Wnt3a Growth Factor Induces Androgen Receptor-Mediated Transcription and Enhances Cell Growth in Human Prostate Cancer Cells

Meletios Verras,1,2 Jeffrey Brown,3 Xiaomeng Li,1,2 Roel Nusse,3 and Zijie Sun1,2

Departments of 1Urology, 2Genetics, and 3Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California

ABSTRACT

The Wnt signaling pathway plays a critical role in embryogenesis and tumorigenesis. However, biological roles of Wnt growth factors have not been fully characterized in prostate development and the pathogenesis of prostate cancer. In this study, we used Wnt3a-conditioned medium (Wnt3a-CM) and purified Wnt3a proteins to investigate whether there is a direct effect of Wnt3a on androgen receptor (AR)-mediated transcription and to determine its role in the growth of prostate cancer cells. We demonstrated that Wnt3a-CM either induces AR activity in the absence of androgens or enhances AR activity in the presence of low concentrations of androgens, whereas purified Wnt3a showed a pronounced effect in the presence of low concentrations of ligands. We also showed that Wnt3a-CM and the purified Wnt3a enhance the level of cytosolic and nuclear β-catenin, suggesting an involvement of β-catenin in this regulation. Moreover, treatment of LNCaP cells with Wnt3a-CM and purified Wnt3a significantly enhances cell growth in the absence of androgens. Our findings demonstrate that Wnt3a plays an important role in androgen-mediated transcription and cell growth. These results suggest a novel mechanism for the progression of prostate cancer.

INTRODUCTION

Prostate cancer is the most common malignancy in men and the second leading cause of cancer deaths in the United States (1). The androgen signaling pathway, which is mainly mediated through the androgen receptor (AR), is important for the normal and neoplastic development of prostate cells (2, 3). Androgen ablation is an effective treatment for the majority of patients with advanced prostate cancer (4). However, most of the patients develop androgen-insensitive prostate cancer within 2 years, for which there is currently no effective treatment. Multiple mechanisms by which prostate cancer cells progress to androgen-insensitive stages have been proposed (3, 5). Recently, several lines of evidence have led to an increased interest in defining the possible role of Wnt signaling in the development and progression of prostate cancer [please see the review by Chesire and Isaacs (6)].

The Wnt ligands, of which there are more than 19 closely related but distinct secreted cysteine-rich glycoproteins, have been characterized according to their roles in early development and tumorigenesis.1 Evidence from recent studies suggests critical roles for the Wnt ligands in controlling cell proliferation, adhesion, survival, movement, and polarity (7, 8). Receptors for the Wnt proteins are members of the Frizzled family. In vertebrates, Wnt proteins activate different intracellular signaling cascades either through the “canonical” or “non-canonical” pathways (9). In the canonical pathway, secreted Wnt ligands bind to Frizzled and regulate the stability of β-catenin, a key component of Wnt signaling. In the absence of a Wnt signal, β-catenin is constitutively down-regulated by the multicomponent destruction complex containing glycosyn synthase kinase 3β, axin, and APC, which promotes phosphorylation on the serine and threonine residues in the NH2-terminal region of β-catenin and thereby targets it for degradation through the ubiquitin proteasome pathway (10). Wnt signaling inhibits this process, which leads to accumulation of β-catenin in the nucleus and promotes the formation of transcriptionally active complexes with lymphoid enhancer-binding factor (LEF)/T-cell factor (TCF) transcription factors (11, 12).

Wnt signaling and its key component, β-catenin, have been implicated in human malignancy (13, 14). The link between stabilized β-catenin and tumorigenesis was considerably strengthened by discoveries of mutations in the destruction complex and in β-catenin itself in a variety of human tumors (15). Loss of control of intracellular β-catenin levels through mutation in β-catenin itself and/or other components of the protein degradation complex has been reported in prostate cancer samples (16, 17). However, only a small proportion of prostate cancer samples possessed these mutations, suggesting that other possible mechanisms may be involved in the regulation. It has been shown that loss of E-cadherin can result in an increase of the cellular β-catenin in prostate cancer cells (18). Overexpression of E-cadherin in E-cadherin-negative tumor cells decreases cellular β-catenin levels and reduces AR-mediated transcription (19).

