The Protein Kinase Cβ–Selective Inhibitor, Enzastaurin (LY317615·HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, andSuppresses Growth of Human Colon Cancer and Glioblastoma Xenografts

Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana

Abstract

Activation of protein kinase Cβ (PKCβ) has been repeatedly implicated in tumor-induced angiogenesis. The PKCβ-selective inhibitor, Enzastaurin (LY317615·HCl), suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Activation of PKCβ has now also been implicated in tumor cell proliferation, apoptosis, and tumor invasiveness. Herein, we show that Enzastaurin has a direct effect on human tumor cells, inducing apoptosis and suppressing the proliferation of cultured tumor cells. Enzastaurin treatment also suppresses the phosphorylation of GSK3β(Ser9), ribosomal protein S6(ribosomal protein S6)(Ser240/244), and AKT(Thr308). Oral dosing with Enzastaurin to yield plasma concentrations similar to those achieved in clinical trials significantly suppresses the growth of human glioblastoma and colon carcinoma xenografts. As in cultured tumor cells, Enzastaurin treatment suppresses the phosphorylation of GSK3β in these xenograft tumor tissues. Enzastaurin treatment also suppresses GSK3β phosphorylation to a similar extent in peripheral blood mononuclear cells (PBMCs) from these treated mice. These data show that Enzastaurin has a direct antitumor effect and that Enzastaurin treatment suppresses GSK3β phosphorylation in both tumor tissue and in PBMCs, suggesting that GSK3β phosphorylation may serve as a reliable pharmacodynamic marker for Enzastaurin activity. With previously published reports, these data support the notion that Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. (Cancer Res 2005; 65(16): 7462-9)

Introduction

The protein kinase C (PKC) family of serine-threonine protein kinases has been repeatedly implicated in the processes that control tumor cell growth, survival, and progression (reviewed in ref. 1). Early observations that PKCs are activated by tumor-promoting phorbol esters suggested that PKC activation may be involved in tumor initiation and progression (2). Tumor-induced angiogenesis requires activation of PKCs, particularly PKCβ (1). Vascular endothelial growth factor (VEGF)–induced hepatocellular carcinoma growth can be suppressed by treatment with the PKCβ-selective inhibitor LY335351, which elicits cell death in these hepatocellular carcinoma tissues (3).

PKCβ activation also contributes to tumor cell survival and proliferation and has been repeatedly implicated in the malignant progression of human cancers, notably B cell lymphomas (4), malignant gliomas (5), and colorectal carcinomas (6). PKCβ expression is specifically increased in patients with fatal/refractory diffuse large B cell lymphoma (DLBCL), linking increased PKCβ expression to decreased patient survival (4). Further supporting a role for PKCβ in DLBCL, cultured DLBCL cells with PKCβ overexpression undergo apoptosis when treated with the PKCβ-selective inhibitor LY379196 (7). In intestinal epithelium, expression of a PKCβ transgene elicits hyperproliferation of the colonic epithelium and increases susceptibility to carcinogen-induced colon carcinogenesis indicating that PKCβ in Pan can promote colon carcinogenesis (6, 8). Furthermore, PKCβII expression in rat intestinal epithelial cells can induce an invasive phenotype (9).

Although PKC activation has been implicated in tumor formation and progression, the signaling pathways affected by PKC activation that contribute to malignancy are unclear. PKC activation can trigger signaling through the ras/extracellular signal-regulated kinase (ERK) pathway, which may be involved in controlling cellular proliferation and apoptosis (1) as well as the induction of intestinal cell invasiveness (9). PKCβII activity may also play a role in reducing the sensitivity of intestinal epithelia to the growth suppressive effects of transforming growth factor β (8). Recent work has now shown a link between PKC activity and activity of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, a prominent regulatory pathway governing the apoptotic response. PKC activation requires phosphorylation of the T-loop, a process triggered by the activity of phosphatidylinositol-dependent kinase-1 (PDK-1), a key effector kinase-activated immediately downstream of PI3K (10). PKCs, PKCβI, and PKCγII can also directly phosphorylate AKT at Ser[473](Ser473), which is essential for AKT activity (11–13). Moreover, both PKCβII (14, 15) and PKCα (16) can phosphorylate glycogen synthase kinase 3β at Ser[9](GSK3β), further supporting the notion that these signaling pathways overlap. Crosstalk between PKC and the PI3K/AKT pathway may be an attractive mechanism by which PKCs influence the apoptotic response.

