The Human Multidrug Resistance Protein MRP5 Transports Folates and Can Mediate Cellular Resistance against Antifolates

Peter Wielinga,1 Jan Hendrik Hooijberg,2 Sjoef Gunnarsdottir,1 Ietje Kathmann,3 Glen Reid,1 Noam Zelcer,1 Kasper van der Born,1 Marcel de Haas,1 Ingrid van der Heijden,1 Gertjan Kaspers,1 Jan Wijnholds,1 Gerrit Jansen,4 Godefridus Peters,5 and Piet Borst6

Abstract

Members of the multidrug resistance protein family, notably MRP1-4/ABCC1-4, and the breast cancer resistance protein BCRP/ABCG2 have been recognized as cellular exporters for the folate antagonist methotrexate (MTX). Here we show that MRP5/ABCC5 is also an antifolate and folate exporter based on the following evidence: (a) Using membrane vesicles from HEK293 cells, we show that MRP5 transports both MTX (Km = 1.3 mmol/L and Vmax = 780 pmol per mg protein per minute) and folic acid (Km = 1.0 mmol/L and Vmax = 875 pmol per mg protein per minute). MRP5 also transports MTX-glu2 (Km = 0.7 mmol/L and Vmax = 450 pmol per mg protein per minute) but not MTX-glu3. (b) Both accumulation of total [3H]MTX and of MTX polyglutamates were significantly reduced in MRP5 overexpressing cells. (c) Cell growth inhibition studies with MTX polyglutamates were significantly reduced in MRP5 overexpressing HEK293 cells. We previously reported that MRP5 overexpression in human embryonic kidney (HEK293) cells results in low level resistance against several anticancer and antiviral drugs (e.g., 6-mercaptopurine and PAMEA; refs. 8–10). Resistance is due to the active efflux of the monophosphorylated metabolites of these drugs (8, 10, 11). Other monophosphorylated nucleosides, such as 3,5-cyclic-GMP/AMP (5, 9, 12) and alaninyl-dFTMP (8), are also substrates and are actively excreted from cells by MRP5.

Here we extend the substrate spectrum of MRP5 to folic acid (FA) and several antifolates, the classic antifolate methotrexate (MTX) and two novel generations raltitrexed (Tomudex; ZD1694; ref. 13) and OSI-7904 (GW1843; ref. 14). ZD1694 and GW1843 are novel folate-based inhibitors of thymidylate synthase which were recently approved for clinical use. MTX is used for the treatment of various types of cancer and autoimmune disorders (15–18) and interferes with folate metabolism by inhibiting dihydrofolate reductase (DHFR) and, in its polyglutamate form, thymidylate synthase. (Anti)folates are mainly taken up by cells via the reduced folate carrier (RFC) after which intracellular polyglutamylation by folypolyglutamate synthethase (FPGS) may occur (19, 20), a process important for cellular retention of (anti)folates. Both ZD1694 and GW1843 are much better substrates for FPGS than MTX, but GW1843 is not polyglutamylated beyond the diglutamate form (14). Potential antifolate resistance mechanisms include altered expression of target enzymes, altered metabolism, and decreased cellular accumulation, due to either reduced uptake by RFC or increased efflux by the ABC transporters MRP1-4 and breast cancer resistance protein (BCRP; refs. 21–26).

We show here that overexpression of MRP5 renders HEK293 cells highly resistant against ZD1694 and moderately resistant to GW1843 in standard growth cell inhibition tests. No significant resistance against MTX was observed under these conditions. However, in short-term (4 hours) incubations with high drug concentrations, resistance against MTX and ZD1694 was substantial with resistance factors of over 300-fold in MRP5 overexpressing cells. Using membrane vesicles prepared from MRP5-overexpressing HEK293/MRP5I cells, we found that FA, MTX, the diglutamylated form (MTX-glu2) of MTX, but not the triglutamate (MTX-glu3), were transported by MRP5. Consistent with this substrate specificity, we found that the MTX-glu2 level was strongly reduced in MRP5-overexpressing HEK293 cells.

