Rituximab (Chimeric Anti-CD20 Monoclonal Antibody) Inhibits the Constitutive Nuclear Factor-κB Signaling Pathway in Non-Hodgkin’s Lymphoma B-Cell Lines: Role in Sensitization to Chemotherapeutic Drug-induced Apoptosis

Ali R. Jazirehi,² Sara Huerta-Yepez,² Genhong Cheng,² and Benjamin Bonavida¹

¹Department of Microbiology, Immunology, and Molecular Genetics and ²Molecular Biology Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California and ³Unidad de Investigacion Medica en Immunologia e Infectologia, Hospital de Infectologia, “La Raza,” CMN, Mexico City, Mexico

Abstract

The chimeric anti-CD20 antibody rituximab (Rituxan, IDEC-C2B8) is widely used in the clinical treatment of patients with non-Hodgkin’s lymphoma (NHL). Rituximab sensitizes NHL B-cell lines to drug-induced apoptosis via down-regulation of Bcl-xL expression. We hypothesized that the mechanism by which rituximab down-regulates Bcl-xL may be, in part, due to inhibition of constitutive nuclear factor-κB (NF-κB) activity that regulates Bcl-xL expression. This hypothesis was tested in CD20⁺ drug-resistant Ramos (Bcl-2⁺/Bcl-xL⁻) and Daudi (Bcl-2⁻/Bcl-xL⁺) cell lines. Rituximab decreased the phosphorylation of NF-κB-inducing kinase, IκB kinase, and IκB-α, diminished IKK kinase activity, and decreased NF-κB DNA binding activity. These events occurred with similar kinetics and were observed 3 to 6 hours post-rituximab treatment. Rituximab significantly up-regulated Raf-1 kinase inhibitor protein expression, thus interrupting the NF-κB signaling pathway concomitant with Bcl-xL and Bcl-2/A1 down-regulation. The role of NF-κB-mediated inhibition of the NF-κB signaling pathway and chemosensitization was corroborated by the use of specific inhibitors. These findings reveal a novel pathway mediated by rituximab through Raf-1 kinase inhibitor protein induction that negatively regulates the constitutive NF-κB pathway and chemosensitization of the NHL B-cells. (Cancer Res 2005; 65(1): 264–76)

Introduction

Traditionally, non-Hodgkin’s lymphoma (NHL) patients have been treated with standard chemotherapeutic regimens, which have offered partial responses and led to eventual relapse. Subsequent administration of higher doses of chemotherapy has proven to be more toxic and induce a response in only 30% to 40% of patients (1–3). This pattern of inevitable failure of standard therapies is due to the emergence of drug-resistant variants, which highlights the importance of the design of new treatment regimens. Monoclonal antibodies (mAb) targeted against specific surface markers that are less systematically toxic and less myelosuppressive have provided an alternative therapeutic approach to malignant diseases (1–3).

The developmentally regulated B-cell lineage restricted marker CD20 is expressed on the surface of ≥95% of NHLs. CD20 is neither shed from the cell surface (4) nor modulated or internalized on antibody binding (5) nor circulates as a free protein in the plasma that can bind to and block the efficacy of the anti-CD20 antibodies, making it an ideal target for immunotherapy. Rituximab, chimeric mouse anti-human CD20 mAb, Rituxan, IDEC-C2B8 (6), alone or combined with chemotherapy, is successfully used in the treatment of patients with follicular low-grade and aggressive diffuse large B-cell lymphoma (7, 8). In vitro treatment of CD20⁺ NHL B-cells with monomeric rituximab kills tumor cells via induction of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (9).

We have reported that rituximab interferes with the intracellular signal transduction pathways and sensitizes NHL B-cell lines to chemotherapeutic drugs via selective down-regulation of Bcl-2 and Bcl-xL (10, 11). Bcl-2 and Bcl-xL exert their antiapoptotic effects mainly in the membrane of mitochondria by preventing loss of membrane potential, cytochrome c efflux on apoptotic stimuli, and initiation of apoptosis (12). Bcl-xL is predominantly expressed in lymphomas (13) and protects the cells from drug cytotoxicity, thus conferring a multidrug resistance phenotype (12, 14–16).

The mechanism by which rituximab inhibits Bcl-xL expression is unknown. Visual inspection and computer analysis have revealed nuclear factor-κB (NF-κB) binding sites on the Bcl-x promoter, and NF-κB is partly responsible for Bcl-xL gene expression (17–23). In addition, activation of the NF-κB pathway by various stimuli rescues tumor cells from drug-induced apoptosis via up-regulation of Bcl-xL (21, 22). Thus, Bcl-xL is a downstream target of the NF-κB pathway (17–24). Hence, we hypothesized that rituximab-mediated Bcl-xL down-regulation may be due to inhibition of the constitutive activity of the NF-κB pathway by rituximab.

A negative regulatory role for the Raf-1 kinase inhibitor protein (RKIP) on the NF-κB pathway has been described (25). RKIP exerts its suppressive effect via physical association with NF-κB–inducing kinase (NIK), tumor growth factor-β activating kinase 1 (TAK1), and IκB kinase (IKK), thus rendering them incapable of relaying the signal to downstream molecules. Overexpression of RKIP decreases...
NF-κB–dependent transcription (25). Thus, we further hypothesized that rituximab may up-regulate RIPK expression resulting in inhibition of the NF-κB pathway, diminished NF-κB–dependent Bcl-xL expression, and chemosensitization of NHL B-cells.

This study tested the above hypotheses using the CD20+ Ramos (Bcl-2+/Bcl-xL+) and Daudi (Bcl-2+/Bcl-xL+) NHL B-cells. The following questions were investigated: (a) Does rituximab inhibit NF-B activity? (b) Does rituximab inhibit the NF-κB signal transduction pathway? (c) Does rituximab up-regulate RIPK expression and enhance its association with signaling molecules, thus interfering with the activation of the NF-κB signaling pathway? (d) Do pharmacologic inhibitors of the NF-κB pathway mimic rituximab-mediated effects? (e) Does rituximab-mediated inhibition of NF-κB and Bcl-xL expression regulate tumor cell resistance to chemotherapy?