Requests for reprints: Jeremy R. Graff, Principal Research Scientist, Cancer Growth and Translational Genetics, Oncology Division, Lilly Research Labs, Lilly Corporate Center, DC0546, Indianapolis, IN 46285. Phone: 317-277-0220; Fax: 317-277-3652. E-mail: graff_jeremy@lilly.com.

www.aacrjournals.org
Collectively, these data have implicated PKCs in tumor progression and have prompted the development of novel anticancer therapeutics targeting PKC. Enzastaurin (LY317615, HCl) was developed as a selective PKCβ inhibitor (17). Based on the role established for PKCβ in angiogenic signaling (1, 3), enzastaurin was initially evaluated in preclinical tumor models for antiangiogenic activity. Enzastaurin treatment dramatically suppressed the growth of new vasculature towards a VEGF-impregnated disc implanted in the rat corneal micropocket (18). Enzastaurin also decreased microvessel density and VEGF expression in human tumor xenografts (19). The striking antiangiogenic effects of enzastaurin prompted the clinical development of enzastaurin.

In addition to the antiangiogenic effects of enzastaurin, we now show that enzastaurin directly suppresses proliferation and induces apoptosis of tumor cells in culture and suppresses phosphorylation of GSK3β, ribosomal protein S6, and AKT. Oral dosing of enzastaurin to achieve plasma concentrations of drug comparable with those achieved in clinical trials significantly suppresses the growth of human colon and glioblastoma xenografts. As in cell culture, GSK3β phosphorylation was suppressed in these tumor tissues. Moreover, GSK3β phosphorylation was suppressed to a similar extent and with a similar time course in peripheral blood mononuclear cells (PBMCs) from these xenograft-bearing mice. These data support the notion that enzastaurin elicits an antitumor effect by suppressing signaling through the AKT pathway, directly inducing tumor cell death and suppressing tumor cell proliferation.

Materials and Methods

Kinase inhibition assays. The inhibition of PKCβII, PKCα, PKCε, or PKCy activity by enzastaurin was determined using a filter plate assay format measuring 32P incorporation into myelin basic protein substrate. Reactions were done in 100-μL reaction volumes in 96-well polyestrene plates with final conditions as follows: 90 mmol/L HEPES (pH 7.5), 0.001% Triton X-100, 4% DMSO, 5 mmol/L MgCl2, 100 μmol/L CaCl2, 0.1 mg/mL phosphatidylserine (Avanti Polar Lipids, Alabaster, AL), 5 μg/mL diacetyl glycerol (Avanti Polar Lipids), 30 μmol/L ATP, 0.005 μmol/L 32P ATP (NEN, Boston, MA), 0.25 mg/mL myelin basic protein (Sigma, St. Louis, MO), serial dilutions of enzastaurin (1-2,000 nmol/L), and recombinant human PKCβII, PKCα, or PKCy enzymes (390, 169, 719, or 128 pmol/L, respectively; PanVera, Madison, WI). Reactions were started with enzyme addition, incubated at room temperature for 60 minutes, quenched with 10% H3PO4, transferred to multiscreen plates, and run as per the manufacturer's protocol included with the BD Vacutainer CPT tubes (BD, Franklin Lakes, NJ).

Xenograft tumor studies. Five million HCT116 human colon cancer cells or U87MG human glioblastoma cells were injected s.c. in the flank of female, 6 to 8 weeks old, athymic nude mice (Harlan, Indianapolis, IN) in a 1:1 mixture of serum-free growth media and matrigel (Becton Dickinson, Bedford, MA). Mice were monitored daily for palpable tumors. Enzastaurin treatment was initiated when the tumors reached a group mean of 100 mm3. Enzastaurin was suspended in 10% acacia (Fisher Scientific, Fair Lawn, NJ) in water and dosed by gavage twice daily at 75 mg/kg based upon weekly body measurements for each treated group. Control groups were treated only with vehicle.

Protein lysates from cells and in vivo tissues. Lysates for western blot experiments and ELISA assays were prepared using Biosource Cell Extraction Buffer (Biosource International, Camarillo, CA) plus protease inhibitor cocktails (Sigma P8340, P2850, P5726) at 10 μL of each per mL of cell extraction buffer (complete lysis buffer). Extracted tumors from in vivo studies were placed in 1 mL of ice-cold complete lysis buffer in Bio-101 tubes (QBiogene, Irvine, CA) for immediate homogenization. The Fast Prep FP-120 instrument (QBiogene) homogenized the tissues during two 30-second blasts. The homogenate was then transferred to Eppendorf tubes and centrifuged 10 minutes at 12,000 rpm. The supernatant (protein lysate) was then saved for western blotting or ELISA. The Bio-Rad DC-Protein assay kit (Bio-Rad, Hercules, CA) was used to determine protein concentrations.

