The Protein Kinase Cβ–Selective Inhibitor, Enzastaurin (LY317615.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, and Suppresses Growth of Human Colon Cancer and Glioblastoma Xenografts

Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana

Abstract

Activation of protein kinase Cβ (PKCβ) has been repeatedly implicated in tumor-induced angiogenesis. The PKCβ-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Activation of PKCβ has now also been implicated in tumor cell proliferation, apoptosis, and tumor invasiveness. Herein, we show that Enzastaurin has a direct effect on human tumor cells, inducing apoptosis and suppressing the proliferation of cultured tumor cells. Enzastaurin treatment also suppresses the phosphorylation of GSK3β in both tumor and in peripheral blood mononuclear cells (PBMCs) from treated mice. These data show that Enzastaurin has a direct antitumor effect and that Enzastaurin treatment suppresses GSK3β phosphorylation in both tumor tissue and in PBMCs, suggesting that GSK3β phosphorylation may serve as a reliable pharmacodynamic marker for Enzastaurin activity. With previously published reports, these data support the notion that Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis.

Introduction

The protein kinase C (PKC) family of serine-threonine protein kinases has been repeatedly implicated in the processes that control tumor cell growth, survival, and progression (reviewed in ref. 1). Early observations that PKCs are activated by tumor-promoting phorbol esters suggested that PKC activation may be involved in tumor initiation and progression (2). Tumor-induced angiogenesis requires activation of PKCs, particularly PKCβ (1). Vascular endothelial growth factor (VEGF)–induced hepatocellular carcinoma growth can be suppressed by treatment with the PKCβ-selective inhibitor LY333531, which elicits cell death in these hepatocellular carcinoma tissues (3).

PKCβ activation also contributes to tumor cell survival and proliferation and has been repeatedly implicated in the malignant progression of human cancers, notably B cell lymphomas (4), malignant gliomas (5), and colorectal carcinomas (6). PKCβ expression is specifically increased in patients with fatal/refractory diffuse large B cell lymphoma (DLBCL), linking increased PKCβ expression to decreased patient survival (4). Further supporting a role for PKCβ in DLBCL, cultured DLBCL cells with PKCβ overexpression undergo apoptosis when treated with the PKCβ-selective inhibitor LY379196 (7). In intestinal epithelia, expression of a PKCβ transgene elicits hyperproliferation of the colonic epithelium and increases susceptibility to carcinogen-induced colon carcinogenesis indicating that PKCβ can promote colon carcinogenesis (6, 8). Furthermore, PKCβII expression in rat intestinal epithelial cells can induce an invasive phenotype (9).

Although PKC activation has been implicated in tumor formation and progression, the signaling pathways affected by PKC activation that contribute to malignancy are unclear. PKC activation can trigger signaling through the ras/extracellular signal-regulated kinase (ERK) pathway, which may be involved in the controlling cellular proliferation and apoptosis (1) as well as the induction of intestinal cell invasiveness (9). PKCβII activity may also play a role in reducing the sensitivity of intestinal epithelia to the growth suppressive effects of transforming growth factor β (8). Recent work has now shown a link between PKC activity and the phosphatidylinositol 3-kinase 3-kinase (PI3K)/Akt pathway, a prominent regulatory pathway governing the apoptotic response. PKC activation requires phosphorylation of the T-loop, a process triggered by the activity of phosphatidylinositol-dependent kinase-1 (PDK-1), a key effector kinase-activated immediately downstream of PI3K (10). PKCs, PKCβ, and PKCγ can also directly phosphorylate Akt at Ser473, which is essential for Akt activity (11–13). Moreover, both PKC (14, 15) and Akt (16) can phosphorylate glycogen synthase kinase 3β at Ser9 (GSK3β), further supporting the notion that these signaling pathways overlap. Crossover between PKC and the PI3K/Akt pathway may be an attractive mechanism by which PKCs influence the apoptotic response.
Collectively, these data have implicated PKCs in tumor progression and have prompted the development of novel anticancer therapeutics targeting PKC. Enzastaurin (LY317615.HCl) was developed as a selective PKCβ inhibitor (17). Based upon the role established for PKCβ in angiogenic signaling (1, 3), enzastaurin was initially evaluated in preclinical tumor models for antiangiogenic activity. Enzastaurin treatment dramatically suppressed the growth of new vasculature towards a VEGF–impregnated disc implanted in the rat corneal micropocket (18). Enzastaurin also decreased microvessel density and VEGF expression in human tumor xenografts (19). The striking antiangiogenic effects of enzastaurin prompted the clinical development of enzastaurin.