Materials and Methods

Cell Lines and Plasmid Construction. The CD20+ human Burkitt’s lymphoma B-cell lines Daudi and Ramos (American Type Culture Collection, Bethesda, MD; refs. 26, 27) were maintained in RPMI 1640 (Mediatech, Washington, DC) supplemented with 10% (v/v) heat-inactivated fetal bovine serum (to ensure the absence of complement) as reported (11). For the generation of the Ramos and Daudi h-B mutant cells, the 5’-FLAG-tagged h-B mutant was fused in-frame to the 5’-end of the estrogen receptor (ER) ligand binding domain, and the chimera was cloned into the HindIII/EcoRI sites of pcDNA3 to generate the pcDNA3-h-B-ER construct. For the generation of Bcl-xL-overexpressing Ramos cells, the pEBB-puro-Bcl-x-HA construct was generated by PCR cloning of human Bcl-x, which was then inserted into the BamHI and NotI sites of pEBB-puro-HA in-frame with the 3’ influenza hemagglutinin tag. The cells were then pulsed using electroporation at 250 V, 975 μF and then selected and maintained in 2.5 μg/mL puromycin (Sigma, St. Louis, MO) or 10 μg/mL active G418 (Mediatech; ref. 21). Cultures were incubated in a controlled atmosphere incubator at 37°C with saturated humidity and an atmosphere of 95% air and 5% CO2 at 0.5 × 106 cells/mL.

Reagents. Paclitaxel (6 mg/mL in DMSO, Bristol Myers Squibb, New York, NY) was diluted by medium. The DMSO concentration did not exceed 0.1% in any experiment. Rituximab (10 μg/mL) was obtained commercially. Mouse anti-Bcl-xL, anti-Bfl-1/A1, and anti-NIK mAbs and rabbit anti-p-NIK (Thr 559) and anti-IκBα a and anti-actin mAbs were purchased from Ingener (San Diego, CA) and Chemicon (Temecula, CA), respectively. Rabbit anti-NIK polyclonal antibody was purchased from Zymed (San Francisco, CA). Rabbit anti-IKKβ and p-IKKβ (Ser180/181) polyclonal antibodies were obtained from Cell Signaling (Beverly, MA). Bay 11-7058 (28, 29), rabbit anti-high mobility group 1 and anti-TAK1 antibodies, and 4-hydroxytamoxifen (4-OHT) were purchased from Calbiochem (San Diego, CA). SN50 (AAVAPLAVALLAPVQKRQRKLMP; ref. 30) and 2-methoxanthymycin-A5 (2MAM-A5; ref. 31) were purchased from Biomol (Plymouth, PA). Dehydroxyhexylmethylxypquinomycin (DHMEQ; refs. 32, 33) was provided by Dr. Kazuo Manawa (Tokyo, Japan). Cis-platinum and etoposide were purchased from Sigma.

Luciferase Bcl-x Promoter Reporter Assay. A 650-bp region of the Bcl-x promoter spanning −640 to −9 relative to the transcriptional start site was inserted between XhoI and HindIII sites of the pGL2-Basic luciferase reporter vector to generate the Bcl-x wild-type (WT) promoter. The NF-κB mutant promoter (Bcl-xL) contains an internal deletion spanning the two potential NF-κB cis elements from −84 to −46 relative to the transcriptional start site (21). Ramos and Daudi cells were transfected by electroporation at 270 V, 975 μF with 10 μg Bcl-x WT promoter, Bcl-xL NF-κB promoter, or empty plasmid. After transfection, the cells were cultured in 12-well plates and were allowed to recover for 36 hours. Then, the cells were either left untreated or treated with Bay 11-7058 (4 μmol/L) or rituximab (20 μg/mL) for 18 hours. Cells were then harvested in 1× lysis buffer, and luciferase activity was measured using an analytic luminescence counter Monolight 2010.

Immunoblotting Analysis for Protein Expression. This was done as reported (11, 34, 35).

Immunoprecipitation of RIPK. Cells (106) per treatment (with or without rituximab) were harvested and pelleted at 14,000 × g for 2 minutes. The resulting cell pellets were resuspended and dissolved in 500 μL ice-cold radioimmunoprecipitation assay buffer. The supernatants were incubated overnight at 4°C on a shaking platform with 2 μg anti-NIK, anti-TAK1, and anti-IKK antibodies and were subsequently incubated with 30 μL Immunopure Plus Immobilized protein A (Pierce, Rockford, IL ref. 36) for 4 hours at 4°C on a shaking platform. The supernatants were centrifuged for 1 minute at 14,000 × g, and the immunoprecipitates were washed twice with 1.0 mL of ice-cold radioimmunoprecipitation assay buffer prior to assay. RIPK was immunoprecipitated from the lysate by a rabbit anti-RIPK antibody. The immunoprecipitates were resolved on 10% SDS-PAGE and visualized by autoradiography.

Assessment of Apoptosis

DNA Fragmentation Assay. The percentage of apoptotic cells was determined by examination of propidium iodide (PI)–stained preparations (37) of tumor cells treated under various conditions as described (11, 34, 35). Cell cycle analysis and apoptosis were determined using an EpicXL flow cytometer. Cellular debris was excluded from analysis by raising the forward scatter threshold, and the DNA content of the intact nuclei was recorded on a logarithmic scale (37). Percentage apoptosis is represented as the percentage of hypodiploid cells accumulated at the sub-G0 phase of the cell cycle.

Evaluation of Active Caspase-3 Levels. To validate the PI technique for the measurement of apoptosis, levels of active caspase-3 were evaluated with the FITC-labeled anti-active caspase-3 mAb. Pure IgG was used as isotype control (35).

2,3-Bis[2-Methoxy-4-Nitro-5-Sulfophenyl]-2H-Tetrazolium-5-Carboxanilide Inner Salt Proliferation Assay. Inhibition of proliferation was assessed using the standard XTT assay kit (Roche, Indianapolis, IN) that measures the metabolic activity of viable cells (38). The percentage of proliferation was calculated using the background-corrected reading as follows: % Proliferation = ([Absorbance of Sample Wells] / [Absorbance of Untreated Cells]) × 100.

Electrophoretic Mobility Shift Assay. Alterations in the DNA binding activity (DBA) of NF-κB were evaluated with biotin-labeled oligonucleotide NF-κB probe (5’-AGTTCAGGGGACTTTCCAGG–3’; ref. 39) using the electrophoretic mobility shift assay kit (Panomics, Inc., Redwood City, CA) as reported (35). For supershifts, 1 μL of the appropriate antibodies was added to the nuclear extracts for 20 minutes on ice before the addition of the labeled probe. The nuclear levels of high mobility group 1 were assessed to ensure equal loading.