PBMCs from the HCT116 tumor-bearing mice treated with enzastaurin were isolated as per the manufacturer's protocol included with the BD Vacutainer CPT tubes (BD, Franklin Lakes, NJ). Briefly, blood from five identically treated mice was pooled into a single CPT tube and centrifuged at 1,800 RCF for 30 minutes to separate blood components. The PBMC layer was collected and washed with 5 mL of ice-cold D-PBS, centrifuged 10 minutes at 200 rpm, and resuspended in 250 μL of complete lysis buffer. After centrifugation, the supernatant was collected for protein analysis.

Western blot and ELISA assays. The following antibodies used for western blotting were phosphoGSK3βSer9, 96 ribosomal protein, phosphoSer9/Ser473 and phosphoAKTThr308 (Cell Signaling Technologies, Beverly, MA). Antibodies for total GSK3α and total AKT were purchased from BD Biosciences (San Jose, CA). Western blots were done as described (20).

Proliferation assays. Proliferation was assessed for all cell lines over a 6-day time course in media supplemented with 1% FBS (7 days total). Briefly, 1,000 cells were plated per well in a 96-well plate and changed to fresh media (1% FBS) with or without enzastaurin on days 1 and 4. On day 7, the media were removed and 100 μL propidium iodide (PI) solution (10 μg/mL in D-PBS) were added to each well. An initial reading for PI staining (excitation at 500 nmol/L, absorbance at 615 nmol/L) was done using the WallacVictor plate reader following a 30-minute incubation to determine the nonviable cell fraction. The plate was then frozen at −80 °C for 2 hours, thawed, and reread. The proliferative index was scored by subtracting the prefreeze data (nonviable cells) from the postfreeze data (all cells).

Apoptosis assays. Apoptosis induction by enzastaurin was measured by nucleosomal fragmentation (Cell Death Detection ELISAplus, Roche Applied Science, Indianapolis, IN) and terminal deoxynucleotidyl transferase–mediated nick-end labeling (TUNEL) staining for HCT116 and U87MG cell lines. Briefly, 5,000 cells were plated per well in 96-well plates (1% FBS-supplemented media conditions), incubated with or without enzastaurin for 48 to 72 hours (as indicated) and run as per the manufacturer’s protocol (Roche Applied Science). The absorbance values were normalized to those from control-treated cells to derive a nucleosomal enrichment factor at all concentrations as per the manufacturer’s protocol (Roche Applied Science). The concentrations studied ranged from 0.1 to 10 μmol/L. In situ TUNEL staining was assayed with the In situ Cell Death Detection, Fluorescein kit (Roche Applied Science). Cells (75,000) were plated per well in 6-well plates and incubated 72 hours in 1% FBS-supplemented media + enzastaurin. Fluorescein-labeled DNA strand breaks were detected with the BD epics flow cytometer. Ten thousand, single-cell, FITC-staining events were collected for each test.

PhosphoGSK3βSer9 ELISA. Lysates prepared from HCT116 and U87MG tumors or mouse PBMCs were prepared as described above. PhosphoGSK3βSer9 was quantitated using the Assay Design, Inc. (Ann Arbor, MI) immunometric assay kit. Briefly, 15 μL of tumor lysate (400-600 μg protein per well) or 25 μL PBMC lysate (50-100 μg protein per well) were added to all test wells. Absolute phosphoGSK3βSer9 values are reported in pg phosphoGSK3βSer9/mg lysate.

Statistical analyses. Tumor volume data are transformed to a log scale to equalize variance across time and treatment groups. The log volume data are analyzed with a two-way repeated-measures ANOVA by time and treatment using SAS PROC MIXED software (SAS Institute, Inc., Cary, NC). Treatment groups are compared with the control group at each time point. The data are
plotted as means and SEs for each treatment group versus time. Statistical significance for the effect of enzastaurin treatment on GSK3β phosphorylation in xenograft tumors was assessed by Dunnett's method, one-way ANOVA (JMP Statistical Discovery Software, SAS Institute).

Results

Enzastaurin treatment suppresses tumor cell proliferation and induces apoptosis. PKCβ activity has been implicated in tumor-induced angiogenesis (1, 3). Enzastaurin was developed as an ATP-competitive, selective inhibitor of PKCβ with an IC50 for PKCβ of 6 nmol/L (Table 1). As such, enzastaurin was developed as an antiangiogenic therapy for cancer (17–19). PKC activation has now been implicated in tumor cell proliferation and apoptosis as well (1). We therefore sought to examine whether enzastaurin would also show direct antitumor activity.