A protein–protein interaction between the AR and β-catenin has been identified (19–21). Through this interaction, β-catenin acts as an AR coactivator, augmenting AR-mediated transcription (19). These data provided an additional line of evidence linking Wnt/β-catenin to the androgen signaling pathway in the growth and progression of prostate cancer.

Potential roles for Wnt in tumorigenesis were suggested previously (22, 23). However, the molecular mechanisms by which Wnt signaling regulates the growth and progression of tumor cells are unclear. Knowledge regarding Wnt signaling in the pathogenesis of prostate cancer is lacking. In this study, we examine the role of Wnt 3A in the regulation of androgen signaling in prostate cancer cells. Intriguingly, we demonstrated that Wnt3a induces AR-mediated transcription and cell growth in a ligand-independent manner. These findings provide the first line of evidence that the Wnt growth factor can regulate and interact with the androgen signaling pathway in prostate cancer cells, which suggests a novel mechanism for the development of androgen-insensitive prostate cancer.

MATERIALS AND METHODS

Cell Culture and Conditioned Medium Production. The monkey kidney cell line CV-1 and human prostate cell lines DU145 and PC3 were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 5% fetal calf serum (FCS; HyClone, Denver, CO). An AR-positive prostate cancer cell line, LNCaP, was maintained in T medium (Invitrogen, Carlsbad, CA) with 5% FCS. Wnt3a-conditioned medium (Wnt3a-CM) and L cell control medium (L-CM) were prepared as described previously (24). Briefly, mouse L cells stably transfected with a Wnt3a cDNA driven by the rat phosphoglycerokinase gene promoter were cultured in DMEM supplemented with 10% charcoal-stripped FCS (CS-FCS) for 4 days. The Wnt3a-CM was then harvested, centrifuged at 1,000 × g for 15 minutes, and filtered using 0.45 μm cellulose
acetic acid bottle top filters (Corning, New York, NY). L-CM was prepared under the same conditions from L cells stably transfected with the pGKneo vector alone (24).

Plasmid Construction. The pGL3-OT and pGL3-OF constructs were the gifts of Dr. Bert Vogelstein (Johns Hopkins University School of Medicine, Baltimore, MD). The pcDNA-TCF-1 construct was provided by Dr. H. C. Clevers (Center for Biomedical Genetics, Utrecht, the Netherlands). The pPSA7kb-luc plasmid was obtained from Dr. Jan Trapman (Department of Pathology, Erasmus University, Rotterdam, The Netherlands) (25). A cytomegalovirus-driven β-galactosidase (β-gal) reporter was generated by cloning the lacZ gene into the pcDNA3 vector (19). A double-stranded oligonucleotide corresponding to the human AR cDNA sequence (5′-GGT-GTCATATGGAGCTCTCA-3′, amino acids 566–575) was synthesized and cloned into the pBSU6 vector, provided by Dr. Yang Shi (Harvard Medical School, Boston, MA) to make the short hairpin RNA (shRNA) construct (26).

Transfection, Luciferase, and β-gal Assays. Transient transfections were carried out using LipofectAMINE 2000 (Invitrogen). Cells were incubated with Wnt3a-CM or L-CM in the presence or absence of dihydrotestosterone (DHT) 24 hours after transfection. After an 18- to 24-hour incubation, cells were harvested, and the luciferase and β-gal activities were measured. The relative light units (RLU) from individual transfections were normalized using β-gal activity in the same samples. Individual transfection experiments were done in triplicate, and the results are reported as mean RLU/β-gal (±SD).

Preparation of Cell Fractions. LNCaP cells treated with Wnt3a-CM or the control L-CM were grown to confluence in 6-well plates, washed once with PBS, and harvested by scraping. Cells were then centrifuged at 750 g for 2 minutes, resuspended in a hypotonic buffer [10 mmol/L Tris-HCl (pH 7.8), 10 mmol/L KCl, 1 mmol/L phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, and 1 μg/ml pepstatin] and incubated on ice for 10 minutes. The cells were lysed by Dounce homogenization and then centrifuged at 2,000 g for 30 minutes to pellet unlysed cells and nuclei. The cytosolic fraction was obtained by further fractionation at 100,000 g for 1 hour.