Reverse Transcription-PCR. Transcriptional regulation of Bcl-xL was detected by reverse transcription-PCR (11) using gene-specific primers: forward 5’-ACCAGTTGCTGACGACAACCGGGGATTG-3’ and reverse 5’-CTACTCTACCAAGGAGTGAAC-3’. Internal control for equal cDNA loading was assessed using the gene-specific glyceraldehyde 3-phosphate dehydrogenase primers: forward 5’-GAAATCTACATCTCGTCTGTTG-3’ and reverse 5’-GTATTGTTGGAACTTTACCCATT-3’. Amplifications were carried out using the HotStart/Ampliwax method (40) with the temperature cycling variables: HotStart/Ampliwax method (40) with the temperature cycling variables: 95°C, 1 minute; 60°C, 1 minute; 35 cycles. Amplicons were analyzed on 2% agarose gels and the relative concentrations of the bands were assessed by densitometric analysis of the digitized ethidium bromide–stained images using the NIH image program. The intensity of each band was normalized to that of the corresponding glyceraldehyde 3-phosphate dehydrogenase.

Immune Complex Kinase Assay. Alteration in the kinase activity of IKK by rituximab was assessed by its ability to phosphorylate h-B-α (Ser32/36) using a slightly modified version of previous methods (41). Briefly, cells were grown with or without 20 μg/mL rituximab for 24 hours. Then, the cells were lysed in modified radioimmunoprecipitation assay buffer [50 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 1% Igepal CA-630, 0.25% sodium deoxycholate, 1 mmol/L EGTA, 5 mmol/L NaF, 1 mg/mL...
leupeptin and pepstatin, 1 mg/mL aprotinin, 1 mmol/L Na$_3$VO$_4$, 1 mmol/L phenylmethylsulfonyl fluoride). The lysates were incubated with 2 μg anti-IKK antibody at 4°C on a shaking platform (overnight). IKK was immunoprecipitated from the lysates by subsequently incubating the lysates with 30 μL Immuno-Pure Plus Immobilized protein A (36) for 4 hours at 4°C on a shaking platform. The lysates were then centrifuged for 1 minute at 14,000 g, the supernatant was discarded, and the immunoprecipitates were washed twice with 1.0 mL ice-cold modified radioimmunoprecipitation assay buffer followed by two to three washes with 1.0 mL ice-cold kinase binding buffer [20 mmol/L HEPES (pH 7.6), 50 mmol/L NaCl, 0.05% Igepal CA-630, 0.1 mmol/L EDTA, 2.5 mmol/L MgCl$_2$] prior to assay. Samples were then incubated with 35 μL kinase reaction buffer [20 mmol/L HEPES (pH 7.6), 20 mmol/L MgCl$_2$, 20 mmol/L β-glycerophosphate, 20 mmol/L p-nitrophenyl phosphate, 0.5 mmol/L Na$_3$VO$_4$, 15 μmol/L ATP, 2 mmol/L DTT] containing a final concentration of 5 μg per sample of IKK peptides (amino acids 1-50 and 1-50 Ser$_{32/36}$A) and 20 μmol/L ATP for 30 minutes at 30°C with gentle agitation of the settled beads every 10 minutes. Then, 2× SDS-PAGE sample buffer (35 μL) was added and the samples were boiled at 100°C for 3 to 5 minutes and the supernatants were electrophoresed on 10% SDS-PAGE and subjected to immunoblotting using anti-p-IKK-α (Ser$_{32/36}$A) mAb.

Statistical Analysis. Assays were set up in triplicates and the results were expressed as means ± SD. Statistical analysis and P determinations were done by two-tailed paired t test with 95% confidence interval for determination of the significance of differences between the treatment groups. P < 0.05 was considered significant. ANOVA was used to test the significance among the groups. The InStat 2.01 software was used for analysis.

Results

Rituximab Sensitizes Ramos and Daudi NHL B-Cells to Drug-Induced Apoptosis. Previous findings have shown that rituximab sensitizes NHL B-cell lines to apoptosis induced by various chemotherapeutic drugs (cisplatin, Adriamycin, vinblastine, 5-fluorouracil, and paclitaxel; refs. 10, 11). Paclitaxel was used as a representative drug in delineating rituximab-mediated signaling. To assess the chemosensitizing attribute of rituximab, Ramos and Daudi cells were left either untreated or pretreated with the optimal concentration of rituximab (20 μg/mL; ref. 42) for 24 hours. Cells were then washed and fresh medium was added, incubated with various concentrations of paclitaxel (0.1, 1, and 10 nmol/L, 18 hours), and subjected to PI staining (DNA fragmentation assay). The percentage apoptosis is represented as the percentage of hypodiploid cells accumulating at the sub-G$_0$ phase of the cell cycle. Rituximab alone did not induce significant apoptosis beyond the background levels in both cell lines. However, all three concentrations of paclitaxel induced significant apoptosis in rituximab-pretreated Ramos and Daudi cells compared with the untreated cells, albeit to varying degrees (Fig. 1A). The augmentation of apoptosis was synergistic as assessed by isobolographic analysis (ref. 11; data not shown).

To further confirm the results of apoptosis achieved by DNA hypodiploidy, the levels of activated caspase-3 were measured. Substantial activation of caspase-3 was only observed in Ramos cells treated with combination of rituximab and paclitaxel and was not detected by each agent used alone (Fig. 1B). Activation of caspase-3 closely correlated with the percentage of the hypodiploid cells (PI$^+$) accumulated at the sub-G$_0$ region. Because paclitaxel at a 10 nmol/L concentration in combination with rituximab induced the highest level of apoptosis, this concentration was chosen for the subsequent experiments.

Rituximab Down-Regulates Bcl-x$_L$ and Bfl-1/A1 Expression in Ramos and Daudi NHL B-Cells. Tumor cells were grown either in complete medium or in complete medium supplemented with rituximab (20 μg/mL, 24 hours). Total RNA was extracted and converted to first-strand cDNA. The cDNA (2.5 μg) of each condition was subjected to reverse transcription-PCR analysis using Bcl-x$_L$ mRNA-specific primers. As shown in Bcl-2–deficient Ramos cells (43) and Bcl-2–expressing Daudi cells, rituximab decreased the transcription of Bcl-x$_L$ (Fig. 2A). Temporal regulation of rituximab-mediated inhibition of Bcl-x$_L$ gene expression occurred in a time-dependent manner and was detected as early as 1 hour post-rituximab treatment, an effect that was more pronounced during later time points (Fig. 2B). Immunoblot analysis of total cell lysates of rituximab-treated (20 μg/mL, 24 hours) Ramos and Daudi cells revealed that rituximab decreased...
the protein levels of Bcl-xL and Bfl-1/A1 in both cell lines (Fig. 2C) while having no effect on the expression of several other apoptosis-associated gene products tested (ref. 11; data not shown). These results show the ability of rituximab to down-regulate the expression of Bcl-xL and Bfl-1/A1 in Ramos and Daudi NHL B-cells, both of which are regulated by NF-κB (20–23).

