A Novel Founder CHEK2 Mutation is Associated with Increased Prostate Cancer Risk

Cezary Cybulski,1 Tomasz Huzarski,1 Bohdan Górski,1 Bartłomiej Masoń,1 Marek Mierzejewski,1 Tadeusz Dębiak,1 Bartłomiej Gliniewicz,2 Joanna Matyjasik,1 Elżbieta Złowocka,1 Grzegorz Kurzawski,2 Andrzej Sikorski,2 Michał Posmyk,3 Marek Szwiec,4 Ryszard Czajka,5 Steven A. Narod,6 and Jan Lubiński1

Abstract

Variants in the CHEK2 gene have been found to be associated with prostate cancer risk in the United States and Finland. We sequenced CHEK2 gene in 140 Polish patients with prostate cancer and then genotyped the three detected variants in a larger series of prostate cancer cases and controls. CHEK2 truncating mutations (IVS2 +1G>A or 1100delC) were identified in 9 of 1921 controls (0.5%) and in 11 of 690 (1.6%) unsel ected patients with prostate cancer [odds ratio (OR) = 3.4; P = 0.004]. These mutations were found in 4 of 98 familial prostate cases (OR = 9.0; P = 0.0002). The missense variant I157T was also more frequent in men with prostate cancer (7.8%) than in controls (4.8%); however, the relative risk was more modest (OR = 1.7; P = 0.03). I157T was identified in 16% of men with familial prostate cancer (OR = 4.8; P = 0.00002). Loss of the wild-type CHEK2 allele was not observed in any of prostate cancers from five men who carried CHEK2-truncating mutations. Our results provide evidence that the two truncating mutations of CHEK2 confer a moderate risk of prostate cancer in Polish men and that the missense change appears to confer a modest risk.

Introduction

The genetic basis of prostate cancer is complex and appears to involve multiple genes. Three candidate susceptibility genes have been identified through linkage analysis (HPC1, HPC2/ELAC2, and MSR1), but a clear role for any of these genes in hereditary prostate cancer has not been established (1–6). Additionally, mutations in BRCA2 and NBS1 also predispose to prostate cancer (7–10), but the contribution of these genes to prostate cancer is relatively small.

CHEK2 [CHEK2, also known as “CHK2” (MIM 604373)] is located on chromosome 22q and encodes the human analog of yeast Cds1 and Rad53, which are checkpoint kinases (11, 12). Activation of these proteins in response to DNA damage prevents cellular entry into mitosis. CHEK2 is activated through phosphorylation by ataxia telangiectasia mutated (ATM) protein in response to DNA damage induced by ionizing radiation (12–14). Activated CHEK2 phosphorylates BRCA1 and TP53 proteins, regulating tumor suppressor function of these proteins (15–17). A founder variant in CHEK2, 1100delC, was originally described in Li-Fraumeni families (18, 19) and as a low penetrance breast cancer susceptibility allele (20–22). Recently, CHEK2 mutations have also been identified in patients with prostate cancer (23, 24). In this study, we investigated whether CHEK2 plays an important role in the development of prostate cancer in the Polish population.

Materials and Methods

The case group consisted of 690 prostate cancer patients (mean age at onset, 67.6), including 377 consecutive patients with prostate cancer diagnosed in northwestern Poland between 1999 and 2003 (Szczecin), 248 selected patients with prostate cancer diagnosed between June 2002 to October 2003 in northeastern Poland (Olszyn and Białystok), and 65 men with prostate cancer diagnosed in 2003 in southwest Poland (Opole). Ninety-eight patients (14.2%) had a first- or second-degree relative affected with prostate cancer (familial prostate cancer). They contained, on average, 2.2 cases of prostate cancer per pedigree (mean age of onset 67.1 years). The control population consisted of 500 consecutive newborns from the clinical hospitals of Szczecin, and 1421 controls selected at random from the computerized patient lists of five family medicine practices in Szczecin, Białystok, and Olszyn (725 females and 696 males). DNA samples were obtained from peripheral blood of individuals or from umbilical cord blood of newborns. The entire coding region of CHEK2 gene was sequenced in 96 men with sporadic prostate cancer and in 44 additional familial prostate cancer cases, using primers and conditions described previously (23). exon 10 was screened with primers used in allele-specific PCR for the 1100delC as described below. Samples were sequenced with BigDye Terminator Ready Reaction kit and analyzed in ABI PRISM 377 DNA sequencer (Applied Biosystems).

Three detected sequence variants were then analyzed in a larger series of cases and controls. The 430T>C variant (Ile157Thr) was analyzed by restriction fragment length polymorphism PCR, using Ch157F (5'-ACCCATG-TATCTAGGAGACTG) and Ch157R (5'-CCACTGTGATCCTCTATGTC-TGCA) primers. The reverse primer introduced artificial restriction site for PstI enzyme. The PCR products were digested in mutation-positive cases. The IVS2 +1G>A mutation was identified by RFLP-PCR using Hpy 188III (New England Biolabs) and primers Ch2/3f (5'-ATTATGAGCAATTTTATTTT-AACG) and Ch2/3r (5'-TCCAGTTAACACATAGATAATAATTAC). The PCR product was digested in cases with mutations. The 1100delC was analyzed using an allele-specific PCR assay using primers Chk2ex10f (5'-TTAATTTA-AGCAAAATTAAATGTC) and Chk2ex10r (5'-GGATGTTGTGCGCTAC), and Chk2delC (5'-TGGAGTGCCAAATATGCA). PCR products were separated in 2–3% agarose gels. In cases positive in RFLP-PCR and allele-specific oligonucleotide-PCR analyses, DNA sample was sequenced to confirm the presence of the mutation. Odds-ratios and confidence limits were generated using Mantel-Haenszel χ2 test. Loss of heterozygosity analysis was performed with primer pair corresponding to the CHEK2 intragenic microsatellite marker D22S275 in microdissected tumors of five mutation-positive men (one carrier of the 1100delC and four carriers of the IVS2 +1G>A mutation) using methodology described in detail previously (10).