Northern Blotting. Total RNA from LNCaP cells treated with Wnt3a-CM or L-CM in the presence or absence of DHT was isolated using a RNAwiz kit (Ambion, Austin, TX). Six micrograms of RNA were fractionated on a 1% agarose-formaldehyde gel, transferred to Hybond-N nylon membranes (Amersham Biosciences, Piscataway, NJ), and hybridized with a DNA fragment (amino acids 1–261) derived from the human prostate-specific antigen (PSA) gene. Hybridization was performed overnight at 65°C in 0.5 mol/L sodium phosphate (pH 7.2), 1% bovine serum albumin, and 7% SDS. The blots were stripped and rehybridized with a human glyceraldehyde-3-phosphate dehydrogenase probe (27).

Immunoprecipitation and Western Blotting. Immunoprecipitation assays were carried out essentially as described previously (28). Proteins were eluted by boiling in SDS-sample buffer, resolved by 10% SDS-PAGE, and transferred onto a nitrocellulose membrane. The membranes were then probed with a 1:500 dilution of a polyclonal antibody against the NH2 terminus of AR (Covance Research) transferred onto a nitrocellulose membrane. The membranes were then probed with an anti-mouse 594 Alexa secondary antibody (Molecular Probes, Eugene, OR). The nuclei were counterstained with 10 g/mL Hoechst (Molecular Probes). Samples were analyzed with a Zeis LSM confocal laser scanning microscope.

Cell Proportion and Colony Formation. Approximately 2,000 cells per well were plated and cultured in the presence of either Wnt3a-CM or L-CM and then harvested at different time points. Proliferation assays were carried out using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) kit (Promega, Madison, WI). Cell numbers were determined by absorbance at 490 nm as suggested by the manufacturer. For colony formation assay, LNCaP cells were plated in 6-well plates (500–1,000 cells per well) for 24 hours and then maintained in Wnt3a-CM or L-CM or in DMEM containing purified Wnt3a proteins for 10 to 12 days. The cells were stained with crystal violet (Sigma, St. Louis, MO), and colonies containing more than 50 cells were counted. Colony assays were performed a minimum of three times, and the results are reported as a mean of three experiments.

Purification of Wnt3a. Purified Wnt3a proteins were isolated as described previously (29). A detailed protocol can also be found on-line.4

RESULTS

Wnt3a-CM Enhances AR-Mediated Transcription in a Ligand-Independent Manner. The Wnt pathway has been implicated in the growth and differentiation of various tissues and organs. Recent data showing that β-catenin, a key player in the Wnt pathway, interacts with the AR provided a direct link between Wnt signaling and the pathogenesis of prostate cancer (19–21). In this study, we first used Wnt3a-CM to directly investigate the role of Wnt signaling in prostate cancer cells. Using a specific antibody, we verified the expression of Wnt3a in the Wnt3a-CM prepared from the mouse L cells (Fig. 1A). We found that treatment with Wnt3a-CM of both mouse L and DU145 cells increased the level of cytosolic β-catenin (Fig. 1B). Moreover, the Wnt3a-CM induced β-catenin–mediated TCF-1 transcription (Fig. 1C). These results are consistent with a previous report and confirmed the properties of the Wnt3a-CM (24).