Rituximab Inhibits the Constitutive Activity of NF-κB and the NF-κB Signaling Pathway

Inhibition of the Signaling Pathway. We next examined the alteration in the DBA of NF-κB on rituximab treatment. After overnight growth in RPMI 1640 with 1% heat-inactivated fetal bovine serum, the cells were washed, fresh (complete) medium was added, and the cells were left either untreated or treated with rituximab (20 μg/mL, 1-24 hours). Nuclear extracts were prepared and biotin-labeled oligonucleotides comprising the NF-κB consensus binding site (39) were used as probe in an electrophoretic mobility shift assay. Time kinetics studies reveal that NF-κB DBA was diminished in the presence of rituximab as early as 3 to 6 hours post-treatment (Fig. 3), which remained decreased in the presence of rituximab during the entire experiment (24 hours). Rituximab-mediated decrease in NF-κB DBA was corroborated by the use of the NF-κB inhibitor Bay 11-7085 (4 μmol/L, 1 hours). The specificity of the electrophoretic mobility shift assay was corroborated using no nuclear extracts, positive control, unrelated probe, and unlabeled cold probe. The postulated NF-κB bands showed significant shift following the addition of the p65 and p50 antibodies to the nuclear extracts, confirming the involvement of NF-κB. The nuclear levels of the high mobility group 1 protein were confirmed for equal loading of the samples (Fig. 3).

Because rituximab-treated cells exhibited decreased NF-κB DBA, we analyzed the effect of rituximab on the NF-κB pathway. Cells were grown overnight in RPMI 1640 with 1% heat-inactivated fetal bovine serum. Then, the cells were washed and were grown either in complete medium or in complete medium supplemented with rituximab (20 μg/mL, 1-24 hours). Subsequently, total cell lysates (40 μg) were subjected to immunoblotting using phospho-specific and nonphosphospecific antibodies for proteins in the NF-κB pathway. As shown, rituximab treatment decreased the phosphorylation-dependent state of NIK, IKK, and IκB-α in a time-dependent manner beginning 3 to 6 hours post-treatment, which

![Figure 2](https://cancerres.aacrjournals.org/). Rituximab inhibits Bcl-xL and Bfl-1/A1 expression in the NHL B-cell lines. A, Ramos and Daudi cells were left either untreated (Control) or pretreated with rituximab (20 μg/mL, 24 hours). Total RNA was extracted and reverse transcribed to first-strand cDNA. cDNA (2.5 μg) of various sample conditions was used in PCR analysis. B, Ramos cells were treated with rituximab (20 μg/mL) for various time points and PCR was carried out as described in A. C, total cell lysates (40 μg) of Ramos and Daudi cells (±20 μg/mL rituximab, 24 hours) were subjected to immunoblotting and analyzed for Bcl-xL, Bcl-2, and Bfl-1/A1 (n = 2). Intensity of the bands was normalized to that of the corresponding glyceraldehyde 3-phosphate dehydrogenase (G-3-PDH). Columns, mean of two independent experiments; bars, SD. *, P < 0.05, compared with control.
was maintained up to 24 hours. The basal level (phosphorylation-independent state) of these signaling proteins remained unaltered during the entire (24 hours) experiment (Fig. 4A). The above findings denote the ability of rituximab to dephosphorylate the components of the NF-κB pathway. To ascertain whether the observed dephosphorylation also resulted in decreased kinase activity of the NF-κB pathway, an immune complex kinase assay was done. The IKK kinase activity of tumor cells (with or without rituximab 20 μg/mL, 24 hours) was assessed using IκBα peptide (amino acids 1-50 Ser32/36) as substrate. Rituximab decreased the IKK kinase activity as shown by the reduced ability of rituximab-treated lysates to phosphorylate IκBα. This phenomenon was not observed when IκBα peptide (amino acids 1-50 Ser32/36A) was used as substrate (Fig. 4B). These results denote the ability of rituximab to negatively regulate the activity of the NF-κB signaling pathway.

Biological Effects. Inhibition of Cellular Proliferation. Rituximab inhibits the proliferation of Ramos, Daudi, and other NHL B-cells (10, 11). To examine whether the NF-κB pathway was involved in the proliferation, an aliquot of the cells (10⁴ cells per sample) was used in a 24-hour standard XTT assay to analyze the cytostatic effects of rituximab and various NF-κB inhibitors. These inhibitors consisted of Bay 11-7085, an irreversible inhibitor of IκB-α phosphorylation that inhibits NF-κB DBA (28, 29); the cell-permeable inhibitory peptide SN50 that contains the nuclear localization signal of NF-κB (p50; ref. 30); and DHMEQ, a novel specific inhibitor of NF-κB nuclear translocation (32, 33). The results presented in Fig. 5A show that the NF-κB inhibitors inhibited the proliferation of both cell lines and mimic the cytostatic effect of rituximab, suggesting that the observed cytostasis of the Ramos and Daudi cells induced by rituximab might be through rituximab-mediated inhibition of the NF-κB pathway.

Chemosensitization. Based on the above findings, rituximab inhibits the NF-κB signaling pathway (Figs. 3 and 4) and sensitizes the cells to paclitaxel (Fig. 1). Thus, we examined whether the NF-κB pathway was involved in rituximab-mediated chemosensitization using NF-κB–specific inhibitors. Optimal concentrations of the inhibitors were determined by pilot studies and are in accordance with previous reports (28–30, 32, 33). The cells were pretreated with the inhibitors (Bay 11-7058, 4 μmol/L, 1 hour; DHMEQ, 10 μg/mL, 1 hour; SN50, 50 μg/mL, 3.5 hours) followed by paclitaxel (10 nmol/L, 18 hours). Paclitaxel alone induced modest apoptosis and the inhibitors at concentrations used were nontoxic to the cells. However, treatment of the cells with various NF-κB inhibitors sensitized the cells to paclitaxel (plus cis-diaminedichloroplatinum and etoposide; data not shown)–induced apoptosis. The extent of sensitization mimicked rituximab (Fig. 5B), suggesting that rituximab-mediated inhibition of the NF-κB signaling pathway may be involved in rituximab-mediated chemosensitization of tumor cells.