We evaluated the ability of enzastaurin to suppress tumor cell proliferation in culture. Indeed, enzastaurin suppressed the proliferation of U87MG glioblastoma cells, PC-3 prostate carcinoma cells, and HCT116 colon carcinoma cells in the low micromolar range (Fig. 1). For HCT116 and U87MG cells in particular, there may be a mild stimulatory effect at concentrations below 1 µmol/L, although the relevance of this observation is unclear.

Evaluation of the NCI 60 cell line panel also showed the antiproliferative activity of enzastaurin in the low micromolar range in a wide variety of cancer cell lines: leukemia (K562 and MOLT-4), non–small cell lung cancer (A549, EKVX, and HOP-92), colon cancer (COLO205, HCT116, KM12, and SW-620), central nervous system cancer (SF-295, SF-539, and U251), melanoma (LOXIMVI, M14, SK-MEL-5, SK-MEL-28, and UACC-257), ovarian cancer (OVCAR-3, OVCAR-4, and OVCAR-8), renal cancer (CAKI-1), prostate cancer (PC-3), and breast cancer (MCF-7, NCI/ADR-RES, and MDA-MB-435). The cell lines most sensitive to enzastaurin were K-562, MOLT-4, HOP-92, and PC-3. Cell lines of the NCI 60 cell line panel that were unaffected by enzastaurin include the prostate cancer cell line DU-145; the breast cancer cell lines HS-578T, BT-549, and T-47D; the melanoma cell line MALME-3M; lung cancer cell lines HOP-62, NCI-H23, NCI-H322M, and NCI-460; the ovarian cancer cell lines OVCAR-5 and SK-OV-3; and the renal cancer cell lines 786-0, A-498, ACHN, RXF393, and TK-10 (data not shown). These data collectively show that enzastaurin suppresses the proliferation of a wide array of cancer cell lines in the low micromolar range, the same concentration range achieved in the plasma of clinical trials patients (21).

We next sought to determine whether enzastaurin might induce apoptosis in tumor cells. As measured by oligonucleosomal fragmentation, enzastaurin induced apoptosis in both HCT116 colon carcinoma cells and U87MG glioblastoma cells in the low micromolar range (Fig. 2). To confirm these results, we also evaluated apoptosis by TUNEL staining. Enzastaurin treatment of HCT116 colon carcinoma cells induced apoptosis in a dose-dependent manner with the percentage of TUNEL positive cells increasing from a basal level of roughly 2% to >50% in HCT116 cells treated with 4 µmol/L enzastaurin (Fig. 2A). Apoptosis was also evident by examining the sub-G0-G1 fraction after fluorescence activated cell sorting in HCT116 cells (data not shown). These analyses show that enzastaurin induces apoptosis in cultured human cancer cell lines in the low micromolar range (1-4 µmol/L).

Enzastaurin blocks phosphorylation of GSK3β and ribosomal protein S6. Enzastaurin was developed as an ATP-competitive, PKCβ-selective small-molecule inhibitor with an IC50 for PKCβ of 6 nmol/L. Phase I clinical trials showed that the 525 mg/d

Table 1. Enzasturin (LY317615.HCl) structure and PKC inhibition (IC50, µmol/L)

<table>
<thead>
<tr>
<th>PKCβ</th>
<th>PKCa</th>
<th>PKCγ</th>
<th>PKCe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>0.039</td>
<td>0.083</td>
<td>0.110</td>
</tr>
</tbody>
</table>

NOTE: IC50 values were calculated from a 10-point curve from filter-binding assays run at 30 µmol/L ATP.
Enzastaurin Suppresses Human Tumor Xenograft Growth

Dose yields steady-state plasma concentrations of enzastaurin and its analytes up to 8 μmol/L, with the mean plasma exposure of nearly 2 μmol/L (21). To understand better the activity of enzastaurin in this concentration range, we profiled in vitro activity against other kinases at 1 μmol/L (Table 2, Upstate kinase profiler). At this concentration, enzastaurin inhibits the activity of PKCβ, PKCγ, PKCa, PKCb, and PKCe by ~90% or more but did not show substantial inhibition of PKCi and PKCy. At 1 μmol/L, enzastaurin also suppressed the activity of p70S6 kinase, PKCζ, and PKCθ by nearly 50% but failed to show substantial inhibition of other serine-threonine kinases (IKKα and IKKβ), c-jun NH2-terminal kinases, MKKs, stress-activated protein kinases, mitogen-activated protein kinases, AMPK, PKR2, PKBα, PKBβ, or PKD1) or tyrosine kinases (epidermal growth factor receptor, platelet-derived growth factor receptor, fibroblast growth factor receptor, BTK, SRC, Abl; Table 2). These data reconfirm that enzastaurin selectively inhibits PKCβ at low concentrations and inhibits the activity of other PKC isoforms at higher concentrations, concentrations that are reached or surpassed in clinical trials.