In addition to the antiangiogenic effects of enzastaurin, we now show that enzastaurin directly suppresses proliferation and induces apoptosis of tumor cells in culture and suppresses phosphorylation of GSK3β, ribosomal protein S6, and AKT. Oral dosing of enzastaurin to achieve plasma concentrations of drug comparable with those achieved in clinical trials significantly suppresses the growth of human colon and glioblastoma xenografts. As in cell culture, GSK3β phosphorylation was suppressed in these tumor tissues. Moreover, GSK3β phosphorylation was suppressed to a similar extent and with a similar time course in peripheral blood mononuclear cells (PBMCs) from these xenograft-bearing mice. These data support the notion that enzastaurin elicits an antitumor effect by suppressing signaling through the AKT pathway, directly inducing tumor cell death and suppressing tumor cell proliferation.

Materials and Methods

Kinase inhibition assays. The inhibition of PKCα, PKCβ, PKCε, or PKCγ activity by enzastaurin was determined using a filter plate assay format measuring 32P incorporation into myelin basic protein substrate. Reactions were done in 100-μL reaction volumes in 96-well polystyrene plates with final conditions as follows: 90 mmol/L HEPES (pH 7.5), 0.001% Triton X-100, 4% DMSO, 5 mmol/L MgCl₂, 100 μmol/L CaCl₂, 0.1 mg/mL phosphatidylserine (Avanti Polar Lipids, Alabaster, AL), 5 μg/mL diacetyl glycerol (Avanti Polar Lipids), 30 μmol/L ATP, 0.005 μmol/L D-pi(γ) ATP (NEC, Boston, MA), 0.25 mg/mL myelin basic protein (Sigma, St. Louis, MO), serial dilutions of enzastaurin (1-2,000 μmol/L), and recombinant human PKCα, PKCβ, or PKCγ enzymes (390, 169, 719, or 128 μmol/L, respectively; PanVera, Madison, WI). Reactions were started with enzyme addition, incubated at room temperature for 60 minutes, quenched with 10% H₂PO₄, transferred to multiscreen anionic phosphocellulose 96-well filter plates (Millipore, Billerica, MA), incubated 30 to 90 minutes, filtered, and washed with 4 volumes of 0.5% H₂PO₄ on a vacuum manifold (Millipore). Scintillation cocktail was added and plates were read on a Microbeta scintillation counter (Wallac, Turku, Finland). IC₅₀ values were determined by fitting a three-variable logistic equation to the 10-point dose-response data using ActivityBase 4.0 (ID Business Solutions, Ltd., Cambridge, MA).

Upstate Kinase Profiler data were derived as per the provider (Upstate, Charlotteville, VA). Data are presented as the percent of kinase activity measurements for each treated group. Control groups were treated only with vehicle.

Protein lysates from cells and in vivo tissues. Lysates for western blot experiments and ELISA assays were prepared using Biosearch Cell Extraction Buffer (Biosearch International, Camarillo, CA) plus protease inhibitor cocktails (Sigma P8340, P2850, P5726) at 10 μL of each per mL of cell extraction buffer (complete lysis buffer). Extracted tumors from in vivo studies were placed in 1 mL of ice-cold complete lysis buffer in Bio-101 tubes (QBioGene, Irvine, CA) for immediate homogenization. The Fast Prep FP-120 instrument (QBioGene) homogenized the tissues during two 30-second blots. The homogenate was then transferred to Eppendorf tubes and centrifuged 10 minutes at 12,000 rpm. The supernatant (protein lysate) was then saved for western blotting or ELISA.