Rituximab-Mediated Up-Regulation of RKIP Expression and Inhibition of the NF-κB Signaling Pathway. The possible mechanism by which rituximab inhibits the NF-κB signaling pathway was examined. Recently, RKIP has been identified as a
negative regulator of the NF-κB signaling pathway (25). Therefore, we examined if RKIP induction was associated with rituximab-mediated inhibition of the NF-κB pathway. We observed a time-dependent induction of RKIP in rituximab-treated Ramos cells as early as 3 to 6 hours post-treatment that remained at high levels up to 24 hours (Fig. 6A and B). Similar results were observed in Daudi cells (data not shown).

RKIP interrupts the NF-κB pathway via physical interaction with NIK, TAK1, and IKK (25); thus, we examined whether rituximab enhances the association between RKIP and these signaling molecules. Using specific antibodies, NIK, IKK, and TAK1 were precipitated from the total cell lysates of the tumor cells (with or without rituximab 20 μg/mL, 24 hours) and the membranes were subsequently immunoblotted with anti-RKIP polyclonal antibody. As depicted in Fig. 6C, the association of RKIP with NIK, TAK1, and IKK was significantly enhanced by rituximab. In addition, the lysates contained similar levels of these signaling molecules, whereas rituximab-treated cells exhibited higher levels of RKIP (Fig. 6C). Irrelevant antibody (Bcl-xL), IgG, and beads were used as controls to show the specificity of the assay. These results show that rituximab up-regulates RKIP expression and augments its physical association with NIK, TAK1, and IKK, events that possibly account for rituximab-mediated inhibition of the NF-κB pathway.

Bcl-xL Down-Regulation Is a Result of Rituximab-Mediated Inhibition of the NF-κB Pathway. The above findings show that rituximab inhibits the NF-κB pathway (Figs. 3 and 4) and Bcl-xL expression (Figs. 2 and 4). Previous reports indicated that NF-κB partly regulates Bcl-xL expression (20–23). Thus, we examined the direct relationship between inhibition of the NF-κB pathway and Bcl-xL expression by rituximab. To this end, Ramos and Daudi B-cell lines with a functional block in the NF-κB signaling pathway were established. The strategy involved the overexpression of a chimeric fusion protein consisting of a dominant-active IκBα mutant (Ser32/36A) fused to a mutated ER ligand binding domain (44). The IκBα mutant is incapable of being phosphorylated at the critical serine residues and thus is not targeted for proteasomal degradation on IKK activation. The fused ER confers inducible activation of the gene of interest on exposure to the synthetic estrogen 4-OHT. The FLAG-IκBα-mutant-ER construct was cloned into the pcDNA3 expression vector and was stably transfected into the cells. Single clones expressing the construct were isolated and used for further analysis (21). The Ramos-IκBα-ER and Daudi-IκBα-ER cells were left either untreated or pretreated with 4-OHT (200 nmol/L, 8 hours). Then, the cell lysates were subjected to immunoblotting. As depicted, 4-OHT reduced the basal levels of Bcl-xL in these cells (similar to rituximab), demonstrating that inhibition of NF-κB inhibits Bcl-xL expression (Fig. 7A).

Visual inspection of the sequence and computer database analysis revealed the presence of two-tandem, potential NF-κB consensus binding sites on the Bcl-x promoter located at positions -77 and -62 relative to transcription initiation site (data not shown). Thus, luciferase reporter assays were done to assess the ability of NF-κB to drive transcription from the Bcl-x promoter. To this end, a 650-bp DNA fragment spanning
the Bcl-x 5′ promoter region (Bcl-x WT) and another reporter with an internal deletion spanning the potential NF-κB binding sites (Bcl-x Δ-B) were inserted into pGL2-Basic luciferase plasmids (21). Ramos and Daudi cells were transfected with these plasmids and the cells were allowed to recover for 36 hours. Thereafter, the cells were treated with either rituximab (20 μg/mL) or Bay 11-7085 (4 μmol/L) for another 18 hours. Then, the cells were harvested and the luciferase activity was measured. As shown, transfection with the WT promoter resulted in significant luciferase activity in both cell lines, albeit to varying degree. This difference is due to the differences in transfection efficiency of the cells. However, transfection of the cells with Δ-B promoter construct diminished the luciferase activity, an effect that was mimicked by rituximab and Bay 11-7085 (Fig. 7B). These results show that the presence of the two NF-κB sites in the upstream promoter region supports Bcl-xL transcription, and this effect is abrogated either by deletion of the NF-κB binding sites or by rituximab and Bay 11-7085.

Because rituximab decreased both NF-κB DBA (Fig. 3) and Bcl-xL expression (Figs. 2 and 4), we examined whether the NF-κB inhibitors modulate Bcl-xL transcription similar to rituximab. Cells were either left untreated or treated with rituximab (20 μg/mL), Bay 11-7085 (4 μmol/L), SN50 (50 μg/mL), or DHMEQ (10 μg/mL), and total RNA was extracted and reverse transcribed to first-strand cDNA. Oligonucleotide primers specific for Bcl-xL mRNA were used in a PCR reaction. NF-κB inhibitors decreased Bcl-xL transcription and the inhibition was comparable with rituximab-mediated effect (Fig. 7C). The Bcl-2 family inhibitor, 2MAM-A3, which impairs the function of Bcl-xL (31), did not affect the transcription of Bcl-xL (Fig. 7C). Altogether, these results denote the involvement of NF-κB in the regulation of Bcl-xL expression and the ability of rituximab to decrease NF-κB-dependent Bcl-xL transcription.

Rituximab-Mediated Bcl-xL Down-Regulation Is Responsible for Chemosensitization of Tumor Cell. The above findings show that rituximab-mediated inhibition of the NF-κB pathway is partially responsible for Bcl-xL down-regulation. In addition, rituximab chemosensitized the cells. To confirm the protective role of Bcl-xL in paclitaxel-induced apoptosis, parental Ramos and Daudi cells were grown either in complete medium or in complete medium supplemented with 2MAM-A3 (15 and 20 μg/mL, 7 hours) followed by paclitaxel (10 nmol/L, 18 hours) treatment. As shown, 2MAM-A3 by itself was inefficient in killing the tumor cells but significantly augmented paclitaxel (cis-diammine dichloroplatinum and etoposide; data not shown)–induced apoptosis in both cell lines, albeit to varying degrees (Fig. 8A).