Introduction

Multidrug resistance proteins (MRP1-9; ABCC1-6, ABCC10-12) are members of the ATP-binding cassette (ABC) superfamily of membrane transporters that mediate the ATP-dependent transport of various substrates across biological membranes (1–3). Although individual MRPs differ in the substrates they preferentially transport, most MRPs are organic anions, often conjugates of sulfate, phosphate, glucuronate, glutathione, or glutamate (2, 4, 5). MRPs are known for the broad spectrum of anticancer and antiviral drugs (e.g., 6-mercaptopurine and PAMEA; refs. 8–10). Resistance is due to the active efflux of the monophosphorylated metabolites of these drugs (8, 10, 11). Other monophosphorylated nucleosides, such as 3,5-cyclic-GMP/AMP (5, 9, 12) and alaninyl-dFTMP (8), are also substrates and are actively excreted from cells by MRP5.

Materials and Methods

Materials. [3H]MTX, [3H]MTX-glu2, [3H]MTX-glu3, [3H]FA, and [2,3-3H]-glutamic acid were from Moravek Biochemicals (Brea, CA). MTX-glu2, and FA-glu2 were from Schircks Laboratories (Jona, Switzerland). ZD1694 from Zeneca Pharmaceuticals (Macclesfield, United Kingdom), and GW1843 from GlaxoWellcome (Research Triangle Park, NC). Creatine

Note: P. Wielinga and J.H. Hooijberg contributed equally to this work.

G. Reid is currently at the Genesis Research and Development Co. Ltd, P.O. Box 50, Auckland, New Zealand.

N. Zelcer is currently at the HHMI, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California.

Requests for reprints: Piet Borst, Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-6691383; E-mail: P.Borst@nki.nl.

© 2005 American Association for Cancer Research.

www.aacrjournals.org 4425 Cancer Res 2005; 65(10): 4425-30

Cancer Res 2005; 65(10). May 15, 2005

Research Article
phosphate and creatine kinase were obtained from Roche (Almere, the Netherlands) and OE-67 membrane filters were from Schleicher and Schuell (Dassel, Germany). All other chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO).

Cell lines and culture conditions. HEK293 cells, HEK293/5I (high overexpression), and HEK293/5E (moderate overexpression) MRP5-overexpressing cells were previously described (10, 11). Cells were routinely grown in DMEM (Invitrogen, Breda, the Netherlands) supplemented with 10% FCS (Invitrogen) and 100 units penicillin/streptomycin per mL. (Invitrogen), at 37°C and 5% CO2 under humidifying conditions.

Vesicular transport assays. The expression of the transporters was evaluated by Western blot as described previously (11), and activity was determined by measuring the ATP-dependent uptake of known substrates. Uptake of radiolabeled substrates by membrane vesicles was determined by measuring the ATP-dependent uptake of known substrates.

Folylpolyglutamate synthetase activity. FPGS activity assays were carried out as described previously (23, 28). In short, cell pellets of 2 × 10^7 cells were suspended in 0.5 mL of extraction buffer containing 50 mmol/L Tris-HCl, 20 mmol/L KCl, 10 mmol/L MgCl2, and 5 mmol/L DTT (pH 7.5). Total cell extracts were obtained by sonication (MSE Soniprep, amplitude 14 μm, 3 × 5 seconds with 10-second intervals, at 4°C). Cell debris was removed by centrifugation at 12,000 × g for 15 minutes (4°C). The FPGS activity assay mixture contained 200 μg protein, 4 mmol/L [2,3-3H]-glutamic acid, and 250 μmol/L MTX in a buffer consisting of 100 mmol/L Tris (pH 8.5), 10 mmol/L ATP, 20 mmol/L MgCl2, 20 mmol/L KCl, and 10 mmol/L DTT (final volume, 250 μL). Following 2 hours of incubation at 37°C, the reaction was stopped by adding 1 mL of an ice-cold 5 mmol/L unlabeled L-glutamic acid (pH 7.5). Sep-Pak C18 cartridges (Millipore, Waters Associates, Etten-Leur, the Netherlands) were used for the separation of free [3H]-glutamate from MTX-[3H]diglutamate. Controls lacking MTX were included to correct for polyglutamylation of endogenous folic acid present in the cell extract.