Western blot and ELISA assays. The following antibodies used for western blotting were phosphoGSK3β Ser/Thr, 96 ribosomal protein, phosphoAKT Thr308 (Cell Signaling Technologies, Beverly, MA). Antibodies for total GSK3β and total AKT were purchased from BD Biosciences (San Jose, CA). Western blots were done as described (20).

Proliferation assays. Proliferation was assessed for all cell lines over a 6-day time course in media supplemented with 1% FBS (7 days total). Briefly, 1,000 cells were plated per well in a 96-well plate and changed to fresh media (1% FBS) with or without enzastaurin on days 1 and 4. On day 7, the media were removed and 100 μL propidium iodide (PI) solution (10 μg/mL in D-PBS) were added to each well. An initial reading for PI staining (excitation at 500 nmol/L, absorbance at 615 nmol/L) was done using the WallacVictor plate reader following a 30-minute incubation to determine the nonviable cell fraction. The plate was then frozen at –80°C for 2 hours, thawed, and reread. The proliferative index was scored by subtracting the prefreeze data (nonviable cells) from the postfreeze data (all cells).

Apoptosis assays. Apoptosis induction by enzastaurin was measured by nucleosomal fragmentation (Cell Death Detection ELISAapoptosis, Roche Applied Science, Indianapolis, IN) and terminal deoxynucleotidyl transferase–mediated nick-end labeling (TUNEL) staining for HCT116 and U87MG cell lines. Briefly, 5,000 cells were plated per well in 96-well plates (1% FBS-supplemented media conditions), incubated with or without enzastaurin for 48 to 72 hours (as indicated) and run as per the manufacturer’s protocol (Roche Applied Science). The absorbance values were normalized to those from control-treated cells to derive a nucleosomal enrichment factor at all concentrations as per the manufacturer’s protocol (Roche Applied Science). The concentrations studied ranged from 0.1 to 10 μmol/L. In situ TUNEL staining was assayed with the In situ Cell Death Detection, Fluorosein kit (Roche Applied Science). Cells (75,000) were plated per well in 6-well plates and incubated 72 hours in 1% FBS-supplemented media ± enzastaurin. Fluorescein-labeled DNA strand breaks were detected with the BD epics flow cytometer. Ten thousand, single-cell FITC-staining events were collected for each test.

PhosphoGSK3β Ser/Thr ELISA. Lysates prepared from HCT116 and U87MG tumors or mouse PBMCs were prepared as described above. PhosphoGSK3β Ser/Thr was quantitated using the Assay Design, Inc. (Ann Arbor, MI) immunometric assay kit. Briefly, 15 μL of tumor lysate (400–600 μg protein per well) or 25 μL PBMC lysate (50–100 μg protein per well) were added to all test wells. Absolute phosphoGSK3β Ser/Thr values are reported in pg phosphoGSK3β Ser/Thr/mg lysate.

Statistical analyses. Tumor volume data are transformed to a log scale to equalize variance across time and treatment groups. The log volume data are analyzed with a two-way repeated-measures ANOVA by time and treatment using SAS PROC MIXED software (SAS Institute, Inc., Cary, NC). Treatment groups are compared with the control group at each time point. The data are
plotted as means and SEs for each treatment group versus time. Statistical significance for the effect of enzastaurin treatment on GSK3β phosphorylation in xenograft tumors was assessed by Dunnett’s method, one-way ANOVA (JMP Statistical Discovery Software, SAS Institute).

Results

Enzastaurin treatment suppresses tumor cell proliferation and induces apoptosis. PKCβ activity has been implicated in tumor-induced angiogenesis (1, 3). Enzastaurin was developed as an ATP-competitive, selective inhibitor of PKCβ with an IC50 for PKCβ of 6 nmol/L (Table 1). As such, enzastaurin was developed as an antiangiogenic therapy for cancer (17–19). PKC activation has now been implicated in tumor cell proliferation and apoptosis as well (1). We therefore sought to examine whether enzastaurin would also show direct antitumor activity.