Results and Discussion

The frequencies of the three detected variants are presented in Table 1. One of the two truncating mutations (IVS2 +1G>A and 1100delC) was detected in 11 of 690 (1.6%) unsel ected patients

Received 2/30/04; revised 2/25/04; accepted 2/25/04.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Cezary Cybulski, International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, ul. Polabska 4, 70-115 Szczecin, Poland. Phone: 00-48-91-466-1532; Fax: 00-48-91-466-1533; E-mail: cezarycy@sci.pam.szczecin.pl.

\[\text{CANCER RESEARCH 64, 2677–2679, April 15, 2004}\]

\[\text{Advances in Brief}\]

\楷体

2677

Downloaded from cancerres.aacrjournals.org on April 28, 2017. © 2004 American Association for Cancer Research.
A mutation was identified in 4 of 98 (4.1%) familial cases (OR 1100delC/H11005 compared with 9 of 1921 (0.5%) controls (OR 1100delC/H11005 P). The IVS2 der mutation (data not shown). The IVS2 particular to the Polish population or if it has been missed by other exon 3, and leads to the disruption of protein expression (24). How-

In contrast to the situation in North America and Western Europe, the IVS2 + 1G>A is the dominant CHEK2-truncating mutation in Poland occurring with frequency of 0.3% in the general population compared with 0.2% for the 1100delC (which is the common mutation in western Europe). Haplotype analysis confirmed that this is a founder mutation (data not shown). The IVS2 + 1G>A variant has been reported previously in a single family with prostate cancer in the United States. The mutation creates a 4-bp insertion attributable to abnormal splicing, creates premature protein termination codon in exon 3, and leads to the disruption of protein expression (24). However, it is not clear if the IVS2 + 1G>A is a founder mutation particular to the Polish population or if it has been missed by other investigators who might have used less sensitive screening techniques (primarily conformation-sensitive gel electrophoresis; Refs. 24–27). We have identified the IVS2 + 1G>A allele in single cancer patients from Latvia and Belarus (unpublished data), suggesting that this allele is present in other Slavic populations. The other two CHEK2 variants (1100delC and I157T) reported in our population were also reported among individuals from other ethnic groups (20–35).

The IVS2 + 1G>A and 1100delC truncating mutations are less common in Poland (0.5% of the general population) than the I157T missense change (4.8%), but the relative risk for prostate cancer associated with either of the two truncating mutations was higher (3.4 versus 1.7). We estimate that these mutations account for about 1% of prostate cancer cases in Poland, compared with 3% for the I157T missense variant. Our results support the hypothesis that the I157T allele confers increased susceptibility to prostate cancer. Combining data from the three studies (this study and Refs. 23 and 24), the I157T change was seen in 6.2% of 1627 cases versus 4.0% of controls (OR = 1.6; P = 0.005). It appears therefore that this missense variant is pathogenic for prostate cancer but confers lower penetrance than the truncating mutation. This variant does not appear to increase the risk of breast cancer (26, 27).

In our study, each of four familial prostate cancer families with the truncating mutation included two men with prostate cancer. Recently, variants in CHEK2 gene (1100delC and I157T) were shown to associate with familial prostate cancer in Finland and similarly, a few men with prostate cancer were observed in mutation-positive Finish familial prostate cancer families (24). It is interesting that Dong et al. (23) reported an association with CHEK2 mutations (18 different mutations pooled together) and sporadic prostate cancer but not familial prostate cancer. The failure to detect a significant association between CHEK2 variants and familial cases could be attributable to the fact that the families in the United States study included a relatively high number of affected men (at least three affected in at minimum two generations).

We identified one of three different CHEK2 alterations in 20 of 98 (20.4%) patients with familial prostate cancer. Sepplar et al. (24) found one of three variants (1100delC, I157T, D438Y) in 17 of 120 (14.2%) familial prostate cases from Finland. In a study of 400 men with sporadic cancer and 298 men with familial prostate cancer from the United States, 18 different CHEK2 mutations were found, mostly in single patients (23). In our study, only three pathogenic CHEK2 variants were detected in 140 men who were fully sequenced. This reduced level of genetic variation is likely the result of the relative ethnic homogeneity in Poland.

Acknowledgments

We thank Dr. Stanislaw Niespiel (Regional Oncology Hospital in Olsztyn) and Dr. Lech Zaremba (Regional Oncology Center in Białystok) for support in collection of DNA samples from patients in northeastern Poland.

References

bility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 2002;31:55–9.
A Novel Founder CHEK2 Mutation is Associated with Increased Prostate Cancer Risk

Cezary Cybulski, Tomasz Huzarski, Bohdan Górski, et al.

Cancer Res 2004;64:2677-2679.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/64/8/2677

Cited articles
This article cites 35 articles, 11 of which you can access for free at:
http://cancerres.aacrjournals.org/content/64/8/2677.full.html#ref-list-1

Citing articles
This article has been cited by 18 HighWire-hosted articles. Access the articles at:
/content/64/8/2677.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.