automated Quantitative Analysis of HDM2 Expression in Malignant Melanoma Shows Association with Early-Stage Disease and Improved Outcome