We therefore sought to examine whether pathways known to be influenced by PKC activity might be affected in human tumor cells by enzastaurin treatment. PKC activity has been connected to many intracellular signaling cascades, including the ras-ERK signaling axis (1, 9) and the PI3K/AKT pathway (8, 10–13). Treatment of HCT116 colon carcinoma cells and U87MG glioblastoma cells with 1 μmol/L enzastaurin failed to inhibit ERK activity, as detected by western blotting with phospho-ERK antibodies (data not shown). In contrast, enzastaurin treatment showed a clear, time-dependent reduction of GSK3βSer9 phosphorylation in HCT116 cells (Fig. 3A). Enzastaurin treatment similarly inhibits GSK3βSer9 phosphorylation in other cultured human tumor cells, including U87MG glioblastoma cells, HT-29 colon carcinoma cells, Raji lymphoma cells, and PC-3 prostate carcinoma cells (data not shown).

Phosphorylation of GSK3βSer9 has been linked to PKCβ activity (8, 14, 15) and could therefore be blocked by enzastaurin treatment. Phosphorylation of GSK3βSer9 has also been repeatedly linked to Akt pathway (16). As such, the suppression of GSK3βSer9 phosphorylation may reflect inhibition of PKCs as well as the Akt pathway. Indeed, the PKC inhibitor PKC412 also suppresses GSK3βSer9 phosphorylation by influencing Akt pathway signaling, although the mechanism for this is not completely understood (22). Consistent with the possibility that enzastaurin affects the Akt signaling pathway, enzastaurin also suppressed the phosphorylation of ribosomal protein S6Ser240/244 (Fig. 3B) and of AktThr308 (Fig. 3C), although the time course for these events was delayed relative to the inhibition of GSK3βSer9 phosphorylation.

Oral dosing of enzastaurin suppresses human tumor xenograft growth and GSK3βSer9 phosphorylation. The phase I clinical trials for enzastaurin have shown that oral administration at 525 mg/d yields ~2 μmol/L mean steady-state plasma exposure of enzastaurin and its analytes (21). To examine more fully the effects of orally given enzastaurin on the growth of human tumor xenografts, we sought to identify a dose that would yield levels of enzastaurin and its metabolites comparable with what is reached in clinical trials. We chose a dose of 75 mg/kg given orally by gavage twice daily. Xenograft-bearing mice were treated for 21 consecutive days starting when the mean tumor volume reached ~100 mm3. Enzastaurin treatment significantly suppressed the growth of both HCT116 colon carcinoma (Fig. 4A) and U87MG glioblastoma (Fig. 4A) xenografts (P < 0.01 for both studies). In the HCT116 xenograft-bearing mice, plasma exposure for enzastaurin was ~2 μmol/L at 30 minutes, thereby achieving inhibitory concentration (IC50) levels for enzastaurin.

Table 2. Upstate Kinase Profiler data for enzastaurin (LY317615.HCl, 1 μmol/L)

<table>
<thead>
<tr>
<th>Kinase</th>
<th>% Control activity</th>
<th>Kinase</th>
<th>% Control activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCβ</td>
<td>11</td>
<td>SAPK2b</td>
<td>96</td>
</tr>
<tr>
<td>PKCα</td>
<td>23</td>
<td>SAPK2x</td>
<td>101</td>
</tr>
<tr>
<td>PKCγ</td>
<td>10</td>
<td>SAPK3</td>
<td>88</td>
</tr>
<tr>
<td>PKCδ</td>
<td>8</td>
<td>SAPK4</td>
<td>97</td>
</tr>
<tr>
<td>PKCθ</td>
<td>2</td>
<td>JNK1α1</td>
<td>107</td>
</tr>
<tr>
<td>PKCζ</td>
<td>47</td>
<td>JNK2α2</td>
<td>103</td>
</tr>
<tr>
<td>PKCε</td>
<td>9</td>
<td>JNK3</td>
<td>85</td>
</tr>
<tr>
<td>PKCη</td>
<td>53</td>
<td>MAPK1</td>
<td>114</td>
</tr>
<tr>
<td>PKCζ</td>
<td>90</td>
<td>MAPK2</td>
<td>104</td>
</tr>
<tr>
<td>IKKα</td>
<td>107</td>
<td>PRK2</td>
<td>88</td>
</tr>
<tr>
<td>IKKβ</td>
<td>116</td>
<td>Abl</td>
<td>96</td>
</tr>
<tr>
<td>MEK1</td>
<td>91</td>
<td>EGFR</td>
<td>82</td>
</tr>
<tr>
<td>MKK6</td>
<td>99</td>
<td>PDGFR</td>
<td>86</td>
</tr>
<tr>
<td>MKK7</td>
<td>102</td>
<td>PDGFRβ</td>
<td>100</td>
</tr>
<tr>
<td>PKBα</td>
<td>75</td>
<td>c-SRC</td>
<td>101</td>
</tr>
<tr>
<td>PKBβ</td>
<td>100</td>
<td>BTK</td>
<td>95</td>
</tr>
<tr>
<td>PKD1</td>
<td>81</td>
<td>IGFR</td>
<td>94</td>
</tr>
<tr>
<td>p70S6K</td>
<td>52</td>
<td>EGFR</td>
<td>102</td>
</tr>
</tbody>
</table>