Results

Antifolate resistance mediated by MRP5. MRP5-mediated resistance against the DHFR inhibitor MTX and the thymidylate synthase inhibitors ZD1694 and GW1843 was determined for parental HEK293, HEK293/MRP5E (moderate MRP5 overexpression), and HEK293/MRP5I (high MRP5 overexpression) cells (Table 1). Growth of the cells was determined at high drug concentrations (μmol/L range) in short-term (4 hours) incubations and at low drug concentrations (nmol/L range) in standard long-term (72 hours) cell growth inhibition tests. In the long-term assays, we found substantial MRP5-mediated resistance against ZD1694 (8.4-fold), whereas resistance against MTX and GW1843 was much lower, 1.7- and 2.1-fold, respectively. In the short-term incubation experiments, resistance levels for all antifolates were much higher, reaching values of at least 1,600-fold for ZD1694, 270-fold for MTX, and 160-fold for GW1843 (Table 1). The levels of resistance to MTX, ZD1694, and GW1843 correlated with the cellular MRP5 level (9) and resistance found in previous studies: HEK293/MRP5I > HEK293/MRP5E > HEK293 (for details, see refs. 9–11).

Vesicular transport of methotrexate by MRP5. Transport of [3H]MTX by MRP5 was determined in vesicular uptake assays using inside-out membrane vesicles prepared from parental and HEK293 cells overexpressing MRP5 to a moderate (HEK293/ MRP5E) and to a higher extent (HEK293/MRP5I; ref. 10). ATP-dependent transport was calculated by subtracting the transport determined in the absence of ATP from that determined in the presence of ATP (4 μmol/L). For inhibition studies, the ATP-dependent transport in the presence of inhibitor was subtracted from that in its absence.

Growth inhibition assays. Cells were plated in 1 mL of culture medium in individual poly-D-lysine–treated wells of a 24-well plate (BD Biosciences, Alphen a/d Rijn, the Netherlands). The initial cell density was 1 × 10^5 cells/cm^2. One day after plating, drugs were added at various concentrations covering a three-log range and the cells were incubated in the presence of drug for either 4 or 72 hours. Following the 4-hour exposure, the medium was aspirated and cells were washed thrice with 2.5 mL of drug-free medium at 37°C. Thereafter, the cells were cultured in drug-free medium for an additional 68 hours. After 72 hours, cells were harvested and counted using a micro cell counter as described previously (21). Finally, drug concentrations inducing 50% cell growth arrest (IC50) were determined.

We have noted that these experiments were sensitive to the exact culture conditions. After we finished the experiments presented here, we found that the use of RPMI, which has a lower folate level than DMEM, gave robust results, especially when cells were also spun down in the washing steps to avoid cell loss.

[3H]methotrexate accumulation and polyglutamylation. HEK293 cells and HEK293/MRP5I cells were cultured in 80-cm² flasks until 70% confluent. Subsequently, cells were exposed to 1 μmol/L [3H]MTX for either 4 or 24 hours. Thereafter, cells were washed twice with 10 mL of ice-cold HEPES-buffered saline, pH 7.4 (HBS). The cells were harvested and collected in 10 mL of ice-cold HBS. After centrifugation, cell pellets were resuspended in 1 mL of HBS, of which 10 μL aliquots were used for cell counting, 100 μL for radioactivity counting, and 890 μL for [3H]MTX-polyglutamate analysis by high-performance liquid chromatography as previously described (21).