Additionally, the stable transfectants Ramos-IκB-ER and Daudi-IκB-ER with or without 4-OHT (106 cells/mL) were treated with paclitaxel (10 nmol/L, 18 hours), 4-OHT, which lowers Bcl-xL levels (Fig. 7A), sensitized the cells to paclitaxel at levels comparable with those achieved by rituximab (Fig. 8B). These results suggest that an intact NF-κB signaling pathway is required for the maintenance of the drug resistance phenotype, and disruption of this pathway using IκB superrepressor construct, which diminishes Bcl-xL levels, renders the cells chemosensitive.

To further ascertain the protective role of Bcl-xL against drug-induced apoptosis, Ramos cells were stably transfected with hemagglutinin-tagged Bcl-xL–expressing construct (21), which migrates slightly slower than the endogenous Bcl-xL, allowing for comparative analysis of expression levels on treatment. The expression levels of endogenous and ectopically expressed Bcl-xL compared with the parental cell line was confirmed (Fig. 8C, I) and the HA-Bcl-xL cells exhibited higher resistance to paclitaxel (cis-diammine dichloroplatinum, etoposide, and Adriamycin; data not shown) compared with the parental cell line. Rituximab

Figure 5. Pharmacologic inhibition of the NF-κB signal transduction pathway. A, inhibition of proliferation of the Ramos and Daudi cells by rituximab and the NF-κB inhibitors. Tumor cells were left either untreated or pretreated with rituximab (20 μg/mL), Bay 11-7085 (4 μmol/L), DHMEQ (10 μg/mL), or SN50 (50 μg/mL); 104 cells per sample were used in a 24-hour XTT assay. B, chemosensitization: cells were left eitheruntreated or pretreated with rituximab (20 μg/mL, 24 hours), Bay 11-7085 (4 μmol/L, 1 hour), DHMEQ (10 μg/mL, 1 hour), or SN50 (50 μg/mL, 3.5 hours). Cells (2 × 104) were then incubated with paclitaxel (10 nmol/L, 18 hours) and subjected to PI staining. Samples were set up in triplicates. Columns, mean of two independent experiments; bars, SD. *, P < 0.05, compared with control (A) or paclitaxel treatment (B) alone.
reduced endogenous Bcl-xL levels (Fig. 8C, 1) and was not as efficient in sensitizing these cells to paclitaxel-induced apoptosis compared with the parental cells (Fig. 8C, 2). However, higher concentrations of 2MAM-A3 (35 μg/mL) and paclitaxel (20 nmol/L) were needed to kill the HA-Bcl-xL Ramos cells (Fig. 8C, 3) compared with the low concentrations required for the killing of the parental cells (2MAM-A3 15 and 20 μg/mL; paclitaxel 10 nmol/L).

Discussion

This study provides evidence for the first time that rituximab treatment of NHL B-cell lines inhibits the constitutive NF-κB signaling pathway via up-regulation of RKIP expression. These effects result in down-regulation of Bcl-xL expression and chemosensitization of the tumor cells. We show that rituximab inhibits the NF-κB signaling pathway by decreasing the phosphorylation-dependent state of the components of this pathway and inhibition of IKK kinase activity concomitant with up-regulation of RKIP expression. Induction of RKIP augments its physical association with endogenous NIK, TAK1, and IKK, resulting in decreased activity of the NF-κB pathway and diminished NF-κB DNA binding activity. Inhibition of NF-κB activity resulted in down-regulation of Bcl-xL and Bfl-1/A1 expression and subsequent chemosensitization of the NHL B-cell lines. Rituximab-mediated Bcl-xL down-regulation via inhibition of the NF-κB signaling pathway was corroborated by the use of NF-κB-specific inhibitors. The direct role of NF-κB in rituximab-mediated chemosensitization was shown by functional block of the NF-κB pathway using cell lines stably transfected with IκBα superrepressor (incapable of being phosphorylated), and these cell lines were sensitive to drug-induced apoptosis in the absence of rituximab. The presence of two-tandem NF-κB binding sites in the upstream promoter region of the Bcl-x gene supported the role of NF-κB in the regulation of Bcl-xL expression, which was diminished by the deletion of the NF-κB binding sites.

Figure 6. Rituximab induces RKIP expression and augments its physical association with endogenous NIK, TAK1, and IKK. A. Ramos cells were grown in complete medium ± rituximab (20 μg/mL, 1-24 hours) and total cell lysates (40 μg) were subjected to immunoblot analysis. B, densitometric analysis: an inverse correlation between RKIP and Bcl-xL expression on exposure to rituximab. Columns, mean (n = 2); bars, SD. C, immunoprecipitation of RKIP: endogenous NIK, TAK1, and IKK were immunoprecipitated and the membranes were blotted with anti-RKIP antibody. Representative of two independent experiments. *, P < 0.05, compared with control.
sites similar to rituximab. The pivotal role of Bcl-xL in chemo-resistance was confirmed using Bcl-xL-overexpressing cells, which exhibited higher drug resistance and were minimally sensitized by rituximab or a Bcl-xL-specific inhibitor. The involvement of the NF-κB signaling pathway in the proliferation of NHL cells was confirmed by using NF-κB-specific inhibitors, which reduced the proliferation rate to the levels achieved by rituximab, suggesting a link between rituximab-mediated cytostasis and inhibition of the

Figure 7. An intact NF-κB signal transduction pathway is required for Bcl-xL expression. A, total cell lysates (40 μg) of the Ramos-IκB-ER and Daudi-IκB-ER cells were subjected to immunoblotting for Bcl-xL expression. B, a Bcl-x promoter fragment spanning −640 to +9 region relative to the transcriptional start site (Bcl-x WT) and another fragment lacking two tandem NF-κB binding sites (Bcl-x ΔκB) were cloned into the pGL2-Basic luciferase reporter vector (21). Ramos and Daudi cells were then transfected with 10 μg of the indicated reporter plasmids or empty vector. Thirty-six hours post-transfection, the cells were left either untreated or treated with Bay 11-7085 (4 μmol/L) or rituximab (20 μg/mL), harvested after 18 hours, and assessed for luciferase activity. C, total RNA of WT Ramos and Daudi ± 2MAM-A3 (20 μg/mL), rituximab (20 μg/mL), SN50 (50 μg/mL), DHMEQ (10 μg/mL), or Bay 11-7085 (4 μmol/L) was reverse transcribed to first-strand cDNA; 2.5 μg of each cDNA were used in PCR analysis. Intensity of the bands was normalized to the levels of the corresponding β-actin or glyceraldehyde 3-phosphate dehydrogenase. Representative of two independent experiments. *, P < 0.05, compared with control.
NF-κB signaling pathway. These results provide a rational molecular mechanism underlying the synergy achieved by the combination of rituximab and drugs.