We evaluated the ability of enzastaurin to suppress tumor cell proliferation in culture. Indeed, enzastaurin suppressed the proliferation of U87MG glioblastoma cells, PC-3 prostate carcinoma cells, and HCT116 colon carcinoma cells in the low micromolar range (Fig. 1). For HCT116 and U87MG cells in particular, there may be a mild stimulatory effect at concentrations below 1 µmol/L, although the relevance of this observation is unclear.

Evaluation of the NCI 60 cell line panel also showed the antiproliferative activity of enzastaurin in the low micromolar range in a wide variety of cancer cell lines: leukemia (K562 and MOLT-4), non–small cell lung cancer (A549, EKVX, and HOP-92), colon cancer (COLO205, HCT116, KM12, and SW-620), central nervous system cancer (SF-295, SF-539, and U251), melanoma (LOXIMVI, M14, SK-MEL-5, SK-MEL-28, and UACC-257), ovarian cancer (OVCAR-3, OVCAR-4, and OVCAR-8), renal cancer (CAKI-1), prostate cancer (PC-3), and breast cancer (MCF-7, NCI/ADR-RES, and MDA-MB-435). The cell lines most sensitive to enzastaurin were K-562, MOLT-4, HOP-92, and PC-3. Cell lines of the NCI 60 cell line panel that were unaffected by enzastaurin include the prostate cancer cell line DU-145; the breast cancer cell lines HS-578T, BT-549, and T-47D; the melanoma cell line MALME-3M; lung cancer cell lines HOP-62, NCI-H23, NCI-H322M, and NCI-460; the ovarian cancer cell lines OVCAR-5 and SK-OV-3; and the renal cancer cell lines 786-0, A498, ACHN, RXF393, and TK-10 (data not shown). These data collectively show that enzastaurin suppresses the proliferation of a wide array of cancer cell lines in the low micromolar range, the same concentration range achieved in the plasma of clinical trials patients (21).

We next sought to determine whether enzastaurin might induce apoptosis in tumor cells. As measured by oligonucleosomal fragmentation, enzastaurin induced apoptosis in both HCT116 colon carcinoma cells and U87MG glioblastoma cells in the low micromolar range (Fig. 24). To confirm these results, we also evaluated apoptosis by TUNEL staining. Enzastaurin treatment of HCT116 colon carcinoma cells induced apoptosis in a dose-dependent manner with the percentage of TUNEL positive cells increasing from a basal level of roughly 2% to >50% in HCT116 cells treated with 4 µmol/L enzastaurin (Fig. 2B). Apoptosis was also evident by examining the sub-G0-G1 fraction after fluorescence activated cell sorting in HCT116 cells (data not shown). These analyses show that enzastaurin induces apoptosis in cultured human cancer cell lines in the low micromolar range (1-4 µmol/L).

Enzastaurin blocks phosphorylation of GSK3β and ribosomal protein S6. Enzastaurin was developed as an ATP-competitive, PKCβ-selective small-molecule inhibitor with an IC50 for PKCβ of 6 nmol/L. Phase I clinical trials showed that the 525 mg/d

<table>
<thead>
<tr>
<th>PKCβ IC50 (µmol/L)</th>
<th>PKCa IC50 (µmol/L)</th>
<th>PKCγ IC50 (µmol/L)</th>
<th>PKCe IC50 (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>0.039</td>
<td>0.083</td>
<td>0.110</td>
</tr>
</tbody>
</table>

NOTE: IC50 values were calculated from a 10-point curve from filter-binding assays run at 30 µmol/L ATP.
moved to the time course for these events was delayed relative to the inhibition of GSK3βSer9 phosphorylation.