Table 1. Antifolate induced inhibition of cell growth in wild type and MRP5-overexpressing HEK293 cells

<table>
<thead>
<tr>
<th></th>
<th>MTX (μmol/L)</th>
<th>ZD1694 (μmol/L)</th>
<th>GW1843 (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEK293</td>
<td>16 ± 0.2</td>
<td>7.4 ± 0.7</td>
<td>1.3 ± 0.5</td>
</tr>
<tr>
<td>HEK293/MRP5E</td>
<td>19 ± 8</td>
<td>39 ± 10</td>
<td>2.4 ± 0.6</td>
</tr>
<tr>
<td>HEK293/MRP5I</td>
<td>27 ± 7</td>
<td>62 ± 15</td>
<td>2.7 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>MTX (μmol/L)</td>
<td>ZD1694 (μmol/L)</td>
<td>GW1843 (μmol/L)</td>
</tr>
<tr>
<td></td>
<td>1.8 ± 0.6</td>
<td>0.3 ± 0.1</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>30 ± 2</td>
<td>>500</td>
<td>89 ± 37</td>
</tr>
<tr>
<td></td>
<td>>500</td>
<td>>500</td>
<td>129 ± 95</td>
</tr>
</tbody>
</table>

*Results are the mean ± SD from four to six separate experiments. 5I and 5E refer to the clone number.
presence of 4 mmol/L ATP. Replacing ATP with adenosine 5'-[γ-thio]triphosphate (ATP-γ-S), a nonhydrolyzable ATP analogue gave similar results as leaving out the ATP (data not shown), indicating that ATP hydrolysis is necessary for the MRP5-driven MTX transport. Uptake of \[^3H\]MTX was proportional to the level of MRP5 overexpression (Fig. 1A); uptake increased with time for at least 20 minutes (Fig. 1B) and yielded a \(K_M\) of 1.3 ± 0.3 mmol/L and a \(V_{MAX}\) of 780 ± 70 pmol per mg per minute (Fig. 1C).

Effect of polyglutamylation on MRP5 vesicular transport. The finding that MRP5 conferred the highest level of antifolate resistance in short-term incubations suggested that MRP5 transports predominantly the parental (monoglutamylated) compound and/or the short-chain polyglutamate metabolites. We tested this by determining the inhibition of MRP5-mediated transport by various glutamylated forms of MTX, FA, and leucovorin (folinic acid). MTX, FA, and leucovorin and the diglutamate forms tested inhibited transport of \[^3H\]MTX, whereas their higher glutamylated forms had little effect, suggesting that only the former are transported (Fig. 2A). This was confirmed in experiments with radiolabeled FA, MTX-glu2, and MTX-glu3 (Fig. 2B). FA and MTX-glu2 uptake continued for at least 20 minutes similar to the uptake of MTX in Fig. 1B, whereas MTX-glu3 was hardly transported. FA and MTX-glu2 were transported by the MRP5 vesicles with \(K_M\) values of 1 ± 0.1 and 0.7 ± 0.1 mmol/L and \(V_{MAX}\) values of 875 ± 75 and 450 ± 20 pmol per mg per minute, respectively (Fig. 3A and B). It is likely that some reduced FA metabolites are also transported by MRP5, as 1 mmol/L leucovorin inhibited MTX transport by ~65% (Fig. 2A).

Polyglutamylated methotrexate pools in HEK293 cells. The results of the cytotoxicity and vesicular uptake experiments suggested that MRP5 decreases the accumulation of MTX. To test this, we determined the levels of the polyglutamylated forms of MTX, following 4 to 24 hours \[^3H\]MTX (1 μmol/L) incubations of...
accumulation (see Discussion). To rule out the possibility that a
MRP5I cells, which might be due to MRP5 driven intravesicular
cells. Remarkably, MTX levels were somewhat increased in the
of three independent experiments; bars, ± SD.