Constitutive activation of the NF-κB/Rel transcription factors has been observed in various malignancies including B-cell lymphoma (45). Likewise, the NF-κB pathway is constitutively activated in Ramos and Daudi cells (Figs. 3 and 4). Constitutive activation of NF-κB/Rel either through the amplification of Rel genes or through aberrant activation of the upstream regulators contributes to pathologic conditions including cancer (17–19). In mammals, the NF-κB family contains five members: RelA (p65), RelB, c-Rel, NF-κB1 (p50 and its precursor p105), and NF-κB2 (p52 and its precursor p100), the most abundant form being the p65/p50 heterodimer. In normal cells, NF-κB activity is tightly controlled by IκB inhibitory proteins. NF-κB activation can be induced by a plethora of extracellular stimuli resulting in phosphorylation of IκB at two conserved serines in the NH2-terminal regulatory region, which in IκB-α correspond to Ser32/36. This phosphorylation step is rapidly followed by polyubiquitination and IκB degradation by the 26S proteosome, allowing stable translocation of NF-κB to the nucleus and activation of gene transcription. IκB phosphorylation is catalyzed by the multiprotein IKK complex, which is phosphorylated and activated by the upstream NIK (17–19). Herein, we show a significant decrease in the phosphorylation-dependent state of NIK, IKK, and IκB-α as well as the DBA of NF-κB 3 to 6 hours post-rituximab treatment in NHL B-cells concomitant with diminished enzymatic activity of IKK (Figs. 3 and 4) suggestive of a novel function for rituximab as a negative regulator of the NF-κB pathway. The inhibition of the NF-κB pathway by rituximab was not complete, as mechanisms other than NIK/IKK/IκB might be implicated in the residual activity of the NF-κB signaling pathway (46).

The inhibition of the NF-κB pathway might occur via several different mechanisms (46, 47). Recently, modulation of RKIP expression is reported as a novel mechanism of NF-κB inhibition (25). In vitro, RKIP disrupts the interaction between NIK and IKK, thus behaving as a competitive inhibitor for IKK. Physical association between RKIP and endogenous TAK1, NIK, and IKK will abrogate the ability of these signaling molecules to phosphorylate and activate downstream molecules and, by suppressing the NF-κB pathway, decreases NF-κB dependent gene expression (25). Our findings reveal that rituximab up-regulates the expression of RKIP and augments its physical association with three major signaling molecules involved in NF-κB signal transduction pathways (Fig. 6), thus reducing the phosphorylation of the components of the NF-κB pathway and the NF-κB DBA, all of which occur with similar time kinetics culminating in reduced IKK kinase activity.
The NF-κB/Rel transcription factors bind to κB control elements present in the promoter of a wide variety of target genes that regulate cellular differentiation, proliferation, survival, and apoptosis (17–19). Activation of the NF-κB pathway by various stimuli is, in part, responsible for the transcriptional activation and expression of antiapoptotic Bcl-2 and inhibitors of apoptosis protein family members, which rescue tumor cells from drug-induced apoptosis (17–24, 47). Herein, we show that rituximab inhibits the NF-κB signaling pathway resulting in down-regulation of Bcl-xL and Bfl-1/A1. The basal levels of Bcl-1/A1 were substantially lower compared with Bcl-xL. Bcl-xL is highly expressed in follicular lymphoma (13) and we have recently reported that inhibition of Bcl-xL expression is critical for rituximab-mediated chemosensitization of NHL cells (11, 48). Thus, we examined the direct involvement of the NF-κB signaling pathway in Bcl-xL expression by various approaches. First, using Ramos and Daudi cell lines expressing a superrepressor, dominant-active IκB (IκB-ER), we established that an intact NF-κB signaling pathway is essential for Bcl-xL expression (Fig. 7A). Second, promoter reporter assays showed that NF-κB drives the expression of Bcl-xL, and deletion of NF-κB binding sites in the upstream promoter region mimicked rituximab-mediated and Bay 11-7085–mediated effects in reducing luciferase activity (Fig. 7B). Third, the role of NF-κB in Bcl-xL expression was corroborated by pharmacologic interruption of the NF-κB pathway using specific inhibitors, which reduced Bcl-xL expression at levels comparable with those achieved by rituximab (Fig. 7C). Whereas this study shows that NF-κB regulates, in part, Bcl-xL expression, detailed analysis of the Bcl-x promoter reveals consensus binding sites for several other transcription factors including Ets, signal transducers and activators of transcription, and activator protein-1 (23). Indeed, our preliminary findings suggest the partial involvement of the extracellular signal-regulated kinase-1/2 pathway and activator protein-1 in the regulation of Bcl-xL expression in NHL B-cells (48).

Our results suggest that, in Bcl-2–deficient Ramos and Bcl-2–expressing Daudi cells, Bcl-xL is the main antiapoptotic factor and the ability of rituximab to negatively modulate the expression of Bcl-xL may explain rituximab effectiveness in combination with chemotherapy in reversing drug resistance. The protective role of Bcl-xL against chemotherapy-triggered apoptosis (12, 15, 16) was supported by using Bcl-xL–overexpressing cells, which expressed higher resistance against a battery of structurally and functionally unrelated drugs (paclitaxel, cis-diamminedichloroplatinum, Adriamycin, and etoposide; data not shown). The involvement of Bcl-xL was also confirmed by treatment of IκB-α superrepressor cells with 4-OHT (which reduced Bcl-xL levels; Fig. 7A) that exhibited higher sensitivity to paclitaxel-induced apoptosis (Fig. 8B). Furthermore, 2MAM-A3, which binds to Bcl-xL at the hydrophobic groove formed by the highly conserved BH1, BH2, and BH3 domains, thus impairing the antiapoptotic ability of Bcl-xL, was used (31).