To evaluate the effect of Wnt3a on AR-mediated transcription, we transfected a luciferase reporter driven by the 7-kb PSA gene promoter, an AR-regulated target gene (30), into LNCaP cells. The cells were cultured in the presence or absence of DHT with or without Wnt3a-CM. As shown in Fig. 2A, Wnt3a-CM significantly increased endogenous AR-mediated transcription from the PSA promoter. Intriguingly, cells treated with the Wnt3a-CM showed an approximately
Wnt3a-CM induces AR-mediated transcription. A. LNCaP cells were transiently transfected with 100 ng of PSA7kb-luc reporter (PSA-Luc) and 25 ng of pcDNA3-β-gal and incubated in T-medium with 5% CS-FCS for 24 hours. The cells were washed and incubated with Wnt3a-CM or L-CM in the presence of different amounts of DHT for another 24 hours. Luciferase and β-gal activities were measured and reported as RLU. B. LNCaP cells were transfected with 100 ng of TK/ARE2-luc and 25 ng of pcDNA3-β-Gal and treated as described above. Luciferase and β-gal activities were measured. C. Transient transfections were carried out as described above. Twenty ng of AR shRNA plasmid or LAPSER shRNA vector (45), as the control, and other plasmids as marked in the figure were transfected into LNCaP cells. Cells were cultured with either Wnt3a-CM or L-CM. An AR antagonist, bicalutamide, was added into cells 24 hours after transfection. Luciferase and β-gal activities were measured. D. The cytosolic fractions were prepared from the above-mentioned LNCaP cells transfected with AR or LAPSER shRNA constructs and analyzed by Western blot with AR and tubulin antibodies. E. LNCaP cells were cultured with Wnt3a-CM or L-CM, in the presence of DHT or in the presence of 0.1 or 1 nmol/L DHT, for 24 hours. Total RNA was isolated. Six micrograms of RNA were analyzed by Northern blot with a DNA fragment (amino acids 1–261) derived from the human PSA gene. A human glyceraldehyde-3-phosphate dehydrogenase probe (GAPDH; amino acids 104–168) was used to verify equal loading. F. LNCaP cells were transiently transfected with 100 ng of PSA-Luc, 25 ng of pcDNA3-β-gal, and 40 ng of antisense β-catenin vector or 20 ng of TCF-1 or E-cadherin expression vector. Transfected cells were incubated in T-medium with 5% CS-FCS for 24 hours and then treated as described in A. G. Cytosolic fractions were isolated from the above-mentioned cells and analyzed by Western blot with β-catenin and tubulin antibodies.

Wnt3a-CM increases the level of cytosolic and nuclear β-catenin in prostate cancer cells. Wnt3a-CM has been shown to increase accumulation of cytosolic free β-catenin (24). Cotransfections of β-catenin antisense and TCF-1 and E-cadherin constructs suggested that β-catenin is involved in Wnt3a-CM-mediated AR activity. To evaluate whether Wnt3a-CM affects the cytosolic pool of β-catenin in LNCaP cells, we examined the levels of β-catenin in the different cellular fractions prepared from cells treated with the...
Wnt3a-CM and control medium. The cytosolic fraction and the membrane-associated fraction were prepared, representing the free cytosolic pool and membrane bound β-catenin, respectively (33). As shown in Fig. 3A, there was no significant change in the amount of β-catenin protein in the membrane-associated fraction isolated from the cells treated with Wnt3a-CM in comparison with untreated cells. However, there was a significant increase of cytosolic β-catenin in the cells treated with Wnt3a-CM compared with the controls. In addition, the level of tubulin, as a control, was similar in cells treated with Wnt3a-CM and L-CM in both the cytosolic fraction and membrane-associated fractions. The results indicate that Wnt3a-CM increased the levels of cytosolic β-catenin in LNCaP cells.

Next, we examined the effects of Wnt3a-CM on the cellular localization of β-catenin in LNCaP cells by immunofluorescence staining. As shown in Fig. 3B, clear cell membrane staining with the β-catenin antibody was observed in LNCaP cells. However, there is also an increase in nuclear β-catenin in cells treated with Wnt3a-CM. These data are consistent with the results from the Western blot (Fig. 3A) and suggest that Wnt3a-CM can stimulate nuclear translocation of β-catenin.