Abbreviations: SAPK, stress-activated protein kinase; JNK, c-jun NH2-terminal kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK kinase; EGFR, epidermal growth factor receptor; PDGFR, platelet-derived growth factor receptor; FGFR, fibroblast growth factor receptor.
increased to nearly 3 μmol/L at 1 hour, and dropped to 1.5 μmol/L by 2 hours. Between 8 and 12 hours after dosing, the plasma concentrations of enzastaurin were nearly undetectable (Fig. 4B). The time course for enzastaurin plasma exposure was similar on day 1 and on day 21 after dosing (Fig. 4B). The time course for plasma exposure of enzastaurin dosed orally in mouse models consistently reflects the data in Fig. 4B, with nearly undetectable levels of drug in plasma between 8 and 12 hours after dosing. Consequently, 12-hour time points were not included in further studies.

Enzastaurin robustly suppressed GSK3βSer9 phosphorylation in cultured tumor cells (Fig. 3). We therefore sought to determine whether GSK3βSer9 phosphorylation would be similarly suppressed in xenograft tumor tissues after enzastaurin dosing. Western blot analysis of HCT116 colon cancer xenograft tissues showed that GSK3βSer9 phosphorylation was suppressed in a time-dependent manner after enzastaurin treatment (Fig. 4C). The time course for reduction in GSK3βSer9 phosphorylation lags slightly behind the time course for plasma exposure as expected. GSK3βSer9 phosphorylation returned to pretreatment levels at 12 hours after dosing, when plasma exposure levels of enzastaurin were nearly undetectable.

In both cultured tumor cells and in xenograft tumor tissues from the same cell lines, enzastaurin treatment suppressed GSK3βSer9 phosphorylation, indicating that GSK3βSer9 phosphorylation may serve as a reliable marker for enzastaurin activity. To do higher throughput analyses for GSK3βSer9 phosphorylation, we chose a commercially available ELISA detection method (Assay Designs). ELISA analyses of U87MG xenograft tissues revealed >50% reduction in GSK3βSer9 phosphorylation evident at the 2-hour time point and persisting through 8 hours (Fig. 5B; *P* < 0.0001 for all time points). In HCT116 xenograft tissues, ELISA analyses showed that GSK3βSer9 phosphorylation was reduced by 50% after 30 minutes and by 80% at 2 hours. Consistent with the western blotting data (Fig. 4C), the reduction in GSK3βSer9 phosphorylation persisted through 8 hours. Results for GSK3βSer9 phosphorylation were comparable by western blotting and by ELISA (Fig. 4C versus Fig. 6), although the extent of reduction may be more pronounced by western blotting (compare 8-hour time points in Fig. 4C and Fig. 6). The differences in the extent to which GSK3βSer9 phosphorylation was reduced in U87MG glioblastoma and HCT116 colon carcinoma xenografts may reflect an inherent difference in the biology of these tumors (for instance, U87MG lacks PTEN expression). Alternately, these data may simply reflect differences in these xenografted tumors related to tumor content, host tissue content, etc. In any case, both xenograft models show a significant, reproducible reduction in GSK3βSer9 phosphorylation evident no later than 2 hours and persisting through 8 hours after oral dosing with enzastaurin.