Although unable to regulate transcription or translation of Bcl-xL, higher concentrations of 2MAM-A3 were required to sensitize the Bcl-xL–overexpressing Ramos (Fig. 8C, 3). Our findings with Bcl-2–expressing Daudi and Bcl-2–deficient Ramos cells suggest that rituximab-mediated chemosensitization may be independent of Bcl-2 expression, which is in agreement with recent findings (49).

Figure 9. Proposed model of rituximab-mediated inhibition of the NF-κB pathway and chemosensitization of NHL B-cells. NF-κB signaling pathway is constitutively active in Ramos and Daudi cells and these cells express low levels of RKIP. On ligation to CD20, rituximab up-regulates RKIP expression. RKIP blocks the phosphorylation and activation of NIK, TAK1, and IKK via physical association and renders them incapable of relaying the signal to the downstream components of the signaling cascade. This will in turn result in decrease in the phosphorylation-dependent state of IKK and IκB-α and inhibition of the activity of the NF-κB pathway. Subsequently, the DBA of the transcription factor NF-κB is diminished culminating in decreased NF-κB-dependent gene expression. Deactivation of the NF-κB pathway will (A) decrease the proliferation rate of the tumor cells, (B) diminish the levels of Bcl-xL and Bfl-1/A1, which will decrease the apoptosis threshold, and (C) chemosensitize the NHL B-cells. Pharmacologic inhibition of the NF-κB pathway (by Bay 11-7085, DHMEQ, and SN50), functional block of NF-κB (by IκB superrepressor cells), or functional impairment of Bcl-xL (by 2MAM-A3) mimics the antiproliferative and chemosensitizing effects of rituximab.
Activation of NF-κB is emerging as one of the major mechanisms of tumor cell resistance to drugs (17–24). Thus, interruption of this pathway is a target for therapeutic intervention for the treatment of tumors (50, 51), which has proven successful in enhancing the apoptotic effects of anticancer agents (e.g., tumor necrosis factor-α and CPT-11) resulting in tumor regression in vivo (52). Bcl-xL is a downstream target of the NF-κB pathway (20–23); rescues tumor cells from drug cytotoxicity (17–24, 47); is abundantly expressed in lymphomas (13, 53); antagonizes DNA-damaging agents and metabolic, microtubule, and topoisomerase inhibitors; and through modulation of apoptosis plays a major role in the determination of cellular response to a wide variety of apoptosis-inducing stimuli (12–16, 52), which can be considered as prognostic markers in lymphoma (13, 53). Targeted suppression of Bcl-xL expression facilitated drug-induced B-cell leukemia tumor regression in SCID/NOD-SCID mouse model (54). Our results corroborate previous reports where inhibition of NF-κB, Bcl-xL, and Bcl-2/A1 defined drug-induced, Fas-induced, and tumor necrosis factor-α–induced apoptosis in various systems (21, 22, 47). Our results also show that rituximab-mediated NF-κB expression inhibits the NF-κB signaling pathway concomitant with Bcl-xL down-regulation resulting in chemosensitization of tumor cells. The regulation of NF-κB expression by rituximab is currently under investigation. Induction of NF-κB on apoptotic stimuli is also observed in prostate cancer cells. Enforced overexpression of NF-κB in the drug-resistant tumor cells has a chemosensitizing effect and its down-regulation confers resistance to chemotherapeutic agents (55). Thus, NF-κB might represent a novel apoptotic marker, and its role in the regulation of cell survival and apoptosis in cancer cells may be of significant clinical relevance (56). Further, a novel antitumorergic function for NF-κB in prostate and melanoma cancer has recently been proposed (57, 58).

In conclusion, we have described a novel signaling pathway triggered by rituximab schematically shown in Fig. 9. Rituximab up-regulates NF-κB expression, which negatively affects the NF-κB survival signaling pathway. This diminishes NF-κB DBA and NF-κB–dependent expression of antiapoptosis gene products and then decreases the apoptosis threshold and chemosensitizes the cells through the type II mitochondrial apoptotic pathway (11). Functional block of NF-κB (e.g., IκB-β mutant cells), pharmacologic interruption of the NF-κB pathway (e.g., Bay 11-7085, DHMEQ, and SN50), or functional impairment of Bcl-xL (e.g., 2MAM-A3) can mimic, in part, the antiproliferative and chemosensitizing effects of rituximab. Hence, this study identifies several potential targets for therapeutic intervention (i.e., the components of the NF-κB pathway and RKIP) and provides a rational molecular basis for the use of rituximab and/or the NF-κB pharmacologic inhibitors alone or in combination with subtoxic concentrations of chemotherapeutic drugs in rituximab/drug refractory NHL.

Acknowledgments

Received 6/10/2004; revised 8/31/2004; accepted 10/20/2004.

Grant support: Jonsson Comprehensive Cancer Center, University of California at Los Angeles (A.R. Jazirehi) and UC-MEXUS Conacyt fellowship (S. Huerta-Yepez).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Drs. Mario Vega, Paul Dempsey, Alex Cheng, and Brian Zarnegar for valuable insights, technical support, and reagents; Dr. Kazuo Umezawa (Tokyo, Japan) for providing DHMEQ; Drs. Devasish Chatterjee and Lee Goodglick for helpful discussions; and Christine Yue for the preparation of the article.

References

24. Hiduch F, HF, and Ackerman J. Suppression of hormone-refractory prostate cancer by a novel
37. Littlewood TD, Hancock DC, Danielian PS, Parker DT. The c-Rel transcription factor and B-cell proliferative signaling pathway, Bcl-xL down-regulation and chemoresistance: a deal with the devil. Oncogene 2004;23:1686–90.
43. Littlewood TD, Hancock DC, Danielian PS, Parker DT. The c-Rel transcription factor and B-cell proliferative signaling pathway, Bcl-xL down-regulation and chemoresistance: a deal with the devil. Oncogene 2004;23:1686–90.
Rituximab (Chimeric Anti-CD20 Monoclonal Antibody) Inhibits the Constitutive Nuclear Factor-κB Signaling Pathway in Non-Hodgkin's Lymphoma B-Cell Lines: Role in Sensitization to Chemotherapeutic Drug-induced Apoptosis

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/65/1/264

Cited articles This article cites 53 articles, 25 of which you can access for free at: http://cancerres.aacrjournals.org/content/65/1/264.full#ref-list-1

Citing articles This article has been cited by 23 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/65/1/264.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.