It has been shown that β-catenin forms a protein complex with AR and enhances AR-mediated transcription in LNCaP cells. Given that Wnt3a-CM enhances cytosolic free β-catenin and nuclear translocation of β-catenin, we next examined whether Wnt3a-CM enhances the formation of the β-catenin–AR protein complex in nuclei. Using the nuclear fraction of LNCaP cells treated with Wnt3a-CM, we assessed the levels of β-catenin in the protein complex with AR by immunoprecipitation. We observed more β-catenin proteins interacting with AR in cells treated with Wnt3a-CM than in cells treated with the control medium in the absence of 1 nmol/L DHT (Fig. 3C). As described previously, we also observed that β-catenin forms a protein complex with the AR in LNCaP cells in the presence of androgens. The data provide another line of evidence indicating that Wnt3a-CM induces the formation of AR–β-catenin protein complexes in the nucleus.

Wnt3a-CM Promotes Cell Growth and Colony Formation in the Absence of Androgens. Next, we investigated the role of Wnt3a-CM in the regulation of LNCaP cell growth. In particular, we addressed whether Wnt3a-CM can function as a growth factor to promote LNCaP cell growth in a ligand-independent manner. LNCaP cells were cultured with Wnt3a-CM that was prepared in RPMI 1640 with 10% CS-FCS (see Materials and Methods). The growth of LNCaP cells was first assessed by the MTS assay. In the presence of Wnt3a-CM, the cell numbers were 20% and 35% higher after 4 and 6 days compared with controls (Fig. 3A). We then assessed the growth-promoting effect of Wnt3a-CM using a colony formation assay. Approximately 500 LNCaP cells were seeded in each well and incubated with Wnt3a-CM. After 12 days, cells were fixed and stained with crystal violet. There are more and larger colonies in the samples incubated with Wnt3a-CM than in the ones treated with control medium (Fig. 4B). The number of colonies containing >50 cells is significantly higher in the samples treated with Wnt3a-CM than in the controls (P < 0.001; Fig. 4C). The above-mentioned data demonstrate that Wnt3a-CM increases the growth of prostate cancer cells in the absence of androgens. We also performed the above experiments in the presence of 0.1 nmol/L DHT and observed a clear effect of Wnt3a-CM in enhancing the growth of prostate cancer cells (data not shown).

Purified Wnt3a Proteins Enhance AR-Mediated Transcription and Cell Growth. Recently, Wnt molecules, including the product of the mouse Wnt3a gene, have been isolated (29) and appear active in inducing self-renewal of hematopoietic stem cells. We found that, like Wnt3a-CM, purified Wnt3a proteins can enhance the level of cytosolic β-catenin in two prostate cancer cell lines, PC3 and LNCaP (Fig. 5A). Then, we tested the activity of purified Wnt3a proteins in transient transfection assays. The PSA-luc plasmids were transfected with or without a wild-type AR expression vector into PC3 cells, which are AR negative. In the presence of 0.1 nmol/L DHT, Wnt3a-CM induces approximately 35% to 40% of AR-mediated transcription (Fig. 5B). Intriguingly, under a similar experimental condition, purified Wnt3a proteins show a potent and dosage-dependent enhancement of AR transactivation. To confirm this finding, we repeated transient transfection experiments in LNCaP cells. As shown in Fig. 5C, purified Wnt3a proteins show a similar induction of AR-mediated transcription in the presence or absence of 0.1 nmol/L DHT. However, the effect is more pronounced in the cells treated with the ligand. To further assess the growth-promoting effect of purified Wnt3a proteins, we repeated the colony formation assays.
results are from three separate transfection experiments.

creases the cytosolic and nuclear levels of

and is used frequently to study the Wnt signaling

mouse Wnt3a cDNA has been well characterized (24). It has become
effect of the Wnt growth factor on AR-mediated transcription and its

cancers (36–38). Amplification of the

signaling of

Wnt signaling pathways regulate a variety of processes including
cell growth, development, and oncogenesis (13, 34). However, the

biological roles of the Wnt growth factors serving as the upstream

signaling of β-catenin have not been fully characterized in prostate
cancer cells. In this study, we investigate whether there is a direct

effect of the Wnt growth factor on AR-mediated transcription and its

role in the growth of prostate cancer cells.