parental and HEK293/MRP5I cells (see Table 2). Under both
conditions, HEK293/MRP5I cells accumulated 2- to 3-fold less total
MTX-glu2 than the HEK293 cells. In the HEK293 cells, the levels of
MTX-glu2 were consistently higher than the levels of MTX, whereas
the reverse was found in the HEK293/MRP5I cells, strongly
suggesting that MRP5 efficiently removes the MTX-glu2 from
the cells. Remarkably, MTX levels were somewhat increased in the
MRP5I cells, which might be due to MRP5 driven intravesicular
accumulation (see Discussion). To rule out the possibility that a
difference in FPGS activity was responsible for this difference, we
tested the FPGS activity in both the HEK293 and HEK293/MRP5I
cells. We found no significant difference: 1,040 ± 160 and 850 ± 90
pg mol per hour per mg protein, respectively (mean ± SD; Ps 0.2).

Discussion

Published studies on the possible role of MRP5 in antifolate
resistance have not been conclusive. Stark et al. (29) described
down-regulation of MRP5, along with MRP1, in Chinese hamster
oviduct cells selected for resistance to the lipophitic antifolate
pyrimethamine. This suggested that MRP5 does not play a role in
antifolate resistance but rather in folate homeostasis (30). In
contrast, Pratt et al. (31) reported that overexpression of MRP2 and
MRP5 in HEK293 cells conferred resistance against a new
polyglutamylatable antifolate Alima. In standard long-term cell
growth inhibition tests, Wijnholds et al. (10) initially did not detect
MRP5-mediated MTX resistance in our transfected cells, but our
current results show that MRP5 does give resistance, albeit only
1.8-fold (Table 1). The difference could be in details of the culture
and assay conditions, which differed in Wijnholds et al. (10) and
here. For instance, sensitivity to MTX is dependent on the folate
level of the medium. MRP5 differs from MRPs 1 to 4 in being
able to transport MTX-glu2, a property it shares with another ABC-
transporter, ABCG2 (BCRP; refs. 23, 32, 33). Like MRPs 1 to 4,
MRP5 has a low affinity for MTX (Table 3).

Overexpression of MRP5 in HEK293 cells results in high-level
resistance against short-term exposure to high concentrations of
MTX and of the antifolates/thymidylate synthase inhibitors
ZD1694 and GW1843 (refs. 13, 14; Table 1). In standard cell
growth inhibition assays, these MRP5-overexpressing cells were
also resistant against relatively low concentrations of GW1843 and
ZD1694 but not of MTX. As expected from our vesicular transport
experiments, MRP5 decreased the accumulation of MTX-glu2 in
cells incubated with [3H]MTX (Table 2). Consequently, levels of the
long-chain polyglutamate forms MTX-glu3-5 were also reduced
(Table 2). Although the levels of long-chain MTX polyglutamates
were still markedly lower in the MRP5 cells than in parental cells
after exposure to MTX for 24 hours (Table 2), these levels are
apparently sufficient for growth inhibition, explaining the sensitivity
to MTX of the MRP5 cells after 72 hours of continuous exposure
(Table 1). As reported before, a part of MRP5 in the MRP5I cells is
present in intracellular vesicles (10, 11). This localization could result
in intravesicular accumulation of MTX, which is the most likely

Table 2. Accumulation of [3H]MTX and polyglutamylated forms of [3H]MTX in HEK293 and HEK293/MRP5I cells