Oral dosing of enzastaurin suppresses human tumor xenograft growth and GSK3βSer9 phosphorylation. The phase I clinical trials for enzastaurin have shown that oral administration at 525 mg/d yields ~2 μmol/L mean steady-state plasma exposure of enzastaurin and its analytes (21). To examine more fully the effects of orally given enzastaurin on the growth of human tumor xenografts, we sought to identify a dose that would yield levels of enzastaurin and its metabolites comparable with what is reached in clinical trials. We chose a dose of 75 mg/kg given orally by gavage twice daily. Xenograft-bearing mice were treated for 21 consecutive days starting when the mean tumor volume reached ~100 mm3. Enzastaurin treatment significantly suppressed the growth of both HCT116 colon carcinoma (Fig. 4A) and U87MG glioblastoma (Fig. 5A) xenografts (P < 0.01 for both studies). In the HCT116 xenograft-bearing mice, plasma exposure for enzastaurin was ~2 μmol/L at 30 minutes.

| Table 2. Upstate Kinase Profiler data for enzastaurin (LY317615.HCl, 1 μmol/L) |
|-----------------|-----------------|
| Kinase | % Control activity | Kinase | % Control activity |
| PKCβII | 11 | SAPK2b | 96 |
| PKCα | 23 | SAPK2x | 101 |
| PKCγ | 10 | SAPK3 | 88 |
| PKCδ | 8 | SAPK4 | 97 |
| PKCθ | 2 | JNK1α1 | 107 |
| PKCζ | 47 | JNK2a2 | 103 |
| PKCε | 9 | JNK3 | 85 |
| PKCη | 53 | MAPK1 | 114 |
| PKCμ | 90 | MAPK2 | 104 |
| PKCν | 91 | AMPK | 91 |
| IKKα | 107 | PRK2 | 88 |
| IKKβ | 116 | Abl | 96 |
| MEK1 | 91 | FGFR3 | 82 |
| MKK6 | 99 | PDGFRα | 86 |
| MKK7 | 102 | PDGFRβ | 100 |
| PKBα | 75 | c-SRC | 101 |
| PKBβ | 100 | BTK | 95 |
| p70S6K | 81 | EGFR | 94 |

Abbreviations: SAPK, stress-activated protein kinase; JNK, c-jun NH2-terminal kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK kinase; EGFR, epidermal growth factor receptor; PDGFR, platelet-derived growth factor receptor; FGFR, fibroblast growth factor receptor.
increased to nearly 3 μmol/L at 1 hour, and dropped to 1.5 μmol/L by 2 hours. Between 8 and 12 hours after dosing, the plasma concentrations of enzastaurin were nearly undetectable (Fig. 4B). The time course for enzastaurin plasma exposure was similar on day 1 and on day 21 after dosing (Fig. 4B). The time course for plasma exposure of enzastaurin dosed orally in mouse models consistently reflects the data in Fig. 4B, with nearly undetectable levels of drug in plasma between 8 and 12 hours after dosing. Consequently, 12-hour time points were not included in further studies.

Enzastaurin robustly suppressed GSK3βSer9 phosphorylation in cultured tumor cells (Fig. 3). We therefore sought to determine whether GSK3βSer9 phosphorylation would be similarly suppressed in xenograft tumor tissues after enzastaurin dosing. Western blot analysis of HCT116 colon cancer xenograft tissues showed that GSK3βSer9 phosphorylation was suppressed in a time-dependent manner after enzastaurin treatment (Fig. 4C). The time course for reduction in GSK3βSer9 phosphorylation lags slightly behind the time course for plasma exposure as expected. GSK3βSer9 phosphorylation returned to pretreatment levels at 12 hours after dosing, when plasma exposure levels of enzastaurin were nearly undetectable.