Wnt3a-CM prepared from mouse L cells stably transfected with mouse Wnt3a cDNA has been well characterized (24). It has become

a great resource and is used frequently to study the Wnt signaling

pathway (8, 35). Previous studies have shown that Wnt3a-CM in-
creases the cytosolic and nuclear levels of β-catenin (8, 24). Microar-
ray data demonstrated that treatment of human embryonic carcinoma

with Wnt3a-CM up-regulated the expression of β-catenin, down-
stream target genes of TCF/LEF, and other factors involved in the

regulation of β-catenin (35). These multiple lines of evidence confirm

a specific signaling pathway mediated by Wnt3a-CM in cells.

In this study, we showed that Wnt3a-CM stimulates AR-mediated

transcription. We demonstrated that Wnt3a-CM is capable of inducing

AR-mediated transcription from the PSA promoter/reporter and the

expression of endogenous PSA transcripts in a ligand-independent

manner. In LNCaP cells, the stimulation by Wnt3a-CM of AR is very
effective and is almost as great as the effect achieved by adding 1
nmol/L DHT. In addition, our data also showed that Wnt3a-CM is
able to increase AR-mediated transcription in the presence of low

concentrations of DHT. These data provide the first line of evidence

showing a unique and important role of Wnt3a in the regulation of

the androgen signaling pathway in a ligand-dependent manner.

To understand the molecular mechanism by which Wnt3a augments

AR-mediated transcription, we performed several experiments to con-
firm the involvement of the AR in the regulation. We showed that

Wnt3a-CM induces transcription of the 7-kb PSA promoter-luc and

endogenous PSA gene. Moreover, Wnt3a-CM also affects a minimal

promoter containing only two AREs. Furthermore, we demonstrated

that induction of AR-dependent promoters by Wnt3a-CM can be

completely abolished by an AR shRNA construct and an AR antag-

onist, bicalutamide. These data implicate that induction by Wnt3a-CM

is mediated through the AR.

β-Catenin plays a central role in the Wnt signaling pathway. As

reported previously, we observed an increase in free cytosolic and

nuclear β-catenin in both prostate and nonprostate cancer cells that

were treated with Wnt3a-CM (Fig. 1A and B). Previous studies by us

and others have shown that β-catenin is a coactivator of AR (19–21).

Therefore, we examined whether β-catenin is a downstream effector

of Wnt3a, augmenting AR-mediated transcription. Using an antisense

construct of β-catenin, we were able to partially block the effect of

Wnt3a-CM on AR-mediated activity. Moreover, overexpression of

TCF or E-cadherin, β-catenin–binding proteins, also reduced the

Wnt3a-CM–mediated AR activity on the PSA promoter. These data

suggest an involvement of β-catenin in Wnt3a-CM–induced AR tran-
scription, which is in agreement with the previous finding that β-cate-
nin acts as an AR coactivator (19–21). However, given the fact that

expression of the antisense β-catenin and TCF and E-cadherin con-
structs only partially blocks the effect of Wnt3a-CM, it appears that

other factors and/or pathways may also be involved in the regulation.

It has been shown that Wnt growth factors/ligands can stimulate both

canonical and non-canonical pathways. In this regard, the molecular

mechanism(s) by which Wnt growth factors regulate the androgen

signaling in prostate cells must be explored further.

Although the mechanisms by which prostate cancer cells develop

into the androgen-insensitive stage are currently unclear, it is believed

that the tumor cells must either bypass or adapt the androgen signaling

pathway to survive in a low-androgen environment during progres-

sion. AR mutations have been identified in some androgen-insensitive

prostate cancers (36–38). Amplification of the AR gene has been

observed in some biopsy samples during androgen ablation therapy

(39). Recent studies showed that the modulation of the AR protein by

phosphorylation, acetylation, and sumoylation also regulates AR ac-

tivity (40–43). In particular, it has been shown that phosphatidyli-

nositol 3’-kinase/Akt and PTEN regulate AR-mediated transcription

through either direct phosphorylation of AR proteins (44) or modifi-
cation of AR cofactors, such as β-catenin (27). In the current study,

we provide several lines of evidence demonstrating that Wnt3a is able
to stimulate AR-mediated transcription in the absence of ligand or the

presence of a low level of ligand in prostate cancer cells. The above-
mentioned data suggest that signals delivered through the AR are still