<table>
<thead>
<tr>
<th>Incubation (h)</th>
<th>HEK293*</th>
<th>HEK293/MRP5I</th>
<th>HEK293</th>
<th>HEK293/MRP5I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTX (pmol/10⁷ cells)</td>
<td>MTX-glu2 (pmol/10⁷ cells)</td>
<td>MTX-glu2 (pmol/10⁷ cells)</td>
<td>MTX-glu4 (pmol/10⁷ cells)</td>
</tr>
<tr>
<td>4</td>
<td>5.5 ± 1.7</td>
<td>15.6 ± 2.7</td>
<td>8.6 ± 1.6</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>7.8 ± 0.1</td>
<td>4.9 ± 0.4</td>
<td>2.4 ± 0.8</td>
<td>NA</td>
</tr>
<tr>
<td>24</td>
<td>6.2 ± 2.7</td>
<td>25.2 ± 6.5</td>
<td>27.1 ± 3.9</td>
<td>23.8 ± 2.0</td>
</tr>
<tr>
<td>24</td>
<td>13.1 ± 0.7</td>
<td>7.6 ± 0.4</td>
<td>9.6 ± 0.7</td>
<td>5.5 ± 0.3</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not attainable, below the detection limit.

*Cells were incubated with 1 μmol/L [3H]MTX for 4 and 24 h after which the formation of the various intracellular [3H]MTX polyglutamate forms was determined by high-performance liquid chromatography analysis (see Materials and Methods for details); Data are the average ± SD of three experiments.
explanation for the 2-fold increased MTX levels we find after 24 hours in the MRP5 cells (Table 2). However, the fact that the long-chain polyglutamate levels are decreased in the MRP5 cells can only be explained by a decreased cytosolic MTX level.

The low affinity of MRPs for MTX (Table 3) seems to argue against a potential role for these transporters in clinical MTX resistance. Although the ability of MRP5 to transport MTX-glu4 in addition to MTX places it in a better position to cause MTX resistance than MRPs 1 to 4, the clinically observed MTX plasma concentration (34) during standard treatment schedules is in the range of 1 to 10 μmol/L, which is much lower than the Km of MRP5 for MTX (Table 3). Only in high-dose MTX treatments with MTX plasma levels of 0.1 to 1 μmol/L MRP5 might have an effect on MTX disposition, given the high capacity of MRPs for folate efflux (Table 3), particularly when compared with an ~100-fold lower folate influx capacity of the RFC (18).

MRP5 could be more important, however, in resistance to the newer antifolates. Overexpression of MRP5 gives relatively high levels of resistance against ZD1694 and GW1843. Resistance against these drugs was also found for MRP1 and MRP2 (21), but the MRP5 resistance levels are much higher. For instance, MRP1 overexpression resulted only in 3-fold resistance to ZD1694 after 4 hours exposure (21), whereas we find 1,600-fold resistance in MRP5 cells (Table 1). The transport of the diglutamate forms of antifolates may contribute to this ability of MRP5 to confer higher levels of resistance than the other MRPs.

A definitive evaluation of the role of MRPs in clinical antifolate resistance is complicated by the fact that many MRPs also transport FA and reduced folate cofactors (18, 21, 32, 35–38). This may lower the concentration of intracellular folate, which competes with antifolates. A decreased intracellular folate concentration may even lead to hypersensitivity to antifolates (29). The contribution of MRPs to clinical antifolate resistance will therefore depend on the intracellular FA levels, the polyglutamation rate and the presence of (anti)folate uptake proteins (e.g., RFC; refs. 18, 32, 37–39). Studies in patients will be required to assess whether MRPs in general and MRP5 in particular contribute to resistance to any antifolate in the clinic.

Acknowledgments

Grant support: Dutch Cancer Society grants VU 2000-2237 and NKI 2001-2473/764.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank our colleagues Koen van de Wetering and Sven Rottenberg (NKI) for helpful suggestions and critical evaluation of the work and Annemiek Kuil for help with some experiments.

References

The Human Multidrug Resistance Protein MRP5 Transports Folates and Can Mediate Cellular Resistance against Antifolates

Peter Wielinga, Jan Hendrik Hooijberg, Sjofn Gunnarsdottir, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/65/10/4425

Cited articles This article cites 40 articles, 25 of which you can access for free at: http://cancerres.aacrjournals.org/content/65/10/4425.full.html#ref-list-1

Citing articles This article has been cited by 20 HighWire-hosted articles. Access the articles at: /content/65/10/4425.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.