In both cultured tumor cells and in xenograft tumor tissues from the same cell lines, enzastaurin treatment suppressed GSK3βSer9 phosphorylation, indicating that GSK3βSer9 phosphorylation may serve as a reliable marker for enzastaurin activity. To do higher throughput analyses for GSK3βSer9 phosphorylation, we chose a commercially available ELISA detection method (Assay Designs). ELISA analyses of U87MG xenograft tissues revealed >50% reduction in GSK3βSer9 phosphorylation evident at the 2-hour time point and persisting through 8 hours (Fig. 5B; P < 0.0001 for all time points). In HCT116 xenograft tissues, ELISA analyses showed that GSK3βSer9 phosphorylation was reduced by 50% after 30 minutes and by 80% at 2 hours. Consistent with the western blotting data (Fig. 4C), the reduction in GSK3βSer9 phosphorylation persisted through 8 hours. Results for GSK3βSer9 phosphorylation were comparable by western blotting and by ELISA (Fig. 4C versus Fig. 6), although the extent of reduction may be more pronounced by western blotting (compare 8-hour time points in Fig. 4C and Fig. 6). The differences in the extent to which GSK3βSer9 phosphorylation was reduced in U87MG glioblastoma and HCT116 colon carcinoma xenografts may reflect an inherent difference in the biology of these tumors (for instance, U87MG lacks PTEN expression). Alternately, these data may simply reflect differences in these xenografted tumors related to tumor content, host tissue content, etc. In any case, both xenograft models show a significant, reproducible reduction in GSK3βSer9 phosphorylation evident no later than 2 hours and persisting through 8 hours after oral dosing with enzastaurin.

Enzastaurin suppresses GSK3βSer9 phosphorylation in both xenograft tissues and peripheral blood mononuclear cells. We next sought to determine whether enzastaurin could affect GSK3βSer9 phosphorylation in PBMCs and whether this effect may

![Figure 3.](cancerres.aacrjournals.org)
reflect the time course and degree of reduction evident in xenograft tumor tissue. ELISA analyses revealed that GSK3β Ser9 phosphorylation is significantly reduced in the PBMCs of xenograft-bearing mice, with the most profound reduction (>60%) between 2 and 4 hours after dosing (P < 0.005 up to 4 hours after dose). Similarly, GSK3β Ser9 phosphorylation was also significantly reduced in the xenograft tissues harvested from these same mice, again with the most profound reduction (>60%) between 2 and 4 hours after dosing (P < 0.0001 up to 4 hours after dosing). These data indicate that the reduction in GSK3β Ser9 phosphorylation from the PBMCs of treated mice reflects the time course and extent to which GSK3β Ser9 phosphorylation is reduced in xenograft tumor tissues.

Discussion

PKC activity has been implicated in the regulation of tumor-induced angiogenesis, tumor cell proliferation, apoptosis, and tumor...
invasiveness (1). On this basis, a number of PKC inhibitors have been advanced into clinical trials for the treatment of human cancers. Enzastaurin was developed as an ATP-competitive, selective inhibitor of PKC\(\text{h}\). Early studies showed that enzastaurin profoundly suppressed VEGF-induced angiogenesis. Enzastaurin dramatically suppressed the growth of new vasculature towards a VEGF-impregnated disc implanted in the rat corneal micropocket (18). These findings are consistent with the role for PKC\(\text{h}\) in mediating the VEGF-induced proliferative signals in endothelial cells (1, 3). Based in part on this robust antiangiogenic activity, enzastaurin was advanced into clinical trials as a novel anticancer therapy.

We now show that enzastaurin also exhibits a direct effect on human tumor cells, inducing apoptosis in, and suppressing proliferation of, a wide array of cultured human tumor cells. Enzastaurin treatment interferes with signaling through the AKT pathway, suppressing the phosphorylation of GSK3\(\text{h}\) Ser9, ribosomal protein S6Ser240/244, and AKTThr308. The suppression of GSK3\(\text{h}\) Ser9 phosphorylation by enzastaurin was also evident in human xenograft tissues. Oral dosing of xenograft-bearing mice with enzastaurin (to achieve plasma exposure levels similar to those achieved in human clinical trials) suppressed GSK3\(\text{h}\) Ser9 phosphorylation by >50% in both colon cancer and glioblastoma xenografts. GSK3\(\text{h}\) Ser9 phosphorylation was reduced in PBMCs of these xenograft-bearing mice to a similar extent and with a similar time course as in the xenograft tumor tissue, suggesting that GSK3\(\text{h}\) Ser9 phosphorylation in PBMCs may serve as a reliable pharmacodynamic marker for enzastaurin activity.