Enzastaurin suppresses GSK3βSer9 phosphorylation in both xenograft tissues and peripheral blood mononuclear cells. We next sought to determine whether enzastaurin could affect GSK3βSer9 phosphorylation in PBMCs and whether this effect may
reflect the time course and degree of reduction evident in xenograft tumor tissue. ELISA analyses revealed that GSK3βSer9 phosphorylation is significantly reduced in the PBMCs of xenograft-bearing mice, with the most profound reduction (>60%) between 2 and 4 hours after dosing (P < 0.005 up to 4 hours after dose). Similarly, GSK3βSer9 phosphorylation was also significantly reduced in the xenograft tissues harvested from these same mice, again with the most profound reduction (>60%) between 2 and 4 hours after dosing (P < 0.0001 up to 4 hours after dosing). These data indicate that the reduction in GSK3βSer9 phosphorylation from the PBMCs of treated mice reflects the time course and extent to which GSK3βSer9 phosphorylation is reduced in xenograft tumor tissues.

Discussion

PKC activity has been implicated in the regulation of tumor-induced angiogenesis, tumor cell proliferation, apoptosis, and tumor...
invasiveness (1). On this basis, a number of PKC inhibitors have been advanced into clinical trials for the treatment of human cancers. Enzastaurin was developed as an ATP-competitive, selective inhibitor of PKCβ. Early studies showed that enzastaurin profoundly suppressed VEGF-induced angiogenesis. Enzastaurin dramatically suppressed the growth of new vasculature towards a VEGF-impregnated disc implanted in the rat corneal micropocket (18). These findings are consistent with the role for PKCβ in mediating the VEGF-induced proliferative signals in endothelial cells (1, 3). Based in part on this robust antiangiogenic activity, enzastaurin was advanced into clinical trials as a novel anticancer therapy.

We now show that enzastaurin also exhibits a direct effect on human tumor cells, inducing apoptosis in, and suppressing proliferation of, a wide array of cultured human tumor cells. Enzastaurin treatment interferes with signaling through the AKT pathway, suppressing the phosphorylation of GSK3βSer9, ribosomal protein S6Ser240/244, and AKTThr308. The suppression of GSK3βSer9 phosphorylation by enzastaurin was also evident in human xenograft tissues. Oral dosing of xenograft-bearing mice with enzastaurin (to achieve plasma exposure levels similar to that reached in human clinical trials) suppressed GSK3βSer9 phosphorylation by >50% in both colon cancer and glioblastoma xenografts. GSK3βSer9 phosphorylation was reduced in PBMCs of these xenograft-bearing mice to a similar extent and with a similar time course as in the xenograft tumor tissue, suggesting that GSK3βSer9 phosphorylation in PBMCs may serve as a reliable pharmacodynamic marker for enzastaurin activity.

The direct, proapoptotic effects of enzastaurin treatment on human tumor cells were achieved at drug concentrations similar to those achieved in the plasma of clinical trials patients (1-4 μmol/L). At these drug concentrations, enzastaurin treatment interferes with signaling through the PI3K/AKT pathway, suppressing phosphorylation of GSK3βSer9, ribosomal protein S6Ser240/244, and AKTThr308.

![Figure 5](image_url) Oral dosing with enzastaurin suppresses xenograft tumor growth and GSK3β phosphorylation. Athymic nude mice bearing U87MG glioblastomas xenografts were treated with 75 mg/kg enzastaurin twice daily by gavage after tumors reached a mean tumor volume of 100 mm3 (n = 9 for each group). A, tumor diameter was measured by caliper and tumor volume was calculated according to the formula A² × B × 0.536, where A equals the smallest diameter and B equals the largest diameter. Tumor growth was significantly suppressed by enzastaurin treatment (P < 0.01, two-way repeated measures of variance). B, on day 21 of dosing, tumors were harvested at 2, 4, or 8 hours after dose and protein lysates were subjected to ELISA analysis for GSK3βSer9 phosphorylation. GSK3βSer9 phosphorylation was significantly reduced versus Vehicle control tumors at all time points (P < 0.001, Dunnett’s method, ANOVA).

![Figure 6](image_url) Enzastaurin treatment suppresses GSK3β phosphorylation in PBMCs and tumors. HCT116 tumor tissue and plasma from these xenograft-bearing mice were harvested at 0.5, 2, 4, and 8 hours after dosing with enzastaurin at 75 mg/kg (n = 5 for each time point). Protein lysates from these tissues were subjected to ELISA analyses for GSK3β phosphorylation. GSK3β phosphorylation was significantly reduced in PBMCs at 0.5, 2, and 4 hours (P < 0.005, Dunnett’s method, ANOVA) but not 8 hours. GSK3β phosphorylation was significantly reduced in tumor at all time points (P < 0.0001 at 0.5-4 hours; P = 0.018 at 8 hours, Dunnett’s method, ANOVA). Percentage of control for each tissue respectively, with the vehicle-treated tumor or PBMCs set at 100%.
The PI3K/AKT pathway is a key regulator of cellular survival and is frequently activated in many human cancers, most notably glioblastomas, melanomas, and prostate, ovarian, and endometrial carcinomas (23). Interestingly, previous work had indicated that enzastaurin treatment suppressed VEGF expression by tumor xenografts (19). VEGF expression is regulated at both the transcriptional and posttranscriptional levels through activation of the AKT pathway (24–26).