essential in androgen-insensitive prostate cancer cells. Intriguingly,
Fig. 5. Purified Wnt3a proteins enhance AR-mediated transcription and cell growth. A. Both PC3 and LNCaP cells were cultured in the presence of purified Wnt-3a (100 ng/mL) or the elution buffer (Buffer) as a control for 24 hours. Cytosolic protein fractions were isolated and analyzed by Western blot. B. PC3 cells were transiently transfected with 100 ng of PSA-Luc, 25 ng of pCDNA3-β-Gal, and 30 ng of pCDNA3-AR; washed after 24 hours; and then incubated in Wnt-3a-CM or L-CM or treated with the indicated amounts of purified Wnt-3a proteins in the presence or absence of 0.1 nmol/L DHT. Luciferase and β-Gal activities were measured as described previously. C. LNCaP cells were transiently transfected with 100 ng of PSA-Luc and 25 ng of pCMV-β-Gal. After 24 hours, transfected cells were washed and incubated with the indicated amounts of purified Wnt-3a. D. Approximately 1,000 LNCaP cells were plated in triplicate in DMEM containing 10% CS-FCS in the presence of 100 ng/mL Wnt-3a. Ten days after incubation, the cells were stained with crystal violet. A representative plate is shown. Colonies containing >50 cells were counted and analyzed as described in Fig. 4C.

Although attempts to purify Wnt proteins have been hampered by several technical difficulties, including their high degree of insolubility, active Wnt molecules, including the product of the mouse Wnt3a gene, have been isolated recently (29). In this study, we first showed that, like Wnt3a-CM, purified Wnt3a proteins increase the cytosolic level of β-catenin in prostate cancer cells. Then we confirmed the role of purified Wnt3a proteins on AR-mediated transcription and cell growth in prostate cancer cells. In PC3 cells, Wnt3a proteins enhance AR-mediated transcription in a dosage-dependent manner. A similar effect by purified Wnt3a proteins was also observed in LNCaP cells. These data provide a direct line of evidence demonstrating a true effect of Wnt3a on AR-mediated transcription in prostate cells. However, we observed that purified Wnt3a proteins only slightly affect AR activity in the absence of DHT. This is different from the results that we observed in the experiments when Wnt3a-CM was used. Currently, we do not know the exact reason(s) why purified Wnt3a proteins have less effect on AR-mediated transcription than Wnt3a-CM in the absence of androgens. Further characterization of different protein fractions during purification processes may lead to the identification of additional factors or cofactors that contribute to Wnt3a-mediated augmentation of AR activity. Additional studies of the expression profiles of Wnt ligands and receptors in prostate tissues and prostate cancer cells will also help us to fully understand the signaling pathway(s) regulated by Wnt growth factors in prostate cancer cells.

In this study, we provide several lines of evidence that Wnt3a acts as an upstream signal to induce the transcriptional activity of AR and the growth of prostate cancer cells, possibly through β-catenin. In particular, using purified Wnt3a proteins, we confirm the important role of the Wnt3a growth factor in inducing AR-mediated transcription and cell growth. The effect of Wnt3a may play a critical role in maintaining or increasing AR activity in the setting of decreased androgen levels during androgen ablation therapy. Therefore, further study of the molecular mechanisms by which Wnt growth factors modulate androgen signaling should provide fresh insight into the progression of prostate cancer, which may help us to identify new steps that can be targeted for prostate cancer treatment.

ACKNOWLEDGMENTS

We are especially grateful for the various reagents received from Drs. Bert Vogelstein, H. C. Clevers, Jan Trapman, and Yang Shi.

REFERENCES

Wnt3a Growth Factor Induces Androgen Receptor-Mediated Transcription and Enhances Cell Growth in Human Prostate Cancer Cells

Meletios Verras, Jeffrey Brown, Xiaomeng Li, et al.

Cancer Res 2004;64:8860-8866.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/24/8860

Cited articles
This article cites 44 articles, 22 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/24/8860.full.html#ref-list-1

Citing articles
This article has been cited by 21 HighWire-hosted articles. Access the articles at:
/content/64/24/8860.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.