The direct, proapoptotic effects of enzastaurin treatment on human tumor cells were achieved at drug concentrations similar to those achieved in the plasma of clinical trials patients (1-4 \text{\mu mol/L}). At these drug concentrations, enzastaurin treatment interferes with signaling through the PI3K/AKT pathway, suppressing phosphorylation of GSK3\(\text{h}\) Ser9, ribosomal protein S6Ser240/244, and AKTThr308.
The PI3K/AKT pathway is a key regulator of cellular survival and is frequently activated in many human cancers, most notably glioblastomas, melanomas, and prostate, ovarian, and endometrial carcinomas (23). Interestingly, previous work had indicated that enzastaurin treatment suppressed VEGF expression by tumor xenografts (19). VEGF expression is regulated at both the transcriptional and posttranscriptional levels through activation of the AKT pathway (24–26).

It is unclear how enzastaurin may interfere with signaling through the PI3K/AKT pathway. In in vitro kinase assays, enzastaurin shows minimal inhibitory activity against p70S6 kinase and virtually no inhibition of AKT-1 or PKD-1, suggesting that the kinases responsible for phosphorylation of GSK3βSer9, ribosomal protein S6Ser240/244 and AKTThr308 may not be directly inhibited by enzastaurin (LY317615.HCl). Furthermore, the time course for these signaling changes is different. Decreased phosphorylation of GSK3βSer9 is evident within 30 minutes, whereas decreased phosphorylation of ribosomal protein S6Ser240/244 and AKTThr308 is evident at 2 and 4 hours post-treatment, respectively. Collectively, these data suggest that enzastaurin may indirectly suppress signaling through the AKT pathway. The PKC inhibitor PKC412 has also been shown to suppress AKT pathway signaling, upstream or at the level of AKT, although no direct mechanism was clear in these studies either (22).

Recent evidence has now shown that various PKC family members can regulate AKT activity. PKCα can regulate the activity of AKT by directly stimulating phosphorylation of Ser473 in endothelial cells (11). PKCαII can also directly phosphorylate and activate AKT in mast cells (12). Activation of PKCζ can also activate AKT in glioblastoma cells, causing glioblastoma proliferation (13). Our data show that the AKT pathway is suppressed in cells treated with 1 to 4 μmol/L enzastaurin. At these concentrations, enzastaurin can directly suppress the kinase activity of multiple PKC isoforms. It is therefore conceivable that interference with the AKT signaling pathway may be related to the effect of enzastaurin on multiple PKC family members.

Enzastaurin has now successfully advanced to phase II clinical trials for the treatment of refractory glioblastoma and DLBCL. With this report, we now show that enzastaurin exhibits direct antitumor activity, inducing tumor cell apoptosis and suppressing tumor cell proliferation. Moreover, enzastaurin interferes with signaling through the AKT pathway, a pathway frequently activated in a variety of human cancers. Finally, we show that enzastaurin profoundly suppresses the phosphorylation of GSK3βSer9 both in human tumor xenograft tissue and in PBMCs harvested from xenograft-bearing mice, suggesting that GSK3βSer9 phosphorylation may serve as a reliable pharmacodynamic marker of enzastaurin activity. With previous data, these data show that enzastaurin suppresses tumor growth through multiple mechanisms—the direct induction of tumor cell death and the suppression of tumor cell proliferation coupled to the indirect effect of suppressing tumor-induced angiogenesis.

References

9. Zhao J, Arayassidis PZ, Liu Y, Thompson EA, Fields AP. Protein kinase C is (PKC)C induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signal-
The Protein Kinase Cβ–Selective Inhibitor, Enzastaurin (LY317615.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, and Suppresses Growth of Human Colon Cancer and Glioblastoma Xenografts

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/65/16/7462

Cited articles This article cites 26 articles, 14 of which you can access for free at: http://cancerres.aacrjournals.org/content/65/16/7462.full#ref-list-1

Citing articles This article has been cited by 58 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/65/16/7462.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.