It is unclear how enzastaurin may interfere with signaling through the PI3K/AKT pathway. In in vitro kinase assays, enzastaurin shows minimal inhibitory activity against p70S6 kinase and virtually no inhibition of AKT-1 or PKD-1, suggesting that the kinases responsible for phosphorylation of GSK3βSer9, ribosomal protein S6Ser24/241 and AKTThr308 may not be directly inhibited by enzastaurin (LY317615·HCl). Furthermore, the time course for these signaling changes is different. Decreased phosphorylation of GSK3βSer9 is evident within 30 minutes, whereas decreased phosphorylation of ribosomal protein S6Ser24/241 and AKTThr308 is evident at 2 and 4 hours post-treatment, respectively. Collectively, these data suggest that enzastaurin may indirectly suppress signaling through the AKT pathway. The PKC inhibitor PKC412 has also been shown to suppress AKT pathway signaling, upstream or at the level of AKT, although no direct mechanism was clear in these studies either (22).

Recent evidence has now shown that various PKC family members can regulate AKT activity. PKCα can regulate the activity of AKT by directly stimulating phosphorylation of Ser473 in endothelial cells (11). PKCβIII can also directly phosphorylate and activate AKT in mast cells (12). Activation of PKCγ can also activate AKT in glioblastoma cells, supporting glioblastoma proliferation (13). Our data show that the AKT pathway is suppressed in cells treated with 1 to 4 μmol/L enzastaurin. At these concentrations, enzastaurin can directly suppress the kinase activity of multiple PKC isoforms. It is therefore conceivable that interference with the AKT signaling pathway may be related to the effect of enzastaurin on multiple PKC family members.

Enzastaurin has now successfully advanced to phase II clinical trials for the treatment of refractory glioblastoma and DLBCL. With this report, we now show that enzastaurin exhibits direct antitumor activity, inducing tumor cell apoptosis and suppressing tumor cell proliferation. Moreover, enzastaurin interferes with signaling through the AKT pathway, a pathway frequently activated in a variety of human cancers. Finally, we show that enzastaurin profoundly suppresses the phosphorylation of GSK3βSer9 both in human tumor xenograft tissue and in PBMCs harvested from xenograft-bearing mice, suggesting that GSK3βSer9 phosphorylation may serve as a reliable pharmacodynamic marker of enzastaurin activity. With previous data, these data show that enzastaurin suppresses tumor growth through multiple mechanisms— the direct induction of tumor cell death and the suppression of tumor cell proliferation coupled to the indirect effect of suppressing tumor-induced angiogenesis.

Acknowledgments

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Drs. Richard Gaynor, Kerry Blanchard, Jake Starling, John McDonald, Homer Pearce, Christopher Slapak, and Alan Hatfield for supporting this work and Cecile Gonzalez-Cerimele for all of her assistance.

References

4. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression trials for the treatment of refractory glioblastoma and DLBCL. With this report, we now show that enzastaurin exhibits direct antitumor activity, inducing tumor cell apoptosis and suppressing tumor cell proliferation. Moreover, enzastaurin interferes with signaling through the AKT pathway, a pathway frequently activated in the variety of human cancers. Finally, we show that enzastaurin profoundly suppresses the phosphorylation of GSK3βSer9 both in human tumor xenograft tissue and in PBMCs harvested from xenograft-bearing mice, suggesting that GSK3βSer9 phosphorylation may serve as a reliable pharmacodynamic marker of enzastaurin activity. With previous data, these data show that enzastaurin suppresses tumor growth through multiple mechanisms—the direct induction of tumor cell death and the suppression of tumor cell proliferation coupled to the indirect effect of suppressing tumor-induced angiogenesis.

Acknowledgments

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Drs. Richard Gaynor, Kerry Blanchard, Jake Starling, John McDonald, Homer Pearce, Christopher Slapak, and Alan Hatfield for supporting this work and Cecile Gonzalez-Cerimele for all of her assistance.

References

The Protein Kinase Cβ–Selective Inhibitor, Enzastaurin (LY317615.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, andSuppresses Growth of Human Colon Cancer and Glioblastoma Xenografts

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/65/16/7462

Cited articles This article cites 26 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/65/16/7462.full#ref-list-1

Citing articles This article has been cited by 58 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/65/16/7462.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.